JPS5999769A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS5999769A JPS5999769A JP20960782A JP20960782A JPS5999769A JP S5999769 A JPS5999769 A JP S5999769A JP 20960782 A JP20960782 A JP 20960782A JP 20960782 A JP20960782 A JP 20960782A JP S5999769 A JPS5999769 A JP S5999769A
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- electrode
- emitters
- emitter
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 5
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 10
- 210000003899 penis Anatomy 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/083—Anode or cathode regions of thyristors or gated bipolar-mode devices
- H01L29/0839—Cathode regions of thyristors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/70—Bipolar devices
- H01L29/74—Thyristor-type devices, e.g. having four-zone regenerative action
- H01L29/744—Gate-turn-off devices
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Bipolar Transistors (AREA)
- Thyristors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は複数個に分割されたエミッタを有するゲートタ
ーンオフサイリスク(G’r6 )やトランジスタ等の
半導体装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device such as a gate turn-off silicon (G'r6) having a plurality of divided emitters and a transistor.
第1図(a) I (b)は従来技術で作られたGTO
の一例の平面図とそのA −A’断面図である。1はシ
エミッタN 、2 u n ベース層、3はpペース層
であI)、p’ペーメ゛層3の表面に多数に分割された
hエミツタ層(カンニドエミツタ層)4(41゜4□
2・・・)が形成されている。5(51,5□、・・・
)はAt等からなるカンード電極、6はカソードエミッ
タを取9囲んで共通に配設されたダート電極であシ、7
はアノード電極である。8(8i+8□ )はゲート電
極6と外部のr−トパルス発生器とを電気的に接続する
ダートリード線で、同図の場合二点でダート電極6とコ
ンタクトしている。図の場合、カソードエミツタ層4は
放射状にかつ四つの環状をなして配列されている。Figures 1(a) and 1(b) are GTOs made using conventional technology.
It is a top view of an example, and its AA' sectional view. 1 is the emitter N, 2 is the base layer, 3 is the p space layer (I), and the h emitter layer (cannide emitter layer) 4 (41°4□) divided into many parts on the surface of the p' page layer 3 is
2...) is formed. 5 (51, 5□,...
) is a cando electrode made of At or the like, 6 is a dart electrode commonly arranged surrounding the cathode emitter, and 7 is a dart electrode.
is the anode electrode. 8 (8i+8□) is a dirt lead wire that electrically connects the gate electrode 6 and an external r-to pulse generator, and in the figure, it contacts the dirt electrode 6 at two points. In the case shown, the cathode emitter layers 4 are arranged radially in four annular shapes.
第1図(直)におりては簡単のため一つの環につき各二
個のカン−、ドエミックのみ描き他のカソードエミッタ
は破線で示して省略しである。図の如くカソードエミツ
タ層4の形状は同一のものを並設する方法を従来採用し
てきた。In FIG. 1 (direct), for simplicity, only two cans and two domics are shown for each ring, and other cathode emitters are shown by broken lines and omitted. As shown in the figure, the conventional method has been to arrange cathode emitter layers 4 of the same shape in parallel.
なお、ケ゛−トリード線のコンタクトは第1図のように
GTO基体の周辺に設けるタイプのGTOの他に、セン
ターダートと呼ばれるGTO基体の中央部に設けるタイ
プのGTOがある。In addition to the type of GTO in which the contacts of the cable lead wires are provided around the GTO base as shown in FIG. 1, there is also a type of GTO provided in the center of the GTO base called a center dart.
さてGTOのダートターンオフ動作は、広く知られてい
るようにカソードとダートとの間に逆方向電圧を印加し
、ダートから電流を吸い出すことによって行なうもので
ある。したがってダートターンオフ時にダート電極の各
所に吸い出された電流は各点からもっとも近いリード線
とのコンタクト点へ流れる。その時ダート電極6の横方
向の抵抗によって電圧降下が発生する。As is widely known, the dart turn-off operation of the GTO is performed by applying a reverse voltage between the cathode and the dart and sucking current from the dart. Therefore, the current sucked out to various parts of the dart electrode during dart turn-off flows from each point to the nearest contact point with the lead wire. At this time, a voltage drop occurs due to the lateral resistance of the dart electrode 6.
