JPS61102752A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS61102752A
JPS61102752A JP22408184A JP22408184A JPS61102752A JP S61102752 A JPS61102752 A JP S61102752A JP 22408184 A JP22408184 A JP 22408184A JP 22408184 A JP22408184 A JP 22408184A JP S61102752 A JPS61102752 A JP S61102752A
Authority
JP
Japan
Prior art keywords
insulating film
deposited
film
base insulating
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22408184A
Other languages
Japanese (ja)
Other versions
JPH0337297B2 (en
Inventor
Toshiyo Itou
伊藤 敏代
Jiro Oshima
次郎 大島
Masayasu Abe
正泰 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP22408184A priority Critical patent/JPS61102752A/en
Publication of JPS61102752A publication Critical patent/JPS61102752A/en
Publication of JPH0337297B2 publication Critical patent/JPH0337297B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To alleviate the difference in steps of an interlayer film, by making a first deposited insulating film to remain at the stepped part,forming a gentle curve on a base insulating film, forming a second deposited insulating film on the curve, thereby obtaining the interlayer film. CONSTITUTION:On a semiconductor substrate 1, a base insulating film 2 is formed. Then Al is deposited and a conducting film pattern 3 is formed. Thereafter, a first deposited insulating film 4 is deposited on the entire surface to the same thickness as that of the conducting film. Then the entire surface is etched until the depth the surface of the conducting film pattern 3 is exposed and the surface of the base insulating film 2 is thinly scraped. At this time, a remaining part 4a of etched first deposited insulating film 4 remains on each side surface of a stepped part 3a of the conducting film pattern 3. The remaining part 4a of etching is connected to a smooth curved surface 2a that is obtained by scraping the exposed base insulating film 2 at a position lower than the bottom surface of the stepped part 3a. The surface 2a of the exposed base insulating film 2 and the surface of the remaining part 4a of the etched first deposited insulating film form the continued smooth curved surface.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は、半導体装置及びその製造方法に関し、特に
多層配線4?i fiの層間膜などの絶縁膜において段
差が緩和された半導体装置と、それを製造するための方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly to multilayer wiring 4? The present invention relates to a semiconductor device in which steps are reduced in an insulating film such as an i fi interlayer film, and a method for manufacturing the same.

[発明の技術的背Pl] 多層配線病造を有する8集積度の半導体装置においては
各層の配線及び絶縁膜ができるだけ平坦であることが必
要であり、従って、該半導体装置の製造方法として配線
の層間絶縁膜を平坦化するための伸々の方法が開発され
ている。 それら公知の方法のうち、比較的42純でし
がち有用性の高い方法としてレジストエッチバック法が
知られている。
[Technical Background of the Invention] In an 8-integration semiconductor device having a multilayer wiring structure, it is necessary that the wiring and insulating film of each layer be as flat as possible. A growing number of methods have been developed to planarize interlayer dielectrics. Among these known methods, the resist etch-back method is known as a relatively simple and highly useful method.

第4図(a)乃至第4図(C)は公知のレジストエッチ
バック法の主要工程を断面図で示したものである。
FIG. 4(a) to FIG. 4(C) are cross-sectional views showing the main steps of a known resist etch-back method.

この方法ではまず、第4図(a )に示すように、シリ
コン半導体基数1の表面に形成した下地絶縁膜2(シリ
コン酸化膜ンを選択開口した後、△1等の材料によって
構成されるi!9N膜パターン3を形成し、該導m11
2パターン3の上に、たとえばプラズマCvD法などに
よって一次堆積絶縁模4を形成する。 そして、段着の
ある該−次堆積絶縁躾4の上に塗布表面が平坦化するレ
ジスト層5を形成した後、第4図(b )に示すように
レジスト層5と一次堆積絶縁膜4の凸部とを全面エツチ
ングして該−次堆積絶縁摸4の表面を平坦化し、しかる
後、第4図(C)に示すようにその上から二次堆積絶縁
膜6(一次堆積絶縁膜4と同じもの)を堆積して平坦な
表面を得、この二次堆積絶縁膜6の上に上層の配線を形
成する。
In this method, first, as shown in FIG. 4(a), after selectively opening a base insulating film 2 (silicon oxide film) formed on the surface of a silicon semiconductor base 1, an i !9N film pattern 3 is formed, and the conductor m11
A primary deposited insulation pattern 4 is formed on the two patterns 3 by, for example, a plasma CVD method. After forming a resist layer 5 whose coated surface is flattened on the stepped insulating film 4, the resist layer 5 and the insulating film 4 are separated as shown in FIG. 4(b). The surface of the secondary deposited insulating film 4 is flattened by etching the entire surface of the convex portion, and then a secondary deposited insulating film 6 (primary deposited insulating film 4 and The same material) is deposited to obtain a flat surface, and upper layer wiring is formed on this secondary deposited insulating film 6.

