JPS62162911A - Measuring instrument - Google Patents

Measuring instrument

Info

Publication number
JPS62162911A
JPS62162911A JP419986A JP419986A JPS62162911A JP S62162911 A JPS62162911 A JP S62162911A JP 419986 A JP419986 A JP 419986A JP 419986 A JP419986 A JP 419986A JP S62162911 A JPS62162911 A JP S62162911A
Authority
JP
Japan
Prior art keywords
light
laser
distance
light receiving
photodetection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP419986A
Other languages
Japanese (ja)
Inventor
Giichi Ito
義一 伊藤
Kosaku Mukai
向井 幸作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N T T GIJUTSU ITEN KK
NTT Advanced Technology Corp
Original Assignee
N T T GIJUTSU ITEN KK
NTT Technology Transfer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N T T GIJUTSU ITEN KK, NTT Technology Transfer Corp filed Critical N T T GIJUTSU ITEN KK
Priority to JP419986A priority Critical patent/JPS62162911A/en
Publication of JPS62162911A publication Critical patent/JPS62162911A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily and accurately determine the distance to the objective surface by forming an optical system for projection and photodetection on the same plane and monitoring, etc., reflected light from the object to be measured at the time of scanning by high-frequency modulated beams by a photodetecting element of a minute photodetection area. CONSTITUTION:Laser light which is high-frequency modulated by a laser 21, etc., and has little influence by the external light is made the laser beams with a laser condenser lens 23 on the same plane as a photodetecting lens 26 for photodetection and scans the objective surface 25-1, etc., to be measured via a rocking mirror 24. Then, the timing when a photodetection level of the photodetecting element 27 which is made a point where a bright point of the optical beams generating on the surface 25-1, etc., cross a photodetection axis of the photodetecting element 27 of the minute photodetection area is made maximum is determined. The distances to the surface 25-1, etc., are calculated from an angle of rocking of a mirror 24 in the timing. The distance to the objective surface is easily and accurately determined without being influenced by the external light by this constitution without necessitating a complicated linear circuit process. Further, the distance to the objective surface can be similarly determined even by detecting the timing when photodetecting outputs of two photodetecting of the minute photodetection area are made equal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レーザ光等を利用して測定対象面を元ビーム
で走査し、対象面上の一点までの距離を求める計測装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a measuring device that uses laser light or the like to scan a surface to be measured with an original beam to determine the distance to a point on the surface.

(従来技術) 従来のこの種計測装置は、第を図に示す如く計測ヘッド
lにはレーザ光源//、収束レンズ12、受光レンズ1
3、リニアポジションセンナlμを備え、被測定対象面
isの位置が73m + /j b *ljCの如く変
化したとき、リニアセンサ/≠上の結像位置が/6JI
I /Ab+ /Acの如く変化し、その時の受光レン
ズの角度θa、θb、θcf検出し、距離d(レーザ光
源1/とリニアポジションセンナl≠)とから演算処理
を行っている。すなわちレーザ光源//で発生するレー
ザ光は、収束レンズlコによシ被測定対象面/J′の上
に収束する。
(Prior Art) In a conventional measuring device of this type, as shown in the figure, a measuring head l includes a laser light source //, a converging lens 12, and a light receiving lens 1.
3. Equipped with a linear position sensor lμ, when the position of the surface to be measured is changes as 73m + /j b *ljC, the imaging position on the linear sensor /≠ becomes /6JI
I /Ab+ /Ac, the angles θa, θb, θcf of the light receiving lens at that time are detected, and calculation processing is performed based on the distance d (laser light source 1/ and linear position sensor l≠). That is, the laser light generated by the laser light source // is converged onto the surface to be measured /J' by the converging lens l.

