JP3019552B2 - Surface inspection equipment - Google Patents

Surface inspection equipment

Info

Publication number
JP3019552B2
JP3019552B2 JP3294458A JP29445891A JP3019552B2 JP 3019552 B2 JP3019552 B2 JP 3019552B2 JP 3294458 A JP3294458 A JP 3294458A JP 29445891 A JP29445891 A JP 29445891A JP 3019552 B2 JP3019552 B2 JP 3019552B2
Authority
JP
Japan
Prior art keywords
light
khz
light beam
inspection object
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3294458A
Other languages
Japanese (ja)
Other versions
JPH05133730A (en
Inventor
克典 小沢
陽滋 山田
縫夫 土田
孝二 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP3294458A priority Critical patent/JP3019552B2/en
Publication of JPH05133730A publication Critical patent/JPH05133730A/en
Application granted granted Critical
Publication of JP3019552B2 publication Critical patent/JP3019552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、鋳物等の検査対象物の
表面を光ビームにより検査する表面検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface inspection apparatus for inspecting the surface of an inspection object such as a casting with a light beam.

【0002】[0002]

【従来の技術】鋳物の表面欠陥をセンシングする技術と
しては、特開平2−124412号に記載された技術が
あげられる。この技術は、図7に示されるように、光源
10から発射された光ビームをポリゴンミラー12によ
り反射させ、検査対象物の表面14による反射光を一次
元位置検出部16により受光し、一次元位置検出部16
の出力を信号処理部18により処理して測長する技術で
ある。また、ポリゴンミラー12はモータ20により回
転し、これにより光ビームが検査対象物の表面14を走
査するとともに、信号処理部18は光方向検出部22に
より検出されるビーム方向に応じて前記処理を実行す
る。
2. Description of the Related Art As a technique for sensing a surface defect of a casting, there is a technique described in Japanese Patent Application Laid-Open No. 2-124412. According to this technique, as shown in FIG. 7, a light beam emitted from a light source 10 is reflected by a polygon mirror 12, a light reflected by a surface 14 of the inspection object is received by a one-dimensional position detection unit 16, and a one-dimensional position is detected. Position detector 16
This is a technique for processing the output of the signal processing unit 18 to measure the length. The polygon mirror 12 is rotated by a motor 20, whereby the light beam scans the surface 14 of the inspection object, and the signal processing unit 18 performs the above-described processing according to the beam direction detected by the light direction detection unit 22. Execute.

【0003】[0003]

【発明が解決しようとする課題】しかし、この従来技術
では、機械的走査を伴うためガタツキ等により精度向上
に限界があり、さらに走査にある程度の時間も必要であ
る。
However, in this prior art, since mechanical scanning is involved, there is a limit to improvement in accuracy due to rattling or the like, and scanning requires a certain amount of time.

【0004】本発明は、このような問題点を解決するこ
とを課題としてなされたものであり、機械的走査を行わ
ずに表面検査を行うことにより、精度確保及び高速化を
実現することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to realize accuracy assurance and high speed by performing surface inspection without performing mechanical scanning. And

【0005】[0005]

【課題を解決するための手段】このような目的を達成す
るために、本発明は、鋳物等の検査対象物の表面に光ビ
ームを照射し、反射光に基づき測長演算を行い検査対象
物の表面状態を検査する表面検査装置において、互いに
異なる周波数のパルスで変調された光ビームを検査対象
物に向け照射する複数の発光部と、検査対象物による反
射光を受光し電流出力する受光部と、受光部の出力電流
各変調周波数のパルスとを乗じ更にその直流成分を取
り出すことにより各光ビームの集光位置を表す直流成分
を生成出力する周波数分離部と、この直流成分に基づき
各変調周波数毎に測長演算を行う処理部と、を備えるこ
とを特徴とする。
In order to achieve the above object, the present invention illuminates a surface of a test object such as a casting with a light beam, performs a length measurement operation based on reflected light, and performs a length measurement operation. In a surface inspection apparatus for inspecting the surface condition of a light source, a plurality of light emitting units for irradiating a light beam modulated with pulses of mutually different frequencies toward the inspection object, and a light receiving unit for receiving reflected light from the inspection object and outputting current And the output current of the light receiving section
And the pulse of each modulation frequency, and further obtains its DC component.
A frequency separation unit that generates and outputs a DC component representing the condensing position of each light beam by extracting the light beam, and a processing unit that performs a length measurement operation for each modulation frequency based on the DC component. .