[背景技術の問題点1 前記のごとき公知のレジストエッチバック法によれば理
論的には完全に平坦な層間絶縁膜を形成することができ
るが、この方法を実施する場合には次のような問題点が
あり、従って、8品質の半導体装置を高歩留りで製造す
ることができなかった。
[Problem in the Background Art 1: According to the well-known resist etch-back method described above, it is theoretically possible to form a completely flat interlayer insulating film, but when implementing this method, the following problems occur. There were some problems, and therefore, it was not possible to manufacture 8 quality semiconductor devices at a high yield.

■ レジスト層5には多くの場合、第4図(a )に承
りようにピンホールp、が生成しやすいが、レジスト層
にピンホールp、が存在すると、仝面エツチング後の第
4図(b)の状態において一次堆積絶縁膜4の表面にも
ピンホールp2が形成されるため、このようにピンホー
ルが存在する一次H1h”+絶縁1194の土に二次j
(i積絶経16を形成すると、二次堆積絶縁Is! 6
にも第4図(C)に示すようにピンホールp3が形成さ
れ、その結果、品質のよい層間絶縁19が1qられない
■ In many cases, pinholes p are likely to be generated in the resist layer 5, as shown in FIG. In the state b), a pinhole p2 is also formed on the surface of the primary deposited insulating film 4, so that the primary H1h'' where the pinhole exists + the secondary j
(When the i-product rupture 16 is formed, the secondary deposited insulation Is! 6
A pinhole p3 is also formed as shown in FIG. 4(C), and as a result, a high-quality interlayer insulation 19 cannot be formed.

■ −次11(槓模は導Ti膜パターンの平らな部分や
段差の11の部分等においてそれぞれ膜質が異なっCに
す、従)で、第4図(b)に示ケ状態まで一次trt槓
模を全面エツチングする時に導m膜パターンの段、、’
: 511分のに7に而するIQ 直Aに異常エツチン
グか生じ1″Jすく、ピンホール簀の欠陥がその位置に
9−することが多い。 その結果、第4図(C)に承4
ように二次堆積絶縁896にもピンホール等の欠陥が牛
じつすい。
- Next 11 (the film quality is different in the flat part of the conductive Ti film pattern and the stepped part 11, etc.). When etching the entire surface of the pattern, the steps of the conductive film pattern...'
: Abnormal etching occurs in the IQ of 7 in 511. Abnormal etching occurs in the straight A, and a defect in the pinhole filter often occurs in that position. As a result, as shown in Fig. 4 (C),
Similarly, the secondary deposited insulation 896 is also prone to defects such as pinholes.

■ 全面しツf−ングを11ってレジス1へと一次11
1 F+’1絶縁膜とが同時に露出した時には両者を同
一エソ升ング速度でエツチングしなければ平坦化されな
いが、このように本来の性質が互いに5?なる府を同一
エツチング速度でエツチングするのはかなりむずかしい
ことである。
■ Turn the entire surface to 11 and move the first 11 to Regis 1.
When the 1F+'1 insulating film is exposed at the same time, it will not be planarized unless both are etched at the same etch rate. It is quite difficult to etch different areas at the same etching speed.