このような電圧降下が生じるためにダート・カソード間
に逆方向電圧を印加しても各カソード電極5からみたダ
ート層と間の逆方向電圧(G−に接合電圧)が異なる。Because such a voltage drop occurs, even if a reverse voltage is applied between the dirt layer and the cathode, the reverse voltage (junction voltage at G-) between the dirt layer and the dirt layer as seen from each cathode electrode 5 differs.
ケ゛−ト電@6は一般にAtnどの金属を真空蒸着装置
などを用いて形成するものであるから、その厚みが10
〜20〔μm〕程度で極めて薄く、横方向抵抗が数百〔
μΩ〕から数十〔mΩ〕になる。このような抵抗をもつ
ケ゛−ト電極層を数十ないし数百〔A〕の負ダート電流
が流れると、ダート電極中で生じる電圧降下は数十(m
V )から数百〔mv〕に達する。したがってダートリ
ード線8のコンタクト位置からみて最も長い距離に位置
するカソードエミツタ層は、それより近いカソードエミ
ツタ層より負バイアスが低くなる。Since the gate electrode @6 is generally formed of metal such as Atn using a vacuum evaporation device, its thickness is 10
It is extremely thin at ~20 [μm] and has a lateral resistance of several hundred [μm].
μΩ] to several tens of mΩ. When a negative dart current of several tens to hundreds of amperes flows through a gate electrode layer having such resistance, the voltage drop that occurs in the dart electrode is several tens of meters (meters).
V) to several hundred [mv]. Therefore, the cathode emitter layer located at the longest distance from the contact position of the dirt lead wire 8 has a lower negative bias than the cathode emitter layer closer to it.
このように負バイアスに差が生じることによって、ゲー
トターンオフするまでの時間(toff)に差が生じ、
最もターンオフ時間の長いカソードエミッタには最後ま
で電流が流れているために電流集中が生じる。この電流
集中はGTO基体の部分的過熱を生じ、特性劣化や破壊
を生じるという欠点があった。This difference in negative bias causes a difference in the time until gate turn-off (toff),
Current concentration occurs because current flows to the cathode emitter with the longest turn-off time until the end. This current concentration causes partial overheating of the GTO substrate, which has the disadvantage of causing characteristic deterioration and destruction.
本発明は上記問題点に鑑み、各カソードエミッタのター
ンオフ時間を均一化することによυ信頼性の向上を図っ
た半導体装置を提供することを目的とする。SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a semiconductor device with improved reliability by making the turn-off time of each cathode emitter uniform.
本発明は、カソードエミッタの寸法を小さくすることに
よりターンオフ時間が短縮するという事実を応用する。The invention takes advantage of the fact that reducing the dimensions of the cathode emitter reduces the turn-off time.
即ち、ゲートリード線のダート電極とのコンタクト位置
からの距離によってカソードエミッタ分布を少くとも二
つの領域に分け、コンタクト位置から遠い領域でのカソ
ードエミツタ層の幅を近い領域でのそれより小さくなる
ように設定することによυ、基板内の各カソードエミッ
タ領域のターンオフ時間を均一化する。That is, the cathode emitter distribution is divided into at least two regions depending on the distance from the contact position of the gate lead wire with the dirt electrode, and the width of the cathode emitter layer in the region far from the contact position is made smaller than that in the near region. By setting υ, the turn-off time of each cathode emitter region in the substrate is made uniform.
本発明をGTOに適用することによシ次のような効果が
得られる。By applying the present invention to GTO, the following effects can be obtained.