【0006】[0006]

【作用】本発明においては、複数の発光部から検査対象
物に向け互いに異なる周波数のパルスで変調された光ビ
ームが照射される。検査対象物により反射された光は受
光部により受光され、さらに周波数分離部により変調周
波数毎に分離される。周波数分離部から出力される直流
成分は、各変調周波数の光ビームの集光位置を表してい
る。従って、この直流成分により各変調周波数毎に測長
演算を行うことが可能である。この結果、複数の発光部
により照射された光ビームにより測長を行っているた
め、走査を行わずにある区域を同時に測長でき、機械的
走査排除による精度確保及び同時測長による高速化が実
現される。また、光ビームはそれぞれ異なる周波数のパ
ルスで変調されており、複数の光ビームを同時照射する
ことによる不具合は特に生じない。
According to the present invention, light beams modulated with pulses of different frequencies are emitted from a plurality of light emitting units toward the inspection object. The light reflected by the inspection object is received by the light receiving unit, and further separated by the frequency separation unit for each modulation frequency. The DC component output from the frequency separation unit indicates the condensing position of the light beam of each modulation frequency. Therefore, it is possible to perform a length measurement operation for each modulation frequency using the DC component. As a result, since the length is measured by the light beams emitted from the plurality of light emitting units, a certain area can be measured at the same time without scanning, ensuring accuracy by eliminating mechanical scanning and speeding up by simultaneous measurement. Is achieved. Further, the light beams are modulated by pulses of different frequencies, respectively, and there is no particular problem caused by simultaneous irradiation of a plurality of light beams.

【0007】[0007]

【実施例】以下、本発明の好適な実施例について図面に
基づき説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings.

【0008】図1には、本発明の一実施例に係る表面検
査装置の実体構成が(a)に正面図として、(b)に側
面図として、示されている。この図に示されるように、
本実施例は光ファイバ発光体24、レンズ26及び一次
元位置検出素子(PSD:Position Sensing Device)2
8を備えている。
FIG. 1 shows the actual configuration of a surface inspection apparatus according to an embodiment of the present invention as a front view in (a) and a side view in (b). As shown in this figure,
In this embodiment, an optical fiber light emitter 24, a lens 26, and a one-dimensional position detecting element (PSD: Position Sensing Device) 2
8 is provided.

【0009】光ファイバ発光体24は、図2(a)及び
(b)に示されるように、複数本の(図では10本の)
光ファイバ30をスリーブ32を用いて配列させ、ファ
イバホルダ34内でセルフォックマイクロレンズ(SM
L)36に対置させた構成である。光ファイバ30には
図示しないレーザダイオードからレーザ光が入射され、
このレーザ光はSML36によりビーム化される。この
光ビームは、検査対象物に照射される。なお、後述する
ように、レーザ光はそれぞれ異なる周波数のパルスで変
調されている。
As shown in FIGS. 2A and 2B, a plurality of (ten in the figure) optical fiber light emitters 24 are provided.
The optical fibers 30 are arranged using a sleeve 32, and the SELFOC microlens (SM
L) 36. Laser light is incident on the optical fiber 30 from a laser diode (not shown),
This laser light is converted into a beam by the SML 36. This light beam is applied to the inspection object. Note that, as described later, the laser light is modulated by pulses having different frequencies.

【0010】ビーム径は、例えば1.5(deg)の照
射角度、50(mm)の距離で2.0φとなるよう設定
する。光ファイバ30は縦5、横2ずつ計10個が2.
2(mm)ピッチで配置されている。このような配置と
すると、高密度で10本の光束を検査対象物の表面に投
射できる。
The beam diameter is set to be 2.0 φ at an irradiation angle of 1.5 (deg) and a distance of 50 (mm), for example. The optical fiber 30 has a total of 10 optical fibers 30 each having a length of 5 and a width of 2.
They are arranged at a pitch of 2 (mm). With such an arrangement, ten light beams can be projected onto the surface of the inspection object at a high density.