この光点の反射光はレーザ照射軸と一定の角度(θa、
θb、θc)を持つ受光軸上の受光レンズ13により集
光されてリニアポジションセンサ/≠上に結像する。計
測ヘッドlと被測定対象面l!との距離が、/ja・ 
/jb、/jc  のように変化するとこのりニアセン
サ/4上の結像位置は/ 6a +l乙す、/lscに
示すように移動する。リニアポジションセンサl≠は第
7図に示すような3つの電極■、■、■を持つ抵抗とし
て表わされ、結像位置の変化によりR,、Rtの比が変
化し、電極■。
The reflected light of this light spot is at a certain angle (θa,
The light is focused by the light receiving lens 13 on the light receiving axis having θb, θc) and is imaged onto the linear position sensor/≠. Measuring head l and surface to be measured l! The distance is /ja・
/jb, /jc, the imaging position on the near sensor /4 moves as shown by /6a +l, /lsc. The linear position sensor l≠ is represented as a resistor with three electrodes ■, ■, ■ as shown in FIG.

■の′t8;流比が変る。この電流の変化を検出し両者
の加減算処理を行なっ”r +Jニアセンサ上の結像位
置を検出して投光軸と受光軸の角度を求め、被測定対象
面上での距離を計算する。
■'t8: The flow ratio changes. This change in current is detected and addition/subtraction processing is performed between the two to detect the imaging position on the "r + J near sensor, determine the angle between the light emitting axis and the light receiving axis, and calculate the distance on the surface to be measured.

(発明が解決しようとする問題点) このような測定方法は計測のための可動部分がない利点
があるが微小な′ル流検出のリニア処理と複離な演算処
理とが必要で、かつ外部より別に外乱光が入射するとt
流の比が変化する欠点があった。またその影#を除くた
めレーザ光に変調を行′なう方法も用いられているが、
リニアポジションセンサの周波数特性から外乱光に影響
されない充分高い周波数に選択できない場合もある等の
欠点があった。
(Problem to be solved by the invention) Although this measurement method has the advantage of not having any moving parts for measurement, it requires linear processing for detecting minute flows and complex arithmetic processing, and requires external If additional disturbance light is incident, t
There was a drawback that the flow ratio changed. In addition, a method of modulating the laser beam is also used to remove the shadow #.
Due to the frequency characteristics of the linear position sensor, it may not be possible to select a sufficiently high frequency that will not be affected by ambient light.

(問題点を解決するための手段) 本発明はかかる点に鑑みなされたものであって、その目
的とするところは投光器と受光器とからなる光学系が同
一平面上に形成され、該投光器のレーザ光源は一定周波
数で光強度変調を行ったレーザ光ビームを一定角度内で
往復移動させて被測定対象面上を走査し、この被測定対
象面上に生ずるレーザ光ビームの暉点が微小受光域を持
つ受光器の形成する受光軸と交わる点における上記受光
器の受光出力が最大レベルになるタイミング、或は受光
軸の両側に微小距離で配置した2個の受光素る信号を用
いてピーク値を検出し、この時のレーザ光ビームの基準
線からの角度を求め、前記投光器と受光器間の距離と前
記検出角度とから被測定対象面までの距離を計算し求め
るようにしたことを特徴とする計測装置である。以下図
面によシ本発明の詳細な説明する。
(Means for Solving the Problems) The present invention has been made in view of the above points, and its object is to form an optical system consisting of a light projector and a light receiver on the same plane, and to The laser light source scans the surface to be measured by reciprocating a laser beam whose light intensity is modulated at a constant frequency within a certain angle, and the edge of the laser beam generated on the surface to be measured receives minute light. The timing at which the light receiving output of the above-mentioned light receiver reaches its maximum level at the point where it intersects with the light receiving axis formed by the light receiving axis with the area of The value is detected, the angle of the laser beam from the reference line at this time is determined, and the distance to the surface to be measured is calculated from the distance between the emitter and the receiver and the detected angle. This is a characteristic measuring device. The present invention will be explained in detail below with reference to the drawings.

