JPS60957B2 - Manufacturing method for semiconductor devices - Google Patents

Manufacturing method for semiconductor devices

Info

Publication number
JPS60957B2
JPS60957B2 JP15648078A JP15648078A JPS60957B2 JP S60957 B2 JPS60957 B2 JP S60957B2 JP 15648078 A JP15648078 A JP 15648078A JP 15648078 A JP15648078 A JP 15648078A JP S60957 B2 JPS60957 B2 JP S60957B2
Authority
JP
Japan
Prior art keywords
electrode
emitter
layer
electrodes
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15648078A
Other languages
Japanese (ja)
Other versions
JPS5583262A (en
Inventor
優 中川
啓一 守田
修六 桜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15648078A priority Critical patent/JPS60957B2/en
Publication of JPS5583262A publication Critical patent/JPS5583262A/en
Publication of JPS60957B2 publication Critical patent/JPS60957B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Thyristors (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 本発明は加圧接触型の半導体装置の製法に係り「特にェ
ミッタ領域とべ−ス領域が相互に入り組んだ構造を有す
るトランジスタやゲートターンオフサィリスタ(以下G
TOと略記する)、高周波サィリスタ等の半導体装置の
製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a pressure contact type semiconductor device, and is particularly applicable to transistors and gate turn-off thyristors (hereinafter referred to as G
(abbreviated as TO), relates to a method for manufacturing semiconductor devices such as high frequency thyristors.

第1図、第2図および第3図は従来のGTOの例を示す
ものである。第2図は第1図のローロ断面を示し「第3
図は第2図の1部分を拡大して図で示す。図において、
半導体基体1を支持固着するアノード電極10をプラス
、半導体基体1へ上方より加圧接触されるカソード電極
9をマイナス方向に電圧を印加し、ゲート電極7とカソ
ード電極9間に順バイアス電圧を印加すると半導体基体
1をターンオンし、ゲート電極7とカソード電極9間に
逆バイアス電圧を印加するとオン状態にある半導体基体
1を再びオフ状態に戻すことができる。
FIGS. 1, 2, and 3 show examples of conventional GTOs. Figure 2 shows the Rollo cross section of Figure 1.
The figure shows a portion of FIG. 2 in enlarged form. In the figure,
A voltage is applied in the positive direction to the anode electrode 10 that supports and fixes the semiconductor substrate 1, a voltage is applied in the negative direction to the cathode electrode 9 which is pressed into contact with the semiconductor substrate 1 from above, and a forward bias voltage is applied between the gate electrode 7 and the cathode electrode 9. Then, by turning on the semiconductor substrate 1 and applying a reverse bias voltage between the gate electrode 7 and the cathode electrode 9, the semiconductor substrate 1 in the on state can be returned to the off state again.

このようにGTOは通常のサィリス夕と異り、ゲート・
カソード間の逆方向特性を良好にする必要がある。さら
に具体的に言えば、ゲート・カソード間の逆方向洩れ電
流を少なくし、かつ逆方向耐圧を高くする他に、ゲート
電極7が設けられるPベース層3の横抵抗を小さくする
必要がある。このためカソード電極9が接触するNェミ
ツタ層2を細長いたんざく形とし、Pベース層3はNェ
ミッタ層2を取り囲んだ構造にする。Nェミツタ層2の
上に固着接触された電極6(以下ではェミッ夕霞極と略
記する)の幅は通常500山以下で、ェミッタ電極6の
厚さは10ム程度である。そのためにェミッタ電極6の
長さ方向に沿う電圧降下はGTOの電流容量を増すため
に、Nェミッタ層2の長さを長くすると無視できない大
きさになり、結局ェミッタ層2全面が有効に動作しなく
なるので大容量化が困難になる。この問題を解決するた
めに、主電流通路が実質的に電極の垂直方向になり、電
極部の抵抗が影響しないようにェミツ夕霧極6の全面上
に厚さカソード電極9を接触させている。ェミッタ電極
6が相互に入り込んだ構造になっているため、このまま
では平らなカソード電極9をェミッタ電極6のみに接触
させることはできない。この問題を解決するためにェミ
ッタ電極6とゲート電極7の高さを違える方法と、ェミ
ッタ電極6に接触すべきカソード電極9のゲート電極7
に対応する領域を凹形にしておく方法がある。尚半導体
基体1は第3図に示すようにNェミッタ層2とPベース
層3、Nベース層4「Pェミッタ層5から構成されてい
る。そして、半導体基体1の表面は各電極が接触してい
る部分を除いて表面安定化膜が設けられ、ゲート電極7
上にはカソード電極9との絶縁のための絶縁膜が設けら
れるが簡略化のために図面では省略されている。
In this way, GTO differs from normal Siris, in that it has a gate
It is necessary to improve the reverse direction characteristics between the cathodes. More specifically, in addition to reducing the reverse leakage current between the gate and cathode and increasing the reverse breakdown voltage, it is necessary to reduce the lateral resistance of the P base layer 3 on which the gate electrode 7 is provided. For this purpose, the N emitter layer 2 with which the cathode electrode 9 comes in contact is shaped like an elongated tanza, and the P base layer 3 has a structure surrounding the N emitter layer 2. The width of the electrode 6 (hereinafter abbreviated as emitter electrode) fixedly contacted on the N emitter layer 2 is usually 500 ridges or less, and the thickness of the emitter electrode 6 is about 10 μm. Therefore, in order to increase the current capacity of the GTO, the voltage drop along the length of the emitter electrode 6 becomes too large to be ignored as the length of the N emitter layer 2 is increased, and in the end, the entire surface of the emitter layer 2 cannot operate effectively. This makes it difficult to increase capacity. In order to solve this problem, the thick cathode electrode 9 is brought into contact with the entire surface of the emitsu yugiri pole 6 so that the main current path is substantially perpendicular to the electrode and the resistance of the electrode part is not affected. . Since the emitter electrodes 6 are embedded in each other, the flat cathode electrode 9 cannot be brought into contact with only the emitter electrode 6 as it is. In order to solve this problem, there is a method of making the emitter electrode 6 and the gate electrode 7 different in height, and the gate electrode 7 of the cathode electrode 9 that should be in contact with the emitter electrode 6.
There is a way to make the area corresponding to the area concave. The semiconductor substrate 1 is composed of an N emitter layer 2, a P base layer 3, an N base layer 4, and a P emitter layer 5, as shown in FIG. A surface stabilizing film is provided except for the portion where the gate electrode 7
An insulating film is provided on the top for insulation from the cathode electrode 9, but is omitted in the drawing for the sake of simplification.

ターンオンさせたGTOに、ゲート電極7とカソード電
極9間に逆バイアスの電圧を印加するとGTOはターン
オフ状態に戻ろうとする。
When a reverse bias voltage is applied between the gate electrode 7 and the cathode electrode 9 to the turned-on GTO, the GTO attempts to return to the turned-off state.

しかし、このときェミッタ電極6の1つに不良がある場
合、即ち、逆バイアス時のゲート・トリガ電圧又はゲー
ト・トリガ電流が他のェミッタ電極よりも小さくなるよ
うなェミッタ電極があると、そのェミッタ電極では、タ
ーンオフ時間が、他のェミッタ電極より長くなる傾向が
あるためにOTOは完全にターンオフ状態にもどれず、
この不良ェミッタ電極6には、アノード電極10とカソ
ード電極9間に流れていた電流が、この不良ェミツタ電
極に集中し、ターンオフ状態が悪くなり、このため、こ
の部分が局部的に加熱されて半導体基体1が破壊される
恐れがあった。本発明の目的は、上述した従釆の欠点を
解決し「改良された半導体装置の製法を提供することで
あり、より具体的には、半導体基体のカソード電極の各
部で電流が一様に流れ、ゲートターンオフ性能を向上さ
せた半導体装置の製法を提供することにある。
However, if one of the emitter electrodes 6 is defective at this time, that is, if there is an emitter electrode whose gate trigger voltage or gate trigger current during reverse bias is smaller than other emitter electrodes, that emitter electrode Since the turn-off time of the electrode tends to be longer than that of other emitter electrodes, the OTO cannot completely return to the turn-off state.
The current flowing between the anode electrode 10 and the cathode electrode 9 concentrates on this defective emitter electrode 6, resulting in a poor turn-off condition, which causes local heating of this area and the semiconductor. There was a risk that the base 1 would be destroyed. An object of the present invention is to solve the above-mentioned disadvantages of the conventional method and to provide an improved method for manufacturing a semiconductor device. An object of the present invention is to provide a method for manufacturing a semiconductor device with improved gate turn-off performance.

かかる目的を達成するためには、一方の主電極に取り囲
まれて形成されたカソード電極の不良ェミッタ電極を取
り除く点にある。
In order to achieve this purpose, the defective emitter electrode of the cathode electrode formed surrounded by one of the main electrodes is removed.

以下L本発明を実施例を示す図面を用いて説明する。The present invention will be explained below using drawings showing embodiments.

第4図に示す実施例において「第1図、第2図、第3図
と同一の部分は、第1図、第2図、第3図と同一の符号
を用いてある。
In the embodiment shown in FIG. 4, the same parts as in FIGS. 1, 2, and 3 are designated by the same reference numerals as in FIGS. 1, 2, and 3.

第4図において、半導体基体1とアノード電極10がろ
う材8‘こより固着され、アルミニウムが約10〆真空
蒸着し、ホトェッチング技術を用いてゲート電極7が形
成されている。
In FIG. 4, the semiconductor substrate 1 and the anode electrode 10 are fixed to each other through a brazing material 8', aluminum is vacuum-deposited for about 10 minutes, and a gate electrode 7 is formed using a photo-etching technique.

この状態で、ゲート電極7と各ェミッタ電極6のゲート
・トリガ電圧および電流を測定し、それらが他のェミツ
タ電極より小さいような異常のあるものについてはホト
ヱッチング技術を用いて、異常ェミッタ電極6を除去す
る。次に、ェミツタ電極6の上にカソード電極9をのせ
て加圧する。除去された異常ェミツタ電極の上にはカソ
ード電極9との絶縁のため絶縁物が設けられるが表面安
定化膜やゲート電極7上の絶縁膜と同様簡略化のために
図面では省略されている。
In this state, the gate trigger voltage and current of the gate electrode 7 and each emitter electrode 6 are measured, and if there is an abnormality in which the voltage and current are smaller than those of other emitter electrodes, photo-etching technology is used to remove the abnormal emitter electrode 6. Remove. Next, the cathode electrode 9 is placed on the emitter electrode 6 and pressurized. An insulator is provided on the removed abnormal emitter electrode for insulation from the cathode electrode 9, but like the surface stabilizing film and the insulating film on the gate electrode 7, it is omitted in the drawing for simplicity.

本発明によれば、異常ェミッタ電極をジャンクション状
態で検出、除去し、異常ェミッタ電極からカソード電極
9へ電流が流れないようにして、正常ェミッタ電極のみ
でターンオフ動作をするので、ターンオフ性能を良好に
することができる。
According to the present invention, the abnormal emitter electrode is detected and removed in a junction state, current does not flow from the abnormal emitter electrode to the cathode electrode 9, and the turn-off operation is performed only with the normal emitter electrode, so that the turn-off performance is improved. can do.

また、異常ェミッタ電極に電流が集中することがないの
で、この部分が局部的に加熱されて「半導体基体が破壊
されることがない。このため歩蟹が向上し、製品のコス
トダウンにもなる。次に具体的数値をもって作用効果を
説明する。
In addition, since the current does not concentrate on the abnormal emitter electrode, this part will not be locally heated and the semiconductor substrate will not be destroyed.This improves the stability and reduces the cost of the product. Next, the effects will be explained using specific numerical values.

半導体基体1の直径が3比蚊、ェミッタ電極6の数が7
2個で定格電流が60船のGTOについて、異常の認め
られるものは、1本のヱミッタ電極に異常のあるものが
28%、2本のェミッタ電極に異常のあるものが6%、
そして3本のェミッタ電極に異常のあるものが1%あり
、いずれもターンオフできなかった。そこで、本発明に
従って、これらの異常のあるものについて、ェミッタ電
極を除去したところ、全数について良好なゲートターン
オフ性能が得られた。
The diameter of the semiconductor substrate 1 is 3, and the number of emitter electrodes 6 is 7.
Regarding GTOs with two emitter electrodes and a rated current of 60, 28% of them had an abnormality in one emitter electrode, 6% had an abnormality in two emitter electrodes,
There were 1% cases in which three emitter electrodes were abnormal, and none of them could be turned off. Therefore, according to the present invention, when the emitter electrodes were removed from those with these abnormalities, good gate turn-off performance was obtained for all of them.

以上詳細に説明したように、本発明によれば、半導体基
体のェミッタ電極の各部で電流が一様にながれるので「
ゲートターンオフ性能を向上させることができる。
As explained in detail above, according to the present invention, current flows uniformly in each part of the emitter electrode of the semiconductor substrate.
Gate turn-off performance can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は従来のGTOを示しており、第1図は
Nェミッタ層側平面図、第2図は第1図のローロ切断線
に沿った断面図、第3図は第2図の1部を拡大した図「
第4図は本発明の−実施例を示す図である。 1・・…・半導体基体、2…・・・Nェミッタ層、3・
・・…Pベース層、4……Nベース層、5……Pェミッ
タ層「 6・・…,ェミツタ電極、7……ゲート電極「
8……ろう材、9……カソード電極L I0・・・.
・・アノード電極。 祭l図 第2図 繁る図 第4図
Figures 1 to 3 show a conventional GTO, where Figure 1 is a plan view of the N emitter layer side, Figure 2 is a sectional view taken along the Rollo cutting line in Figure 1, and Figure 3 is a An enlarged view of a part of the figure
FIG. 4 is a diagram showing an embodiment of the present invention. 1... Semiconductor substrate, 2... N emitter layer, 3...
...P base layer, 4...N base layer, 5...P emitter layer "6..., emitter electrode, 7... gate electrode"
8... Brazing metal, 9... Cathode electrode L I0...
...Anode electrode. Festival I Figure 2 Figure 2 Crowding Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基体の一方の主表面に少なくとも2つの層が
それぞれ露出し、一方の層は分割されて各々他方の層に
よつて取り囲まれており、分割された一方の層の各々お
よび他方の層のそれぞれに電極が接触され、一方の層の
分割された各々の上の第1の各電極に更に第2の電極が
接触される半導体装置において、一方の層の分割された
各々の上の第1の各電極に関し、異常な電極を除去し、
残りの他の正常な第1の各電極に第2の電極を接触させ
ることを特徴とする半導体装置の製法。
1 At least two layers are exposed on one main surface of the semiconductor substrate, one layer is divided and each surrounded by the other layer, and each of the divided layers and the other layer are separated. In a semiconductor device in which a second electrode is contacted to each of the first electrodes on each of the divided portions of one layer, and a second electrode is further contacted to each of the first electrodes on each of the divided portions of one layer. For each electrode, remove abnormal electrodes,
A method for manufacturing a semiconductor device, comprising bringing a second electrode into contact with each of the remaining normal first electrodes.
JP15648078A 1978-12-20 1978-12-20 Manufacturing method for semiconductor devices Expired JPS60957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15648078A JPS60957B2 (en) 1978-12-20 1978-12-20 Manufacturing method for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15648078A JPS60957B2 (en) 1978-12-20 1978-12-20 Manufacturing method for semiconductor devices

Publications (2)

Publication Number Publication Date
JPS5583262A JPS5583262A (en) 1980-06-23
JPS60957B2 true JPS60957B2 (en) 1985-01-11

Family

ID=15628670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15648078A Expired JPS60957B2 (en) 1978-12-20 1978-12-20 Manufacturing method for semiconductor devices

Country Status (1)

Country Link
JP (1) JPS60957B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57114279A (en) * 1981-01-08 1982-07-16 Hitachi Ltd Semiconductor device and manufacture thereof
JPS57166075A (en) * 1981-04-07 1982-10-13 Hitachi Ltd Semiconductor device

Also Published As

Publication number Publication date
JPS5583262A (en) 1980-06-23

Similar Documents

Publication Publication Date Title
US4127863A (en) Gate turn-off type thyristor with separate semiconductor resistive wafer providing emitter ballast
US3309585A (en) Junction transistor structure with interdigitated configuration having features to minimize localized heating
US4607273A (en) Power semiconductor device
JPS6319871A (en) Gate turn-off thyristor
JPS60957B2 (en) Manufacturing method for semiconductor devices
JPS60132366A (en) Semiconductor device
JPS6156628B2 (en)
JPS6019150B2 (en) Manufacturing method of semiconductor device
JPS6364907B2 (en)
JPS5999769A (en) Semiconductor device
JPH01253274A (en) Reverse conduction gto thyristor
JPS6364060B2 (en)
JPS5871658A (en) Pressure contact type semiconductor device
JPS5938056Y2 (en) semiconductor switchgear
JPS59163867A (en) Gate turn-off thyristor
JPH0691246B2 (en) Semiconductor device
JP2654852B2 (en) Electrostatic induction type semiconductor device suitable for pressure contact type package structure.
JPH01111375A (en) Gate turn-off thyristor
CN106876452B (en) Integrated gate pole commutation thyristor
JPS622781Y2 (en)
JPS6050959A (en) Gate turn-off thyristor
JPH0142636B2 (en)
JPS603584Y2 (en) reverse conducting thyristor
JPH0640580B2 (en) Semiconductor device
JPS58127377A (en) Thyristor