■ GTOの全カソードエミックをほぼ同一時点でゲー
トターンオンさせることができ、従って全体のしゃ断容
址を大幅に増加できる。■ All cathode emics of the GTO can be gated turned on at approximately the same time, thus greatly increasing the overall isolation capacity.
■ 本発明を応用してもマスク上で寸法を変えるだけな
ので製造コストが上がらない。■ Even if the present invention is applied, the manufacturing cost will not increase because only the dimensions are changed on the mask.
■ 信頼性が高く、使いやすいGTOが得られる。■ Highly reliable and easy-to-use GTO can be obtained.
本発明は、分割エミッタ構造をもつトランジスタに適用
しても同様の効果が得られる。Similar effects can be obtained even when the present invention is applied to a transistor having a split emitter structure.
本発明の実施例゛を説明する前に、基礎実験として、カ
ソードエミッタの幅とデートクーンオフ時間(GTOに
順方向にアノード電流が流れている時に、ゲートに負バ
イアスを印加する時刻からアノード電流が零になるまで
の時刻までの時間)との関係を求めf7c7′″−タを
第2図に示す。Before explaining the embodiments of the present invention, as a basic experiment, we will examine the width of the cathode emitter and the date Kuhn-off time (when the anode current is flowing in the forward direction in the GTO, the anode current starts from the time when negative bias is applied to the gate). The relationship between f7c7''' and f7c7''' is shown in FIG. 2.
ターンオフ時間は、カソードエミッタの幅が太きいと指
数関数的に長くなシ、ある一定の幅以上は、GTOの通
電領域を狭くする、いわゆるスクイズが不十分となりタ
ーンオフが不能となる。The turn-off time is exponentially longer if the width of the cathode emitter is wide; if the width exceeds a certain level, so-called squeezing, which narrows the current-carrying area of the GTO, becomes insufficient and turn-off becomes impossible.
第2図で示すように、ターンオフ時間がカソードエミッ
タの幅で変化する事実を応用すればGTO基体全面のカ
ソード電極、りのターンオフ時間をほぼ均一にする事が
可能である。As shown in FIG. 2, by applying the fact that the turn-off time varies depending on the width of the cathode emitter, it is possible to make the turn-off time of the cathode electrode over the entire surface of the GTO substrate substantially uniform.
本発明の一実施例のGTOの平面図を第3図に示す。基
体構造は第1図のものと同じであシ、従って断面図は省
略し、また第1図と対応する部分には第1図と同じ符号
を付しである。カソードエミッタ4の長さは全て同じで
、幅をリード線8のコンタクト位置から遠ざかるにつれ
て細くした点が従来と異なる。実際には、8cnIφの
ウェハで定格電流3(100Aの場合、ウェハ中央部2
c!nφの領域の周囲に長さ4〜5霞のカソードエミッ
タを放射状に、かつ5〜6本の環状をなして配列し、内
側の環から順次外側にいく程カソードエミッタ幅を大き
くする。FIG. 3 shows a plan view of a GTO according to an embodiment of the present invention. The base structure is the same as that shown in FIG. 1, so a cross-sectional view is omitted, and parts corresponding to those in FIG. 1 are given the same reference numerals. The length of the cathode emitters 4 is all the same, and the difference from the conventional one is that the width becomes thinner as the distance from the contact position of the lead wire 8 increases. Actually, in the case of a wafer of 8cnIφ and a rated current of 3 (100A, the central part of the wafer
c! Cathode emitters having a length of 4 to 5 mm are arranged radially around a region of nφ in a ring shape of 5 to 6 pieces, and the width of the cathode emitters is gradually increased from the inner ring to the outer side.
このよりにカソードエミッタを適切な寸法で変えると、
リード線8のコンタクト位置から遠い距離にあるカソー
ドエミッタは、負バイアスが前述した理由から低くなる
が、その分力ソードエミツタ幅が細い事によってターン
オフし易くな?ており、全力ンードエミッタをほぼ同時
にターンオフすることがで、きる。By changing the cathode emitter with appropriate dimensions according to this,
The cathode emitter located far from the contact position of the lead wire 8 has a low negative bias due to the reason mentioned above, but the narrow width of the cathode emitter makes it easier to turn off. This allows all emitters to be turned off almost simultaneously.