[発明の目的] この発明の目的は、前記公知の方法によって製造された
従来の半導体装置及びその製造方法に関連する前記問題
点を解消し、改良された半導体装置及びその製造方法を
提供することである。 持に、この発明の目的は、層間
絶縁膜の段差を11口し、あるいは層間絶縁膜にピンホ
ール等の欠陥を生ずる恐れのない、改良された半導体装
置及びての半導体装置を製造する方法を提供することで
ある。
[Object of the Invention] An object of the present invention is to solve the aforementioned problems associated with the conventional semiconductor device and its manufacturing method manufactured by the above-mentioned known method, and to provide an improved semiconductor device and its manufacturing method. It is. In particular, it is an object of the present invention to provide an improved semiconductor device and a method for manufacturing such a semiconductor device, which is free from the possibility of reducing steps in the interlayer insulating film or causing defects such as pinholes in the interlayer insulating film. It is to provide.

[発明の概要] この発明による半導体装置は、段差部分を有する導電I
9パターンと、該゛段着部分の下地を(b1成するとと
もに該導電膜パターンが存在しない部分の表面が該段差
部分の底面よりも低く削られている下地絶縁膜と、該段
差部分の側面のみを覆っている一次if(fI!I絶縁
膜と、該下地絶縁膜の表面及び該導電膜パターンの表面
並びに該一次堆積絶縁膜の表面とに堆積された二次堆積
絶縁膜とを有しており、該−次1「積結縁膜の下端が該
段差部分の底面よりも低い位置の該下地絶縁膜の削られ
た表面に澗らかな曲面で接続していることを特徴として
いる。
[Summary of the Invention] A semiconductor device according to the present invention includes a conductive I having a stepped portion.
9 patterns, a base insulating film that forms the base of the step part (b1) and the surface of the part where the conductive film pattern is not present is cut lower than the bottom of the step part, and the side surface of the step part. a primary if(fI!I insulating film that covers only It is characterized in that the lower end of the first stacked bonding film is connected to the shaved surface of the underlying insulating film at a position lower than the bottom surface of the stepped portion with a smooth curved surface.

また、この発明の製造方法は、下地絶縁膜上の導電膜パ
ターンの上に堆積させた一次堆積絶縁膜を該導電膜パタ
ーンの段差部分の側面にのみ残すとともに下地絶縁膜の
表面をえぐるように異方性エツチングによってエツチン
グした後、二次堆積絶縁膜を全面に堆積させることを特
徴とするものである。
Further, the manufacturing method of the present invention leaves the primary deposited insulating film deposited on the conductive film pattern on the base insulating film only on the side surface of the stepped portion of the conductive film pattern, and also hollows out the surface of the base insulating film. The method is characterized in that after etching by anisotropic etching, a secondary deposited insulating film is deposited on the entire surface.

この発明の方法によれば、段差が緩和された表面に二次
屏f11絶縁膜が形成されるから、層間絶縁膜の表面は
完全に平坦ではないが比較的平坦化された半¥+体菰n
がnられる。 また、この発明の方法によれば、レジス
トエッチバック法と異なりレジスト層を形成Uずに二次
trt梢絶縁Iつ)を形成できるので、層間絶縁膜にレ
ジスト層に起因するピンホール等の欠陥を有することの
ない半導体具h′が1qられる。
According to the method of the present invention, since the secondary insulating film is formed on the surface with reduced steps, the surface of the interlayer insulating film is not completely flat, but is relatively flat. n
is n. Furthermore, according to the method of the present invention, unlike the resist etch-back method, it is possible to form the secondary TRT top insulation without forming a resist layer, so defects such as pinholes caused by the resist layer can be formed in the interlayer insulating film. 1q is a semiconductor device h' which does not have a semiconductor device h'.

[発明の実施例1 以下に第2図(a )乃至第2図(C)及び第1図を参
照して本発明の方法及びこの方法によって製造される本
発明の半導体装置の一実/ll!i例について説明する
。 なお、第1図及び第2図において第4図と同一符号
で表示されている部分は従来の半導体装置の構成部分と
同一の部分である。
[Embodiment 1 of the Invention The method of the present invention and the semiconductor device of the present invention manufactured by this method will be described below with reference to FIGS. 2(a) to 2(C) and FIG. ! An example i will be explained. Note that in FIGS. 1 and 2, the parts indicated by the same reference numerals as in FIG. 4 are the same as the constituent parts of the conventional semiconductor device.