【0011】光ファイバ発光体24、レンズ26及び一
次元PSD28は、図3に示されるような位置関係で配
置されている。すなわち、光ファイバ発光体24から出
射される光ビームは、検査対象物の表面38で反射し、
レンズ26により一次元PSD28上の所定の集光スポ
ットにそれぞれ集光される。
The optical fiber light emitter 24, the lens 26 and the one-dimensional PSD 28 are arranged in a positional relationship as shown in FIG. That is, the light beam emitted from the optical fiber light emitter 24 is reflected by the surface 3 8 of the inspection object,
The light is condensed on a predetermined condensed spot on the one-dimensional PSD 28 by the lens 26.

【0012】j[kHz]で変調された光ビームの集光
スポットの位置Xjは、有効感度帯が6で与えられた場
合、出力電流i1j及びi2jを用いて次のように決定され
る。
The position X j of the focused spot of the light beam modulated at j [kHz] is determined as follows using the output currents i 1j and i 2j when the effective sensitivity band is given by 6. You.

【0013】 Xj /6=(i2j−i1j)/(i2j+i1j) この演算は、出力電流による正規化と呼ばれる。また、
図に示すD,W,Sj が定まれば、測長変位dj は、 dj =DSj /(W−Xj ) と定まる。
X j / 6 = (i 2j −i 1j ) / (i 2j + i 1j ) This operation is called normalization by the output current. Also,
D shown in FIG, W, if Sadamare is S j, measuring the displacement d j is, d j = DS j / ( W-X j) and determined.

【0014】図4には、本実施例の回路構成が示されて
いる。この図に示されるように、本実施例は同期検波法
による周波数分離を実行している。
FIG. 4 shows a circuit configuration of the present embodiment. As shown in this figure, the present embodiment executes frequency separation by the synchronous detection method.

【0015】この実施例においては、レーザ光は異なる
パルス周波数で変調されている。すなわち、それぞれ5
kHz,6kHz,7kHz,…の周波数のパルス発振
器40と、これらの発振出力によりレーザダイオード
(LD)42を駆動する駆動回路44と、を備えてい
る。LD42の駆動により発生したレーザ光は、図1乃
至図3により説明した通り、PSD28により受光され
る。
In this embodiment, the laser light is modulated at different pulse frequencies. That is, 5
A pulse oscillator 40 having a frequency of kHz, 6 kHz, 7 kHz,..., and a drive circuit 44 for driving a laser diode (LD) 42 by using these oscillation outputs. The laser light generated by driving the LD42, as described with reference to FIG. 1 to FIG. 3, is received by the P SD28.

【0016】PSD28上に反射光が集光されると、当
該PSD28は電流i1j及びi2jを出力する。本実施例
では、各周波数毎の電流合計値Σi1 =i15+i16+i
17+…+高調波、Σi2 =i25+i26+i27+…+高調
波から、各変調周波数5kHz,6kHz,7kHz,
…の成分を分離する。
When the reflected light is collected on the PSD 28, the PSD 28 outputs currents i 1j and i 2j . In this embodiment, the total current value of each frequency Σi 1 = i 15 + i 16 + i
17 +... + Harmonics, Δi 2 = i 25 + i 26 + i 27 +... + Harmonics, the modulation frequencies 5 kHz, 6 kHz, 7 kHz,
The components of ... are separated.

【0017】この動作を、電流i15及びi25の抽出によ
る5kHzで変調された光ビームのよる集光位置X5
算出を例として説明する。まず、5kHzのパルス発振
器40の出力を、バンドパスフィルタ46により瀘波す
ると、 B・sin(2πft+φ) の基本波成分が得られる。ただし、Bは当該バンドパス
フィルタ46のゲイン、fは5kHz、φは当該バンド
パスフィルタ46による位相変化である。これを、乗算
器48によりΣi1 に乗ずると、その乗算結果の直流成
分は B・I15・cosφ/2 となる。ただし、I15はi15の振幅を表す(以下同
様)。変調周波数の差の最小値が1kHzであるので、
交流成分はすべて1kHz以上の成分である。従って、
乗算器48の出力をローパスフィルタ50により瀘波
し、直流成分のみを取り出すことができる。これをゲイ
ンGの増幅器52により増幅すると、次のような直流信
号が得られる。
[0017] This operation will be described, the calculation of the focusing position X 5 with the light beam modulated by 5kHz by extraction of the current i 15 and i 25 as an example. First, when the output of the 5 kHz pulse oscillator 40 is filtered by the band pass filter 46, a fundamental component of B · sin (2πft + φ) is obtained. Here, B is the gain of the band-pass filter 46, f is 5 kHz, and φ is the phase change by the band-pass filter 46. When this is multiplied by Σi 1 by the multiplier 48, the DC component of the multiplication result is B · I 15 · cosφ / 2. Here, I 15 represents the amplitude of i 15 (the same applies hereinafter). Since the minimum value of the difference between the modulation frequencies is 1 kHz,
The AC components are all components of 1 kHz or more. Therefore,
The output of the multiplier 48 is filtered by the low-pass filter 50, and only the DC component can be extracted. When this is amplified by the amplifier 52 having the gain G, the following DC signal is obtained.