(実施例) 第1図は、本発明の一実施例を示すブロック図であり、
コは計測ヘッドで、これはレーザ21、レーザ駆動回路
ココ、レーザ尤集東しンズコ3、揺動ミラー、2≠、集
光レンズ26、受光素子27からなる。レーザJ/の発
光は集束レンズ23で集光され、回転軸コrにより回転
する揺動ミラー21の回転角に従って元ビームを被測定
対象面コ!上を走査する。この元ビームは被測定対象面
で反射し、集光レンズ、26、受光素子、27で形成さ
れる受光系の元軸上を照射した時、反射光の一光が集光
されて受光素子27上に結像し受光出力を生ずる。すな
わち被測定対象面が、2!aの距離にある時はミラー2
1Aaの状態(角度θa)で受光出力を生じ、被対象測
定面が、2J−bの時はミラー21Ab(角度θb)で
受光出力を生ずる7被測定対象面までの距離は、第2図
に示すごとく受光レンズコ乙の中心と揺動ミラー2μの
回転中心21−/の距離をdとし、この両者を結ぶ線に
受光レンズ2tおよび受光素子27で形成する受光軸が
直角になるように配置すれば被測定対象面、2j−口2
j、@ 1.21−sまでの距離ht + ht+ h
sは、それぞれ次式で表わされる。
(Embodiment) FIG. 1 is a block diagram showing an embodiment of the present invention,
A measurement head is composed of a laser 21, a laser drive circuit, a laser collector 3, a swinging mirror, 2≠, a condenser lens 26, and a light receiving element 27. The light emitted from the laser J/ is condensed by a focusing lens 23, and the original beam is focused onto the surface to be measured according to the rotation angle of the swinging mirror 21 rotated by the rotation axis r. Scan above. This original beam is reflected by the surface to be measured, and when it is irradiated onto the original axis of the light receiving system formed by the condenser lens 26 and the light receiving element 27, one beam of reflected light is focused and sent to the light receiving element 27. An image is formed on top of the beam to generate a received light output. In other words, the number of surfaces to be measured is 2! Mirror 2 when at distance a
7 The distance to the surface to be measured is shown in Fig. 2.The distance to the surface to be measured is shown in Figure 2. As shown, the distance between the center of the light-receiving lens 2t and the rotation center 21-/ of the swinging mirror 2μ is d, and the light-receiving axis formed by the light-receiving lens 2t and the light-receiving element 27 is arranged at right angles to the line connecting the two. For example, the surface to be measured, 2j-portion 2
j, @ 1.21-s distance ht + ht+ h
s is expressed by the following formula.

一θ1=(・・・・・・・・・・・・・・・・・・・・
・・・・・・・ (1)一θt =に!  ・・・・・
・・・・・・・・・・・・・・・・・・・・・・ (2
)上式かられかるように容易に計算できる特長を有する
- θ1=(・・・・・・・・・・・・・・・・・・
...... (1) - θt =!・・・・・・
・・・・・・・・・・・・・・・・・・・・・ (2
) It has the advantage that it can be easily calculated from the above formula.

さて、第1図にもどってのべると、レーザ21は発振器
36の出力をレーザ駆動回路−一を介して高周波で強度
変調される。この発振器36の出力は同時にカウンタ3
夕を動作させ、D/A  コンバータ等を用いたディジ
タル−アナログD/A  変換器31Aにより時間的に
変化するリニア信号に変換し、駆動回路33を介して電
流−回転角がりニアな関係にある揺動ミラー2弘の回転
軸コrを回転させる。すなわち揺動ミラーで反射される
レーザ元ビームの角度は駆動電流に対して第3図に例示
するように変化(横軸に電流、縦軸に元ビーム角度の変
化)し、電流値はカウンタ(第1図の33)のカウント
値と比例するようにしておけば、カウント値を求めるこ
とによシレーザ元ビーム角度が得られ、第2図に示した
方法で被測定対象面までの距離りが求められる。
Now, returning to FIG. 1, the intensity of the laser 21 is modulated at high frequency by the output of the oscillator 36 via the laser drive circuit-1. The output of this oscillator 36 is simultaneously output to the counter 3.
A digital-to-analog D/A converter 31A using a D/A converter or the like converts the signal into a linear signal that changes over time. Rotate the rotation axis r of the swinging mirror 2hiro. In other words, the angle of the laser source beam reflected by the swinging mirror changes with respect to the drive current as shown in FIG. If it is set to be proportional to the count value in 33) in Figure 1, the original laser beam angle can be obtained by calculating the count value, and the distance to the surface to be measured can be determined by the method shown in Figure 2. Desired.

第1図に示す受光素子27の出力は、増幅器37を介し
て変調周波数に整合したバンドパスフィルタ・整流平滑
回路2りにより選択、直流信号化が行なわれ、直流信号
のピーク値をピーク検出回路30により検出し、この時
点のカウンタ3jのカウント値(すなわち回転角)をゲ
ート回路31を介して演算処理回路32に与え、前記(
1)〜(8)式に示す計算処理を行なう。
The output of the light receiving element 27 shown in FIG. 1 is selected via an amplifier 37 by a bandpass filter/rectifier/smoothing circuit 2 matched to the modulation frequency, converted into a DC signal, and the peak value of the DC signal is detected by a peak detection circuit. 30, the count value of the counter 3j at this point (i.e. rotation angle) is given to the arithmetic processing circuit 32 via the gate circuit 31, and the above (
1) Calculation processing shown in equations (8) is performed.

第≠図は、第1図に示す構成の動作を説明するだめの電
流波形の関係図を示し、(4)は回転角が電流(カウン
ト)に対する変化を示し、θ、からθ2の角度で揺動す
る。(B)は受光素子27の出力波形、(Cり ハバン
ドパスフィルタコタの出力波形、■)ハ整流・平滑回路
2りの出力、[有])はピーク検出回路30の出力を示
し、実線が回転角中心位置での出力であり、第1図で距
離が変化した場合の出力の変化例を点線で示している。
Figure ≠ shows a relationship diagram of current waveforms to explain the operation of the configuration shown in Figure 1, and (4) shows the change in the rotation angle with respect to the current (count), which oscillates at an angle from θ to θ2. move. (B) shows the output waveform of the light receiving element 27, (C) shows the output waveform of the band pass filter, (■) shows the output of the rectifier/smoothing circuit 2, [Yes]) shows the output of the peak detection circuit 30, and the solid line is the output at the rotational angle center position, and in FIG. 1, an example of how the output changes when the distance changes is shown by a dotted line.

ここで前記出力の)を得るには受光素子、27の受光幅
が小さく、レーザ元の集束が充分な程尖鋭になり、10
μm程度の受光幅を持つホトダイオード等が好適である
。このことは外乱光に対する影響のない高周波変調の受
光に適したものといえる。つぎに第5図は別の実施例の
構成を示すブロック図で、第6図はその主要動作を説明
するための図である。この別の実施例においては計測ヘ
ッド2′の受光素子を2組設け27−/、27−2は受
光軸の両側に微小距離はなれて第6図に例示するような
関係で配置される。
Here, in order to obtain the above output (), the light receiving width of the light receiving element 27 is small and the focusing of the laser source is sufficiently sharp.
A photodiode or the like having a light receiving width on the order of μm is suitable. This can be said to be suitable for receiving high frequency modulated light without affecting disturbance light. Next, FIG. 5 is a block diagram showing the configuration of another embodiment, and FIG. 6 is a diagram for explaining its main operation. In this other embodiment, two sets of light receiving elements of the measurement head 2' are provided, and the light receiving elements 27-/ and 27-2 are arranged on both sides of the light receiving axis with a slight distance apart as shown in FIG.

各受光素子はそれぞれ増幅器37−/、37−2、バン
ドパスフィルタ・整流平滑回路コター/、2ターコを介
して直流レベル信号に変換される。レーザ元ビームの回
転移動に従ったこの2つの出力の変化を第7図で説明す
る。
Each light-receiving element is converted into a DC level signal via amplifiers 37-/, 37-2, bandpass filter/rectifier/smoothing circuit Cotter/, and 2-turco, respectively. Changes in these two outputs according to the rotational movement of the laser source beam will be explained with reference to FIG.

すなわちその一方には電流変化(角度変化)に従って(
A)のように電流I、の時最大になり、他の出力(0)
は(4)より回転角が変化した電流■、の時最大になり
、受光軸の中心工、ではこの2つの出力レベルtAとt
cとは等しくなる。第1図のように受光軸上に単一の受
光素子がある場合は第7図ω)のような関係で出力し、
このピーク検出を行なうことと、第5図に示す比較回路
30により(A)、(B)のレベル一致検出を行なうこ
とは同じ効果が得られる。この実施例においては第1図
の場合に比べて受光精度がより精密になり、複雑な被測
定対象面も確実に距離測定が可能となる。
In other words, one of them has (
As shown in A), the current is maximum when the current is I, and the other outputs (0)
is the maximum when the rotation angle changes from (4), and the two output levels tA and t are
It becomes equal to c. If there is a single light-receiving element on the light-receiving axis as shown in Figure 1, the output will be as shown in Figure 7 ω),
The same effect can be obtained by performing this peak detection and by performing level coincidence detection of (A) and (B) by the comparison circuit 30 shown in FIG. In this embodiment, the light reception accuracy is more precise than in the case of FIG. 1, and distances can be reliably measured even on a complex target surface.

(発明の効果) 以上説明したように、本発明によれば、複雑なIJ ニ
ア回路処理を必要とせず、外乱光に対する影響のない高
周波変調の受光に適した微小受光素子を使用することで
、その出力レベル監視処理により容易に距離が計測でき
、経済的な計測装置を64成し得る効果を有する。
(Effects of the Invention) As explained above, according to the present invention, by using a microscopic light receiving element suitable for receiving high frequency modulated light that does not require complicated IJ near circuit processing and has no influence on disturbance light, Distance can be easily measured by the output level monitoring process, and an economical measuring device can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック構成図、第2
図は計測原理を説明する図、第3図はミラー駆動電流と
元ビーム角度の対応を説明する図、第5図は回転角検出
を説明する図、第5図は別の実施例を示すブロック構成
図、第6図は受光素子の配tiを説明する図、第7図は
検出動作を説明する図、第r図は従来の計測方法を説明
する図、第り図は従来使用されているリニアポジション
センサの等価回路である。 λ・・・計測ヘッド、21・・・レーザ、23・・・v
−ザ元集束レンズ、2μ・・・揺動ミラー1.26・・
・集光レンズ コア・・・受光素子、λり・・・バンド
パスフィルタ・整流平滑回路、30・・・ピーク検出回
路、32・・・演算処理回路、33・・・ミラー駆動回
路、31A・・・D/A変換回路、3j・・・カウンタ
、36・・・発振器、37・・・増巾器。 ・J5.  ・ # l 図 隷)!′I足対足面 像面2 図 電充 −I          O+1 (電流) * 4 図 ¥ 5 区 亨6 図 電  )L * 7 図 第 6(211 箒 9 凹
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG.
Figure 3 is a diagram explaining the measurement principle, Figure 3 is a diagram explaining the correspondence between mirror drive current and original beam angle, Figure 5 is a diagram explaining rotation angle detection, Figure 5 is a block diagram showing another embodiment. 6 is a diagram explaining the arrangement of the light receiving element, FIG. 7 is a diagram explaining the detection operation, FIG. R is a diagram explaining the conventional measurement method, and FIG. This is an equivalent circuit of a linear position sensor. λ...Measuring head, 21...Laser, 23...v
-The original focusing lens, 2μ...Swinging mirror 1.26...
・Condensing lens Core... Light receiving element, λ bandpass filter/rectification smoothing circuit, 30... Peak detection circuit, 32... Arithmetic processing circuit, 33... Mirror drive circuit, 31A. ...D/A conversion circuit, 3j...counter, 36...oscillator, 37...amplifier.・J5.・ #l zurei)! 'I foot-to-foot image plane 2 Figure charge - I O+1 (current) * 4 Figure ¥ 5 Gu Hei 6 Figure den ) L * 7 Figure No. 6 (211 Broom 9 Concave)

Claims (1)

【特許請求の範囲】[Claims] 投光器と受光器とからなる光学系が同一平面上に形成さ
れ、該投光器のレーザ光源は一定周波数で光強度変調を
行ったレーザ光ビームを一定角度内で往復移動させて被
測定対象面上を走査し、この被測定対象面上に生ずるレ
ーザ光ビームの輝点が微小受光域を持つ受光器の形成す
る受光軸と交わる点における上記受光器の受光出力が最
大レベルになるタイミング、或は受光軸の両側に微小距
離で配置した2個の受光素子の出力レベルが等しくなる
タイミングで変調周波数成分のみを取出すバンドパスフ
ィルタ・整流平滑回路を介して得られる信号を用いてピ
ーク値を検出し、この時のレーザ光ビームの基準線から
の角度を求め、前記投光器と受光器間の距離と前記検出
角度とから被測定対象面までの距離を計算し求めるよう
にしたことを特徴とする計測装置。
An optical system consisting of a projector and a receiver is formed on the same plane, and the laser light source of the projector reciprocates within a certain angle a laser light beam that has been modulated in light intensity at a constant frequency and moves over the surface to be measured. The timing at which the light receiving output of the light receiver reaches its maximum level at the point where the bright spot of the laser beam generated on the surface to be measured intersects with the light receiving axis formed by the light receiver having a small light receiving area, or the light receiving The peak value is detected using a signal obtained through a bandpass filter/rectifier smoothing circuit that extracts only the modulated frequency component at the timing when the output levels of two light receiving elements placed at a minute distance on both sides of the axis are equal. A measuring device characterized in that the angle of the laser beam from the reference line at this time is determined, and the distance to the surface to be measured is calculated from the distance between the emitter and the receiver and the detection angle. .
JP419986A 1986-01-14 1986-01-14 Measuring instrument Pending JPS62162911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP419986A JPS62162911A (en) 1986-01-14 1986-01-14 Measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP419986A JPS62162911A (en) 1986-01-14 1986-01-14 Measuring instrument

Publications (1)

Publication Number Publication Date
JPS62162911A true JPS62162911A (en) 1987-07-18

Family

ID=11577988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP419986A Pending JPS62162911A (en) 1986-01-14 1986-01-14 Measuring instrument

Country Status (1)

Country Link
JP (1) JPS62162911A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102549378A (en) * 2009-09-15 2012-07-04 高通股份有限公司 Small form-factor size sensor
US8798959B2 (en) 2009-09-15 2014-08-05 Qualcomm Incorporated Small form-factor distance sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132371A (en) * 1977-04-25 1978-11-18 Iwatsu Electric Co Ltd Distance measuring device
JPS5999308A (en) * 1982-11-30 1984-06-08 Komatsu Ltd Distance measuring sensor
JPS59226812A (en) * 1983-06-07 1984-12-20 Fujitsu Ten Ltd Short distance measuring sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53132371A (en) * 1977-04-25 1978-11-18 Iwatsu Electric Co Ltd Distance measuring device
JPS5999308A (en) * 1982-11-30 1984-06-08 Komatsu Ltd Distance measuring sensor
JPS59226812A (en) * 1983-06-07 1984-12-20 Fujitsu Ten Ltd Short distance measuring sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102549378A (en) * 2009-09-15 2012-07-04 高通股份有限公司 Small form-factor size sensor
JP2013504770A (en) * 2009-09-15 2013-02-07 クアルコム,インコーポレイテッド Size sensor with small form factor
US8798959B2 (en) 2009-09-15 2014-08-05 Qualcomm Incorporated Small form-factor distance sensor
US9146308B2 (en) 2009-09-15 2015-09-29 Qualcomm Incorporated Small form-factor distance sensor

Similar Documents

Publication Publication Date Title
US4168126A (en) Electro-optical measuring system using precision light translator
JPS6249562B2 (en)
JPS62162911A (en) Measuring instrument
JPH0224590A (en) Amplitude-modulation-type apparatus for measuring distance
JPS633212A (en) Measuring instrument
JP3250627B2 (en) Distance measuring device
JPS61112905A (en) Optical measuring apparatus
JPS5826325Y2 (en) position detection device
JPH02187933A (en) Inclination angle measuring method
JPH0318887Y2 (en)
JPH10339605A (en) Optical range finder
JPH0395906U (en)
SU968604A2 (en) Photoelectric device for measuring linear dimensions
JPH07218634A (en) Distance measuring equipment
JPH0331367B2 (en)
SU1004773A1 (en) Device for measuring optical radiation angular fluctuations
JPS61153502A (en) Height detecting device
JPH0357913A (en) Distance measuring sensor
JPS614914A (en) Distance measuring instrument
JPH04130239A (en) Apparatus for measuring outward position and inward position of dynamic surface
JPH0357914A (en) Optical probe
JPS62503049A (en) Methods and apparatus for orienting, inspecting and/or measuring two-dimensional objects
JPS6217607A (en) Optical clinometer
JP2502741Y2 (en) Autofocus device for optical measuring machine
JPH0710244Y2 (en) Optical shape measuring device