本発明の方法では、まず第2図(a )に示すように半
導体基板1上に下地絶縁膜2 (Si O,膜)を形成
した後、該下地絶縁膜2を選択開口し、次いで該下地絶
縁膜2の上にA1を約1μIll堆積し通常の湿式エツ
チング法により導電膜バウーン3を形成する。 ついで
、プラズマCVD法等により一次堆積絶縁膜4(プラズ
マsio、膜)を導電膜の厚さとほぼ同じ1μIIl厚
さで全面に1「槓Jる。
In the method of the present invention, first, a base insulating film 2 (SiO, film) is formed on a semiconductor substrate 1 as shown in FIG. Approximately 1 .mu.Ill of A1 is deposited on the insulating film 2, and a conductive film bow 3 is formed by a conventional wet etching method. Next, a primary deposited insulating film 4 (plasma film) is deposited over the entire surface to a thickness of 1 .mu.II, which is approximately the same as the thickness of the conductive film, using a plasma CVD method or the like.

次にηT1摸パターン3の表面が露出し月つ下地$1!
!縁模2の表面が薄く削りとられる深さまで異方↑Ii
 エツチングによって全面エツチングを行うと、第2図
(b)に示した状態になる。 この場合、導電膜パター
ン3の段差部分3aの8I11面には一次lit積絶縁
膜4のエツチング残し部分4aが残り、この[ツfング
残し部分48のテール(すなわち下端部) IJ第2図
(C)に承りように該段差部分3aの底面よりも低い位
置にある露出した下地絶縁膜2の削られた表面2aに滑
らかな曲面で′接続し、露出lノI、:手地絶縁膜2の
表面2aと一次堆積絶縁膜4ターン した渭らかな曲面を構成する。 このように、導電n9
パターン3の各段差部分3aの側面に一次堆積絶縁膜4
の1ツヂング残し部分4aが生ずるのは第2図(a )
に示すように該段差部分3aを被覆している一次Jrt
 ft1絶縁膜4の角部が側方に張り出していわゆるオ
ーバーハング状態となっているためであり、また、該エ
ツチング残し部分4aのテールと下地絶縁膜上の露出表
面2aとが連続した清らかな曲面を構成するのは底の角
部が最もエツチングされにくいためである。 この実施
例におけるエツチング条件はCF a 20cc/ w
in 、 I−1210cc/sin 、パワー320
W 、圧力 1,3Pa 、時間20分間とした。
Next, the surface of ηT1 pattern 3 is exposed and the moon base is $1!
! Anisotropic ↑Ii to the depth where the surface of edge pattern 2 is thinly scraped off
When the entire surface is etched, the state shown in FIG. 2(b) is obtained. In this case, an unetched portion 4a of the primary lit product insulating film 4 remains on the 8I11 surface of the stepped portion 3a of the conductive film pattern 3, and the tail (i.e., the lower end) of the etched remaining portion 48 (FIG. 2) As shown in C), the exposed base insulating film 2 is connected to the shaved surface 2a of the exposed base insulating film 2 at a position lower than the bottom surface of the stepped portion 3a with a smooth curved surface. The surface 2a and the primary deposited insulating film constitute a gently curved surface with four turns. In this way, conductive n9
A primary deposited insulating film 4 is formed on the side surface of each stepped portion 3a of the pattern 3.
Figure 2 (a) shows that the remaining part 4a of 1.
As shown in FIG.
This is because the corners of the ft1 insulating film 4 protrude laterally, resulting in a so-called overhang state, and the tail of the etched portion 4a and the exposed surface 2a on the base insulating film form a continuous, clean curved surface. This is because the bottom corners are the least likely to be etched. The etching conditions in this example were CF a 20cc/w
in, I-1210cc/sin, power 320
W, the pressure was 1.3 Pa, and the time was 20 minutes.