【0018】K1 =G・B・I15・cosφ/2 一方、乗算器54によりPSD28の出力電流の合計値
Σi2 をバンドパスフィルタ46の出力に乗じ、ローパ
スフィルタ56により瀘波し、増幅器58により増幅す
ると、次のような直流信号が得られる。ただし、ローパ
スフィルタ56及び増幅器58の特性は、ローパスフィ
ルタ50及び増幅器52と一致しているものとする。
Meanwhile K 1 = G · B · I 15 · cosφ / 2, multiplied by the sum .SIGMA.i 2 of the output current of the multiplier 54 PSD 28 to the output of the band pass filter 46, and瀘波low-pass filter 56, an amplifier When amplified by 58, the following DC signal is obtained. However, it is assumed that the characteristics of the low-pass filter 56 and the amplifier 58 match those of the low-pass filter 50 and the amplifier 52.

【0019】K2 =G・B・I25・cosφ/2 このようにして得られた2個の直流成分は、それぞれI
15又はI25に比例している。これらは共に8ビットのA
/D変換器60に入力され、正規化が行われる。すなわ
ち、 (K1 −K2 )/(K1 +K2 ) が演算される。G・B・cosφ/2が回路設定により
定まる定数であるから、この値の演算は(I25−I15
/(I25+I15)の演算に等しい。これは、X5 /6で
あり、集光位置X5 が求められることになる。また、6
kHz,7kHz,…で変調された光ビームについて
も、同様の構成により分離及び正規化を行えば、集光位
置X6 ,X7 ,…が求められる。
K 2 = G · B · I 25 · cos φ / 2 The two DC components thus obtained are I 2
It is proportional to 15 or I 25 . These are both 8-bit A
The signal is input to the / D converter 60 and is normalized. That is, (K 1 −K 2 ) / (K 1 + K 2 ) is calculated. Since GB · cos φ / 2 is a constant determined by the circuit setting, the calculation of this value is (I 25 −I 15 )
/ (I 25 + I 15 ). This is X 5/6, so that the focusing position X 5 is determined. Also, 6
If the light beams modulated at kHz, 7 kHz,... are separated and normalized by the same configuration, the light condensing positions X 6 , X 7 ,.

【0020】なお、この実施例では、5kHz,6kH
z,7kHz,…でレーザを変調していたが、例えば、
変調周波数を最低5kHzから0.5kHzピッチで
9.5kHzまでの範囲に設定すれば、PSD28の
スルーレートで十分対応可能な周波数で、高調波が変
調周波数の帯域に含まれず、誤差が少ない位置検出を行
うことができる。さらに、ローパスフィルタ50、5
6のカットオフが比較的緩やかでよい。
In this embodiment, 5 kHz, 6 kHz
The laser was modulated at z, 7 kHz,.
If the modulation frequency is set in the range of at least 5 kHz to 9.5 kHz at a pitch of 0.5 kHz, a position is detected at a frequency which can be sufficiently handled by the slew rate of the PSD 28 and the harmonics are not included in the modulation frequency band and the error is small. It can be performed. Further, low-pass filters 50, 5
The cutoff of No. 6 may be relatively gentle.