第4図は、本発明の他の実施例である。即ちこの実施惚
は、ダート電極6の中央部にゲートリード線8をコンタ
クトさせたクイズのGTOである。この場合も、コンタ
クト位置、即ちウェハ中央から離れる程カンードエミ□
ツタ層の幅を細くしである。これによi、先の実施例と
同様の効果が得られる。FIG. 4 shows another embodiment of the invention. That is, this experiment is a quiz GTO in which the gate lead wire 8 is brought into contact with the center part of the dart electrode 6. In this case as well, the further away from the contact position, i.e. the center of the wafer, the more canned emitters
The width of the ivy layer is narrowed. As a result, the same effects as in the previous embodiment can be obtained.
尚カソードエミッタ層の長iは幅と比らべるとターンオ
ン時間への影着が少ないが、短かい程ターンオン時晶が
短縮するので、単にムを細くするだけでなく長さも短か
くする方がターンオフ時間が短かくなることは当然なの
で、この事実を応用することが可能なことは云うまでも
ない。The length i of the cathode emitter layer has less influence on the turn-on time than the width, but the shorter it is, the shorter the turn-on crystal is, so it is better to not only make it thinner but also shorten the length. It goes without saying that the turn-off time will be shortened, so it goes without saying that this fact can be applied.
以上、本発明の説明にGTOを例にとってきたが複数個
のラミックを有するトランジスタの場合について、を本
発明が適用できることは当然である。この場合、ダート
電極に対応するのはペース電極である。Although the present invention has been described above using a GTO as an example, it goes without saying that the present invention can be applied to a transistor having a plurality of RAMICs. In this case, the dart electrode corresponds to the pace electrode.
第1図(a) 、 (b)は、従来のGTOの平面図と
そのA −A’断面図、第2図はカン−ドエミッタの幅
とダートターンオフ時間との関係図、第3図は本発明の
一実施例のGTOの平面図、第4図は本発明の他の実施
例のGTOの平面図である。
’(’t+42+・・・)・・・カソードエミツタ層、
5(51* 52 +・・・)・・・カソード電極、
6・・−ケ゛−ト電極、5(sl 182 )・・・
ゲートリード線。
出願人代理人 弁理士 鈴 江 武 彦第1図
第3図Figures 1 (a) and (b) are a plan view of a conventional GTO and its A-A' cross-sectional view, Figure 2 is a diagram showing the relationship between the width of the canned emitter and dart turn-off time, and Figure 3 is the diagram of the book. FIG. 4 is a plan view of a GTO according to another embodiment of the present invention. '('t+42+...)...Cathode emitter layer,
5 (51* 52 +...)...Cathode electrode,
6...-Kate electrode, 5 (sl 182)...
gate lead wire. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 3
Claims (1)
周凹を取シ囲んで共通のダート電極またはペース電極が
配設され、このゲート電極またはペニス電極と外部回路
との間をり」ド線で接続する構成の半導体装置において
、前記復□数個のエミツタ層の形状につき、前記リード
線のコンタクト位置を中心としてここからの距離によシ
少くとも2つの領域に分け、コンタクト位置から遠い領
域でのエミレタ層の幅を近い□領域でのそれよシ小さく
設定したことを特許とする半導体装置。It has an emitter layer divided into a plurality of parts, a common dirt electrode or pace electrode is arranged surrounding the circumferential recess of each emitter layer, and a common dart electrode or pace electrode is provided between this gate electrode or penis electrode and an external circuit. In a semiconductor device configured to be connected by a lead wire, the shape of the plurality of emitter layers is divided into at least two regions based on a distance from the contact position of the lead wire, and This is a semiconductor device that is patented in that the width of the emitter layer in the far region is set to be smaller than that in the close □ region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20960782A JPS5999769A (en) | 1982-11-30 | 1982-11-30 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20960782A JPS5999769A (en) | 1982-11-30 | 1982-11-30 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5999769A true JPS5999769A (en) | 1984-06-08 |
Family
ID=16575604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20960782A Pending JPS5999769A (en) | 1982-11-30 | 1982-11-30 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5999769A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6099552U (en) * | 1983-12-12 | 1985-07-06 | 日本インター株式会社 | Gate turn-off thyristor |
JPS61287267A (en) * | 1985-06-14 | 1986-12-17 | Res Dev Corp Of Japan | Gto thyristor |
JPS6216570A (en) * | 1985-07-15 | 1987-01-24 | Hitachi Ltd | Semiconductor switching device |
JPS6254465A (en) * | 1985-09-02 | 1987-03-10 | Hitachi Ltd | Semiconductor device |
JPS62147770A (en) * | 1985-12-20 | 1987-07-01 | Fuji Electric Co Ltd | Gto thyristor |
EP0283588A2 (en) * | 1987-02-24 | 1988-09-28 | BBC Brown Boveri AG | Controllable power semiconductor device |
JPH02126675A (en) * | 1988-11-07 | 1990-05-15 | Fuji Electric Co Ltd | Gate turn-off thyristor |
-
1982
- 1982-11-30 JP JP20960782A patent/JPS5999769A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6099552U (en) * | 1983-12-12 | 1985-07-06 | 日本インター株式会社 | Gate turn-off thyristor |
JPS61287267A (en) * | 1985-06-14 | 1986-12-17 | Res Dev Corp Of Japan | Gto thyristor |
JPS6216570A (en) * | 1985-07-15 | 1987-01-24 | Hitachi Ltd | Semiconductor switching device |
JPS6254465A (en) * | 1985-09-02 | 1987-03-10 | Hitachi Ltd | Semiconductor device |
JPS62147770A (en) * | 1985-12-20 | 1987-07-01 | Fuji Electric Co Ltd | Gto thyristor |
EP0283588A2 (en) * | 1987-02-24 | 1988-09-28 | BBC Brown Boveri AG | Controllable power semiconductor device |
US4843449A (en) * | 1987-02-24 | 1989-06-27 | Bbc Brown Boveri Ag | Controllable power semiconductor |
JPH02126675A (en) * | 1988-11-07 | 1990-05-15 | Fuji Electric Co Ltd | Gate turn-off thyristor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2137811A (en) | High power mosfet with direct connection from connection pads to underlying silicon | |
EP0022355B1 (en) | Gate turn-off thyristor | |
US4626888A (en) | Gate turn-off thyristor | |
US5021855A (en) | Gate turn-off thyristor | |
JPS5999769A (en) | Semiconductor device | |
JPS6156628B2 (en) | ||
JPH049378B2 (en) | ||
US4079409A (en) | Thyristor with pressure contacting | |
JPS594033A (en) | Pressure welding type semiconductor device | |
US4605949A (en) | Semiconductor device with interdigitated electrodes | |
US5270566A (en) | Insulated gate semiconductor device | |
JPS5938056Y2 (en) | semiconductor switchgear | |
JP2525558Y2 (en) | Semiconductor device | |
JPH0691246B2 (en) | Semiconductor device | |
JPS5923115B2 (en) | Mesa type semiconductor device | |
JPS642441Y2 (en) | ||
JPS62163371A (en) | Gate turnoff thyristor | |
JPH0136267B2 (en) | ||
EP0347613A2 (en) | Semiconductor device with pressure connection means | |
JP3128958B2 (en) | Semiconductor integrated circuit | |
JPS59225567A (en) | Gate turn-off thyristor | |
JPS604260A (en) | Semiconductor device | |
JPH02263470A (en) | Gate turn off thyrister | |
JPH0513768A (en) | Insulating gate type bipolar transistor | |
JPH0243337B2 (en) |