第2図(b)のように導電膜パターン3の各段差部分3
aの側壁部に一次堆積絶縁膜4のエツチング残し部分4
aが残るように全面エツチングを行った後、第1図に示
すように一次堆積絶縁膜4と同じか又は異なった材質の
二次堆積絶縁膜6を全面に堆積させると本発明の半導体
装置がiりられる。 特に、最近低温プラズマ模が二次
m b’+絶縁膜として使用される機会が増えてきてい
るが、低温プラズマ膜の堆積速度は下地の膜質に依存し
やすい。 従って、段差部分が、下地絶縁膜よりlft
積速度の早いA1である場合に比較して、下地絶縁膜と
同じ膜質、同じm積速度であることによっても本発明の
ステップカバレッジ改善の効果が生ずるのである。
As shown in FIG. 2(b), each step portion 3 of the conductive film pattern 3
An etched portion 4 of the primary deposited insulating film 4 is left on the side wall of a.
After performing etching on the entire surface so that the portion a remains, a secondary deposited insulating film 6 made of the same or different material as the primary deposited insulating film 4 is deposited on the entire surface as shown in FIG. I can get it. In particular, although low-temperature plasma simulators have recently been increasingly used as secondary m b'+ insulating films, the deposition rate of low-temperature plasma films tends to depend on the quality of the underlying film. Therefore, the step portion is lft lower than the underlying insulating film.
Compared to the case of A1, which has a faster deposition rate, the effect of improving the step coverage of the present invention is also produced by having the same film quality and the same m-accumulation rate as the underlying insulating film.

前記のごとき製造方法で得られる本発明の半導体装置で
t、L、二次堆積絶縁膜の段差は緩和されるとともに全
面エツチングの前にレジスト膜形成を行わないのでレジ
スト膜中に生成しているピンホールの悪影響を受ける恐
れがない。
In the semiconductor device of the present invention obtained by the above-described manufacturing method, the steps of T, L, and the secondary deposited insulating film are alleviated, and since the resist film is not formed before the entire surface etching, the steps are generated in the resist film. There is no risk of being adversely affected by pinholes.

第3図は、第1図の本発明の半導体装置に第二のQ T
iF5パターン7とその上のパッジベージ3ン膜8とを
形成した二層配線構造の半導体8置を示したしのであり
、第1図の構造の半導体装置における二次ja梢絶絶縁
膜を選択開孔してスルーホールを形成した後、第二の8
X電膜パターン7を二次Iff槓絶積結6の土に形成し
、更に第二の導電膜バクーン7のLにパッシベーション
膜としてのプラズマ窒化シリコン模8を堆積さけたもの
である。
FIG. 3 shows a second QT in the semiconductor device of the present invention shown in FIG.
This figure shows a semiconductor device with a two-layer wiring structure in which an iF5 pattern 7 and a padding layer 8 are formed thereon, and the secondary insulation film in the semiconductor device having the structure shown in FIG. 1 is selectively opened. After drilling and forming the through hole, the second 8
An X conductive film pattern 7 is formed on the soil of the secondary Iff layer 6, and a plasma silicon nitride pattern 8 as a passivation film is deposited on the L of the second conductive film 7.

本発明の方法は、このように二層以上の多層配線の半導
体装置を形成する場合に特に好適であり、完全に平坦で
あるとまではいえないが段差が改善されてステップカバ
レッジのよい1虜配線及び層間絶縁膜を有した半導体装
置を形成することができる。
The method of the present invention is particularly suitable for forming semiconductor devices with multilayer wiring of two or more layers, and although it cannot be said to be completely flat, the method of the present invention can improve step coverage and improve step coverage. A semiconductor device having wiring and an interlayer insulating film can be formed.

なJり、前記実施例では導電膜パターンすなわち配線及
び電極としてAIを用いる場合を小したが、多結晶シリ
コンを抵抗とする半導体装置や多結晶シリコンを利用し
た積層構造の半導体装置の製造にも本発明を適用しうる
ことは当然である。
In addition, in the above embodiments, the case where AI is used as the conductive film pattern, that is, the wiring and electrodes is minimized, but it can also be used to manufacture semiconductor devices with polycrystalline silicon as a resistor or semiconductor devices with a stacked structure using polycrystalline silicon. It goes without saying that the present invention can be applied.

[発明の効果] 以上に示したように、本発明の方法では、段差部分に一
次堆積絶縁膜の残しをするとともに下地絶縁膜へなだら
かな曲面を形成した上に二次用(6絶縁膜が形成されて
層間膜としたから、層間膜の段差が緩和される。 また
、本発明の方法では、レジスト膜の形成を行わないので
レジスト税の中に生成しているピンホール等による悪影
響が局間膜に現れる恐れがなく、従って半導体装置の品
質と製造歩留りを向上させることができる。
[Effects of the Invention] As described above, in the method of the present invention, the primary deposited insulating film is left in the stepped portion, a gently curved surface is formed on the base insulating film, and a secondary insulating film (6 insulating films is formed) is formed on the base insulating film. Since the method of the present invention does not form a resist film, the negative effects of pinholes etc. generated in the resist film are minimized. There is no risk of the film appearing on the interlayer, and therefore the quality and manufacturing yield of semiconductor devices can be improved.

一方、本発明の半導体装置は従来の半導体装置にくらべ
て欠陥がなく且つステップカバレッジのよい上層絶縁膜
を備えているので従来の方法で製造された半導体装置よ
りも高い信頼性を有している。
On the other hand, since the semiconductor device of the present invention is free from defects and has an upper insulating film with better step coverage than conventional semiconductor devices, it has higher reliability than semiconductor devices manufactured by conventional methods. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置の一実施例を示ず断面図、
第2図(a )乃至第2図(C)は本発明方法を説明ツ
るための断面図、第3図は本発明の半導体装置の他の実
施例の断面図、第4図(a)乃至第4図(C)は従来公
知の方法を説明するための断面図である。 1・・・半導体基板、 2・・・下地絶縁膜、 3・・
・導電膜パターン、 4・・・−次111積絶縁膜、 
5・・・レジスト居、 6・・・二次堆積絶縁膜、 7
・・・第二の導電膜パターン、 8・・・パッシベーシ
ョン膜。 特許出願人 株式会社 東  芝 @1 図 第2図
FIG. 1 is a cross-sectional view of an embodiment of the semiconductor device of the present invention;
2(a) to 2(C) are cross-sectional views for explaining the method of the present invention, FIG. 3 is a cross-sectional view of another embodiment of the semiconductor device of the present invention, and FIG. 4(a) 4C to 4C are cross-sectional views for explaining a conventionally known method. 1... Semiconductor substrate, 2... Base insulating film, 3...
・Conductive film pattern, 4...-order 111 product insulating film,
5... Resist presence, 6... Secondary deposited insulating film, 7
...Second conductive film pattern, 8...Passivation film. Patent applicant: Toshiba Corporation @1 Figure 2

Claims (1)

【特許請求の範囲】 1 段差部分を有する導電膜パターンと、該段差部分の
下地を構成するとともに該導電膜パターンが存在しない
部分の表面が該段差部分の底面よりも下側に削られてい
る下地絶縁膜と、該段差部分の側面のみを覆つている一
次堆積絶縁膜と、該下地絶縁膜の表面及び該導電膜パタ
ーンの表面並びに該一次堆積絶縁膜の表面とを覆ってい
る二次堆積絶縁膜とを有し、該一次堆積膜の下端が該段
差部分の周囲の該下地絶縁膜の削られた表面に滑らかな
曲面で接続している構造の半導体装置。 2 段差部分を有する導電膜パターンと、該段差部分の
下地を構成するとともに該導電膜パターンが存在しない
部分の表面が該段差部分の底面よりも下側に削られてい
る下地絶縁膜と、該段差部分の側面のみを覆っている一
次堆積絶縁膜と、該下地絶縁膜の表面及び該導電膜パタ
ーンの表面並びに該一次堆積絶縁膜の表面とを覆つてい
る二次堆積絶縁膜とを有し、該一次堆積膜の下端が該段
差部分の周囲の該下地絶縁膜の削られた表面に滑らかな
曲面で接続している構造の半導体装置を製造するための
方法であって、 該下地絶縁膜を選択開口した後に該下地絶縁膜上に所定
の導電膜パターンを形成する工程と、該導電膜パターン
の上に該一次堆積絶縁膜を堆積させる工程と、該段差部
分の側面にのみ該一次堆積絶縁膜を残し且つ該導電膜パ
ターンの存在しない部分の該下地絶縁膜の表面が該段差
部分の底面よりも低くなるまで該一次堆積絶縁膜のほぼ
全部と該下地絶縁膜の表面とを異方性エッチングする工
程と、該段差部分の側面に残つている該一次堆積絶縁膜
と該導電膜パターンと該下地絶縁膜とからなる全面に二
次堆積絶縁膜を堆積させる工程とを含む半導体装置の製
造方法。
[Scope of Claims] 1. A conductive film pattern having a stepped portion, which constitutes the base of the stepped portion, and the surface of the portion where the conductive film pattern does not exist is scraped below the bottom surface of the stepped portion. A base insulating film, a primary deposited insulating film covering only the side surfaces of the stepped portion, and a secondary deposit covering the surface of the base insulating film, the surface of the conductive film pattern, and the surface of the primary deposited insulating film. an insulating film, the lower end of the primary deposited film is connected to the shaved surface of the base insulating film around the stepped portion with a smooth curved surface. 2. A conductive film pattern having a step portion, a base insulating film that forms the base of the step portion, and the surface of the portion where the conductive film pattern does not exist is scraped below the bottom surface of the step portion; A primary deposited insulating film that covers only the side surfaces of the stepped portion, and a secondary deposited insulating film that covers the surface of the base insulating film, the surface of the conductive film pattern, and the surface of the primary deposited insulating film. , a method for manufacturing a semiconductor device having a structure in which a lower end of the primary deposited film is connected to a shaved surface of the base insulating film around the stepped portion with a smooth curved surface, the base insulating film forming a predetermined conductive film pattern on the base insulating film after selectively opening the base insulating film, depositing the primary deposited insulating film on the conductive film pattern, and depositing the primary deposited film only on the side surface of the stepped portion. Almost all of the primary deposited insulating film and the surface of the base insulating film are anisotropically separated until the surface of the base insulating film in the portion where the conductive film pattern is not present is lower than the bottom surface of the stepped portion while leaving the insulating film. and a step of depositing a secondary deposited insulating film on the entire surface consisting of the primary deposited insulating film remaining on the side surface of the stepped portion, the conductive film pattern, and the base insulating film. Production method.
JP22408184A 1984-10-26 1984-10-26 Semiconductor device and manufacture thereof Granted JPS61102752A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22408184A JPS61102752A (en) 1984-10-26 1984-10-26 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22408184A JPS61102752A (en) 1984-10-26 1984-10-26 Semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS61102752A true JPS61102752A (en) 1986-05-21
JPH0337297B2 JPH0337297B2 (en) 1991-06-05

Family

ID=16808258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22408184A Granted JPS61102752A (en) 1984-10-26 1984-10-26 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61102752A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737853A (en) * 1980-08-18 1982-03-02 Toshiba Corp Forming method for multilayer thin-film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737853A (en) * 1980-08-18 1982-03-02 Toshiba Corp Forming method for multilayer thin-film

Also Published As

Publication number Publication date
JPH0337297B2 (en) 1991-06-05

Similar Documents

Publication Publication Date Title
JPS61501738A (en) Double planarization method for multilayer metallization of integrated circuit structures
JPH06302599A (en) Semiconductor device and fabrication thereof
JP2960538B2 (en) Method for manufacturing semiconductor device
JPS61102752A (en) Semiconductor device and manufacture thereof
JPS6281075A (en) Manufacture of josephson integrated circuit
JP2000195867A (en) Formation of fine metallic pattern by damascene technique
JPH0918117A (en) Conductor stratification method
JPS5895839A (en) Manufacture of semiconductor device
JPS62155537A (en) Manufacture of semiconductor device
JPS63161645A (en) Manufacture of semiconductor device
JP2839007B2 (en) Semiconductor device and manufacturing method thereof
CN118676055A (en) Preparation method of semiconductor film structure and semiconductor film structure
JPH03153035A (en) Manufacture of semiconductor device
JPH0212827A (en) Manufacture of semiconductor device
JPH05160126A (en) Formation of multilayer wiring
JPS63111644A (en) Manufacture of semiconductor device
JPH04102321A (en) Manufacture of semiconductor device
JPH04298039A (en) Semiconductor device and method for manufacture therefor
JPS62216341A (en) Manufacture of semiconductor device
JPS59105337A (en) Forming method of multilayered wiring
JPH07297283A (en) Semiconductor integrated circuit device and its manufacturing method
JPS63308346A (en) Semiconductor device
JPH06338500A (en) Manufacture of semiconductor device
JPH07297184A (en) Method of flattening interlayer insulating film
JPS60233840A (en) Coating method for stepwise difference