【0021】図5及び図6には、本発明の効果を実験し
た結果が示されている。この実験は、7kHz,8kH
z,9kHzの3周波数でレーザを変調し、3個の発光
素子を用いた装置による実験である。まず、図5は3種
類の周波数のうち7kHzのみを用いた場合の7kHz
に係るPSD正規化出力を示しており、図6は3種類の
周波数をすべて用いた場合の7kHz,9kHzに係る
PSD正規化出力を示している。これらの図の横軸は、
発光部から50mmの点を0とした照射位置である。
FIGS. 5 and 6 show the results of experiments on the effects of the present invention. This experiment was performed at 7 kHz and 8 kHz.
This is an experiment using an apparatus that modulates a laser at three frequencies of z and 9 kHz and uses three light emitting elements. First, FIG. 5 shows a case where only 7 kHz is used among three frequencies.
And FIG. 6 shows the PSD normalized outputs at 7 kHz and 9 kHz when all three types of frequencies are used. The horizontal axis in these figures is
This is an irradiation position where a point 50 mm from the light emitting unit is set to 0.

【0022】これらの図により、ほぼ理論と一致する結
果が得られ、又、複数の光ビームを用いても単一の光ビ
ームとほぼ同じ結果が得られることが明らかである。
From these figures, it is clear that a result almost coincident with the theory is obtained, and that even if a plurality of light beams are used, almost the same result as a single light beam can be obtained.

【0023】なお、本実施例の装置はバリ、鋳肌不良、
砂かみ、グイチ(段差)、欠け、割れ、巣、その他の検
出に適用でき、対象物の微小な面情報の入手に利用でき
る。
It should be noted that the apparatus according to the present embodiment has
It can be applied to the detection of sand bites, guilloches (steps), chips, cracks, nests, and others, and can be used to obtain minute surface information of an object.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
複数の光ビームを異なる変調周波数とし、受光された反
射光に係る信号を変調周波数毎に分離して測長を行うよ
うにしたため、機械的走査が不要となり、ガタツキ等に
よる精度低下が防止され、また瞬時同時測長による高速
化が可能になる。
As described above, according to the present invention,
Since a plurality of light beams have different modulation frequencies, and the length of the signal related to the received reflected light is measured separately for each modulation frequency, mechanical scanning is not required, and a decrease in accuracy due to rattling or the like is prevented, Also, the speed can be increased by instantaneous simultaneous length measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る表面検査装置の構成を
示す図であり、(a)は正面図、(b)は側面図であ
る。
FIG. 1 is a diagram showing a configuration of a surface inspection apparatus according to one embodiment of the present invention, wherein (a) is a front view and (b) is a side view.

【図2】光ファイバ発光体の構成を示す図であり、
(a)は発光面を、(b)は側面を、それぞれ示す図で
ある。
FIG. 2 is a diagram showing a configuration of an optical fiber light emitting body;
(A) is a figure which shows a light emitting surface, (b) is a figure which shows a side surface, respectively.

【図3】この実施例における受光動作を示す図である。FIG. 3 is a diagram showing a light receiving operation in this embodiment.

【図4】この実施例の要部回路構成を示す図である。FIG. 4 is a diagram showing a circuit configuration of a main part of the embodiment.

【図5】この発明の効果を実験結果で示す図である。FIG. 5 is a diagram showing the effect of the present invention by experimental results.

【図6】この発明の効果を実験結果で示す図である。FIG. 6 is a diagram showing the effect of the present invention by experimental results.

【図7】一従来例に係る装置の構成を示す図である。FIG. 7 is a diagram showing a configuration of an apparatus according to a conventional example.

【符号の説明】[Explanation of symbols]

24 光ファイバ発光体 28 一次元位置検出素子(PSD) 46 バンドパスフィルタ 48 乗算器 50 ローパスフィルタ 60 A/D変換器 Reference Signs List 24 optical fiber light emitter 28 one-dimensional position detecting element (PSD) 46 band-pass filter 48 multiplier 50 low-pass filter 60 A / D converter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今井 孝二 愛知県名古屋市天白区久方二丁目12番地 の1 豊田工業大学内 (56)参考文献 特開 昭63−222202(JP,A) 特開 昭63−195774(JP,A) 特開 昭62−228902(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 11/00 - 11/30 ──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Koji Imai 2-12-12 Kugata, Tenpaku-ku, Nagoya City, Aichi Prefecture Inside Toyota Institute of Technology (56) References JP-A-63-222202 (JP, A) JP-A-63-195774 (JP, A) JP-A-62-228902 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01B 11/00-11/30

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋳物等の検査対象物の表面に光ビームを
照射し、反射光に基づき測長演算を行い検査対象物の表
面状態を検査する表面検査装置において、 互いに異なる周波数のパルスで変調された光ビームを検
査対象物に向け照射する複数の発光部と、 検査対象物による反射光を受光し電流出力する受光部
と、 受光部の出力電流各変調周波数のパルスとを乗じ更に
その直流成分を取り出すことにより各光ビームの集光位
置を表す直流成分を生成出力する周波数分離部と、 この直流成分に基づき各変調周波数毎に測長演算を行う
処理部と、 を備えることを特徴とする表面検査装置。
1. A surface inspection apparatus that irradiates a light beam onto a surface of an inspection object such as a casting and performs a length measurement operation based on reflected light to inspect the surface state of the inspection object. A plurality of light-emitting units for irradiating the inspected object with the irradiated light beam, a light-receiving unit for receiving reflected light from the inspection object and outputting a current, and multiplying an output current of the light-receiving unit by a pulse of each modulation frequency.
A frequency separation unit that generates and outputs a DC component representing a condensing position of each light beam by extracting the DC component, and a processing unit that performs a length measurement operation for each modulation frequency based on the DC component. Characteristic surface inspection equipment.
JP3294458A 1991-11-11 1991-11-11 Surface inspection equipment Expired - Fee Related JP3019552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3294458A JP3019552B2 (en) 1991-11-11 1991-11-11 Surface inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3294458A JP3019552B2 (en) 1991-11-11 1991-11-11 Surface inspection equipment

Publications (2)

Publication Number Publication Date
JPH05133730A JPH05133730A (en) 1993-05-28
JP3019552B2 true JP3019552B2 (en) 2000-03-13

Family

ID=17808046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3294458A Expired - Fee Related JP3019552B2 (en) 1991-11-11 1991-11-11 Surface inspection equipment

Country Status (1)

Country Link
JP (1) JP3019552B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279028A (en) * 2004-03-30 2005-10-13 Hamamatsu Univ School Of Medicine Endoscope
CN116213686B (en) * 2023-05-09 2023-07-25 溧阳市双盛机械制造有限公司 Conveying device capable of vibrating casting for removing sand

Also Published As

Publication number Publication date
JPH05133730A (en) 1993-05-28

Similar Documents

Publication Publication Date Title
US6208750B1 (en) Method for detecting particles using illumination with several wavelengths
JPH0697210B2 (en) Scanner calibration method and predetermined scattered light amplitude generator
JPH0141962B2 (en)
US4924105A (en) Optical measuring device with alternately-activated detection
JP3019552B2 (en) Surface inspection equipment
JP2973639B2 (en) Equipment for measuring characteristics of sheet-like objects
JP3301658B2 (en) Method and apparatus for measuring particle size of fine particles in fluid
JPH0560511A (en) Heterodyne interferometer
JP3235368B2 (en) Laser Doppler velocity measuring device
JP2003075128A (en) Thickness measuring device of material and its method using focal length of optical fiber lens
US5042302A (en) Phase-accurate imaging and measuring of elastic wave fields with a laser probe
JPS60243583A (en) Laser doppler speedometer
JPH0718788B2 (en) Optical particle measuring device
JPH07128025A (en) Laser-scanning height measuring apparatus
JPH0821849A (en) Measuring method for high-temperature body by laser doppler system
US5063300A (en) Method and apparatus for determining line centers in a microminiature element
JPS60257136A (en) Film thickness measuring device for photoresist
RU2035721C1 (en) Method of checking transparency of flat light-translucent materials
JPH1183812A (en) Ultrasonic wave detecting method by laser beam and device therefor
JP2513867B2 (en) Voltage detector
JP2969903B2 (en) Pattern reader
Ohkubo et al. Detection of Directivity of Fluorescence From a Mixed Specimen Which Consists of Micro Particles Attached Different Fluorescent Substances Using a Light Waveguide Incorporated Optical TAS
JPS59210304A (en) Displacement measuring device
JPS59208446A (en) Laser type surface inspecting device
JPS62909A (en) Automatic focus control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees