JPS603584Y2 - reverse conducting thyristor - Google Patents

reverse conducting thyristor

Info

Publication number
JPS603584Y2
JPS603584Y2 JP1981164855U JP16485581U JPS603584Y2 JP S603584 Y2 JPS603584 Y2 JP S603584Y2 JP 1981164855 U JP1981164855 U JP 1981164855U JP 16485581 U JP16485581 U JP 16485581U JP S603584 Y2 JPS603584 Y2 JP S603584Y2
Authority
JP
Japan
Prior art keywords
conductive region
conductivity type
semiconductor substrate
conductive
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981164855U
Other languages
Japanese (ja)
Other versions
JPS57100243U (en
Inventor
南 竹内
稔 栗城
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Priority to JP1981164855U priority Critical patent/JPS603584Y2/en
Publication of JPS57100243U publication Critical patent/JPS57100243U/ja
Application granted granted Critical
Publication of JPS603584Y2 publication Critical patent/JPS603584Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【考案の詳細な説明】 本考案は逆導通サイリスタに関し、得に短いパルス幅通
電時のターンオフタイムを短かくするとともにサイリス
タの有効面積を最大にする構造の逆導通サイリスタを提
供することを目的とするものである。
[Detailed description of the invention] The present invention relates to a reverse conduction thyristor, and an object of the present invention is to provide a reverse conduction thyristor having a structure that particularly shortens the turn-off time when energizing with a short pulse width and maximizes the effective area of the thyristor. It is something to do.

逆導通サイリスタはチョッパ装置、インバータ装置に用
いられるが、装置の性能向上のため高速化が要求されて
いる。
Reverse conduction thyristors are used in chopper devices and inverter devices, but higher speed is required to improve the performance of the devices.

そしてこの逆導通サイリスタには転流時にパルス幅のせ
まい電流が流れるため電流の拡がりが悪いと局所的に温
度上昇が起り、ターンオフタイムが長くなりターンオフ
失敗を起す。
Since a current with a narrow pulse width flows through this reverse conduction thyristor during commutation, if the current spreads poorly, a local temperature rise occurs, which lengthens the turn-off time and causes turn-off failure.

上述の如く短パルス幅通電でターンオフタイムを短かく
するため、サイリスタのゲート構造は高周波用サイリス
タのゲート構造を採用する必要があり、例えば第1図に
示される構造のものがある。
As mentioned above, in order to shorten the turn-off time by short pulse width energization, the gate structure of the thyristor must adopt the gate structure of a high frequency thyristor, for example, the structure shown in FIG. 1 is available.

第1図に示すものはセンターダイオード、リングサイリ
スタ構造で、そのゲートの構造はリングゲート構造とな
っている。
The one shown in FIG. 1 has a center diode, ring thyristor structure, and its gate has a ring gate structure.

即ち第1図aに上面図、図すに図aのxx’に沿う面の
断面図、図Cにペレットの無効部位(面積)を示す図に
みられる如く、図すのP−N−P−Nでなるす7fリス
タ部が中央部のP−N−Pでなる隔離領域(施斜線にて
図示)を介して隣接し、また図の下部のP導電域の中央
部に設けられるとともに隣接のN導電域に接続したN+
導電域が形成されてP−Hのダイオード部が形成されて
なる。
That is, as shown in the top view in Fig. 1a, the sectional view along the xx' line in Fig. 1, and the diagram showing the invalid area (area) of the pellet in Fig. A 7F lister section consisting of -N is adjacent to the P-N-P isolation area (shown with hatched lines) in the center, and is also provided in the center of the P conductive area at the bottom of the figure and adjacent to it. N+ connected to the N conductive area of
A conductive region is formed to form a P-H diode section.

上記の如くして転流能力の向上をはかつているが、図C
にX点を施して示したウェハの部分は電流の流れない無
効面積となっている。
Although the commutation ability is improved as described above, Fig.
The portion of the wafer indicated by the X point is an ineffective area through which current does not flow.

またサイリスタのエミッタ周辺全域に対向してリング状
ゲートRGを設けているためゲート領域面積が大きく、
サイリスタの有効電極面積は減少し、順電圧降下は増大
する。
In addition, since the ring-shaped gate RG is provided facing the entire area around the emitter of the thyristor, the area of the gate region is large.
The effective electrode area of the thyristor decreases and the forward voltage drop increases.

本考案は上記従来の欠点を除去するためになされたもの
で、逆導通サイリスタにおいてダイオードをサイリスタ
の片側に平板状の隔離領域を介して設けられた構造と、
これに加えて増幅ゲートに接続した円弧状の補助ゲート
を備えたことを主としてなる。
The present invention has been made to eliminate the above-mentioned drawbacks of the conventional art, and includes a structure in which a diode is provided on one side of the thyristor via a flat plate-shaped isolation region in a reverse conduction thyristor.
In addition to this, the main feature is that an arc-shaped auxiliary gate is connected to the amplification gate.

以下に本考案を一実施例の逆導通サイリスクにつき図面
を参照して詳細に説明する。
Hereinafter, the present invention will be described in detail with reference to the drawings regarding one embodiment of the reverse conduction risk.

第2図aに上面図、図すに図aのx−x’線に沿う断面
図、図Cは基板の無効部(面積)を示し、断面図すにお
ける右部はP−N−P−N構造でサイリスタ部を形成し
、P導電域にアノード電極A、 N+導電域にカソード
電極Kを備え、N+導電域の形成されたP導電域にゲー
ト電極Gが設けられてなる。
Fig. 2a is a top view, Fig. 2a is a sectional view taken along the line The thyristor part is formed with an N structure, and includes an anode electrode A in the P conductive region, a cathode electrode K in the N+ conductive region, and a gate electrode G in the P conductive region where the N+ conductive region is formed.

前記サイリスタに隣接しP−N−P構造でなる平板状の
隔離領域を有し、さらにこれに隣接してP−N (−N
+)でなるダイオード部を備え、このカソード電極は前
記サイリスタのカソード電極が延在されて一体になり、
またアノード電極も上記と同様にサイリスタのアノード
電極と一体に形成される。
Adjacent to the thyristor, there is a plate-shaped isolation region having a P-N-P structure, and further adjacent to this, a P-N (-N
+), the cathode electrode of which is integrated with the cathode electrode of the thyristor;
Further, the anode electrode is also formed integrally with the anode electrode of the thyristor in the same manner as described above.

さらにサイリスタのカソード導電域(N+)にはこれに
隣接するP導電域に達する開孔が基板主面と非平行に設
けられてなる。
Further, the cathode conductive region (N+) of the thyristor is provided with an opening extending non-parallel to the main surface of the substrate and reaching the adjacent P conductive region.

またサイリスタのカソード電極の周囲において一部に対
向する円弧状の補助ゲート電極RG’を備える。
Further, an arcuate auxiliary gate electrode RG' is provided around the cathode electrode of the thyristor and partially opposed to the cathode electrode of the thyristor.

図CにおいてX点を施してウェハの部分は電流の流れな
い無効面積である。
In Figure C, the portion of the wafer marked by point X is an ineffective area through which no current flows.

上記につき第1図と比較して次に検討する。The above will be discussed next by comparing it with Figure 1.

ともに電極最大外径はR1、サイリスタの電極最大外径
はR2と同一径、隔離層幅はR3−R,,1゜−1□も
相等にてダイオードの面積も等しくとられている。
In both cases, the maximum outer diameter of the electrode is R1, the maximum outer diameter of the thyristor electrode is the same as R2, the isolation layer width is R3-R, 1°-1□, and the area of the diode is also the same.

−例としてR□=36mmφ、R2=32wILφ、1
2 = 10.5771m、 11= 9.5mm、R
3−R,=12It = 1 rrmt、 SR面積1
54mA(I4mmφ相当)で短絡エミツタ面積率を8
%とした場合のサイリスタ有効面積を計算すると第1図
の場合555−1第2図の場合610rIritとなり
、第2図の場合の方が第1図の場合よりも約10%サイ
リスタの有効面積が大きくとれる。
-For example, R□=36mmφ, R2=32wILφ, 1
2 = 10.5771m, 11 = 9.5mm, R
3-R,=12It=1 rrmt, SR area 1
At 54mA (equivalent to I4mmφ), the shorted emitter area ratio is 8
%, the effective area of the thyristor is 555-1 in Figure 1 and 610rIrit in Figure 2, which means that the effective area of the thyristor in Figure 2 is approximately 10% larger than in Figure 1. It can be taken in large quantities.

次に第3図に示す一実施例の構造は、電極の最大外径R
□が小になると無効面積の比率が大となるが、補助ゲー
ト電極からペレットの中心までの距離が小となり、電流
はペレット全面に拡がりやすくなる。
Next, the structure of one embodiment shown in FIG. 3 has the maximum outer diameter R of the electrode.
As □ becomes smaller, the ratio of the ineffective area becomes larger, but the distance from the auxiliary gate electrode to the center of the pellet becomes smaller, and the current tends to spread over the entire surface of the pellet.

このため補助ゲートを半円状にし、サイリスクのエミッ
タ外径の一部を補助ゲート電極に対向した部分より突出
させたものである。
For this purpose, the auxiliary gate is formed into a semicircular shape, and a part of the outer diameter of the emitter of the silisk is made to protrude from the part facing the auxiliary gate electrode.

次の第4図に示す一実施例は基板の径の犬なるもので、
センターゲートGcを設は補助ゲート電極と接続して電
流の拡がりを改良したものである。
An embodiment shown in FIG. 4 below is a dog of the diameter of the board,
The center gate Gc is connected to an auxiliary gate electrode to improve current spread.

第1図のリングゲート構造の場合サイリスタのエミッタ
の周辺はすべて露出しており、(dV/dt)耐量が弱
い欠点があるが、第2図ないし第4図の実施例に示す本
発明の構造においてはサイリスタノエミツタ周辺の一部
が電極によりPベースと短絡されているため(dV/d
t)耐量が高くなっている。
In the case of the ring gate structure shown in FIG. 1, the entire periphery of the emitter of the thyristor is exposed, which has the disadvantage of a weak (dV/dt) withstand capability, but the structure of the present invention shown in the embodiments of FIGS. 2 to 4 In this case, a part around the thyristor emitter is short-circuited with the P base by an electrode (dV/d
t) The tolerance level is high.

次に補助ゲート電極とサイリスタのカソード電極間抵抗
、補助ゲート電極とサイリスタのカソード電極間抵抗は
いずれも(dV/dt)耐量に(さらにdV/dt耐量
、後者は転流失敗後の(di/dt)耐量に)夫々影響
を及ぼす。
Next, the resistance between the auxiliary gate electrode and the cathode electrode of the thyristor, and the resistance between the auxiliary gate electrode and the cathode electrode of the thyristor are both reduced to (dV/dt) (and further dV/dt resistance, the latter being (di/dt) after commutation failure. dt) tolerable amount) respectively.

第5図に横軸に補助ゲート電極とカソード電極間抵抗を
単位Ωにて、縦軸にdV/dt単位V/μs)耐量、お
よびdi/dt(単位A/μS)耐量を示す。
In FIG. 5, the horizontal axis shows the resistance between the auxiliary gate electrode and the cathode electrode in Ω, and the vertical axis shows the dV/dt (in V/μs) withstand capacity and the di/dt (in A/μS) withstand capacity.

これについてはさらに補助ゲート電極とカソード間抵抗
値(RRC−K)と(dV/dt)耐量は次の関係があ
る。
Regarding this, the relationship between the resistance value (RRC-K) between the auxiliary gate electrode and the cathode and the (dV/dt) withstand capacity is as follows.

V>CX S xdV/dtx (RRC−K ) =
I ×RRC−に
・・・・・・(1)ここにVはPN接
合のしきい値=0.5VXCは接合容量、Sはサイリス
タカソード電極より外側の面積、■はサイリスタのカソ
ード電極より外側の部分で発生する全変位電流である。
V>CX S xdV/dtx (RRC-K) =
I ×RRC-
・・・・・・(1) Here, V is the threshold value of the PN junction = 0.5V It is the total displacement current.

次に(1)式より (2)式より(dV/di)耐量は(RRC−K)に反
比例することがわかる。
Next, it can be seen from equations (1) and (2) that the (dV/di) tolerance is inversely proportional to (RRC-K).

即ち第5図においてRRo−Kが1舶をこえると(dV
、/di)は100V/μS以下となり実回路上問題と
なる。
That is, in Fig. 5, when RRo-K exceeds one vessel (dV
, /di) is less than 100V/μS, which poses a problem in actual circuits.

特殊用途で(dv/dt)耐量の高いものが要求される
場合はRRC−にの上限を小さくする必要がある。
If a high (dv/dt) withstand capacity is required for special purposes, it is necessary to reduce the upper limit of RRC-.

サイリスクカソード電極とダイオードの電極が短絡され
ているため変位電流の一部はダイオードの電極を通って
カソード電極に流れこむため、ダイオード電極は周辺短
絡電極の機能を有する事により(dV/dt)耐量の向
上に寄与する。
Since the silice cathode electrode and the diode electrode are short-circuited, a portion of the displacement current flows into the cathode electrode through the diode electrode, so the diode electrode functions as a peripheral short-circuit electrode (dV/dt) Contributes to improved tolerance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図はいずれも逆導通サイリスタを示し
、第1図は従来の逆導通サイリスタの図aは上面図、図
すは図aのX−X’線に沿う断面図、図Cは基板の無効
面積を示す図、第2図は本考案−実施例の逆導通サイリ
スタの図aは上面図、図すは図aのX−X’線に沿う断
面図、図Cは基板の無効面積を示す図、第3図および第
4図はいずれも夫々が本考案の別の一実施例を示す図に
して、第3図は上面図、第4図aは上面図、図すは図a
のX−X’線に沿う断面図、第5図は(di/dt)耐
量、(dV/dt)耐量と電極間抵抗値との関係を示す
図である。 なお図中同一符号は同一または相当部分を夫々示すもの
とし、図中にははカソード電極、Gはゲート電極、Rc
は補助ゲート電極、Aはアノード電極、αはセンターゲ
ート電極である。
Figures 1 to 4 all show reverse conduction thyristors, and Figure 1 is a top view of a conventional reverse conduction thyristor; 2 is a diagram showing the ineffective area of the substrate, Figure 2 is a top view of the reverse conduction thyristor of the present invention and an embodiment, and Figure C is a cross-sectional view taken along line X-X' in Figure a. The figures showing the ineffective area, FIGS. 3 and 4, each show another embodiment of the present invention. FIG. 3 is a top view, FIG. 4a is a top view, and Diagram a
FIG. 5 is a cross-sectional view taken along line XX' of FIG. 5, which shows the relationship between (di/dt) withstand capacity, (dV/dt) withstand capacity, and interelectrode resistance value. Note that the same reference numerals in the drawings indicate the same or corresponding parts, and in the drawings, G is the cathode electrode, G is the gate electrode, and Rc
is an auxiliary gate electrode, A is an anode electrode, and α is a center gate electrode.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 円形の一生面および他主面を有する円板状の半導体基板
と、この半導体基板の一生面側に設けられた一導電型の
第一導電域と、前記半導体基板の他主面側に設けられた
一導電型の第二導電域と、前記第一および第二導電域を
互いに離隔させて介在する逆導電型の第三導電域と、前
記半導体基板の円弧に張り渡たされた弦の如く且つ該半
導体基板の厚さ方向において平板状に存在し該半導体基
板を互いに逆方向の電流が流れる大・小二つの部分に区
画する境界部により区画された大の部分の前記第一導電
域内で前記境界部と隣接して設けられ且つ前記−主面に
前記第一導電域との接合を露呈させて成る逆導電型の第
四導電域と、この第四導電域の前記境界部との隣接箇所
を避けて前記第四導電域付近に離間して設けられ且つ前
記−主面に前記第一導電域との接合を露呈して成る逆導
電型の第五導電域と、前記境界部により区画された小の
部分の前記他主面側で前記境界部に隣接して第二導電域
内に設けられこの前記第二導電域との接合を前記他主面
に露呈させると共に第三導電域に達する逆導電型の第六
導電域と、前記中の部分の第一導電域と前記境界部およ
び前記第四導電域に前記−主面で接続する第一導電域と
、前記第二導電域および第六導電域に接続する第二主電
極と、前記第五導電域の前記第四導電域に対向する側の
前記−主面に露呈した接合を短絡すると共に前記第四導
電域を該第四導電域と均等に離間して前記大の部分の第
一導電域に接続する補助電極と、前記第五導電域の接合
が前記補助電極により短絡された側とは反対側で前記第
五導電域と離間して前記第一導電域に接続する制御電極
とを具備することを特徴とする逆導通サイリスク。
A disk-shaped semiconductor substrate having a circular life surface and another major surface, a first conductive region of one conductivity type provided on the life surface side of the semiconductor substrate, and a first conductive region of one conductivity type provided on the other major surface side of the semiconductor substrate. a second conductive region of one conductivity type; a third conductive region of an opposite conductivity type intervening with the first and second conductive regions separated from each other; and a string-like structure stretched across an arc of the semiconductor substrate. and within the first conductive region of the large portion defined by a boundary portion that exists in a flat plate shape in the thickness direction of the semiconductor substrate and partitions the semiconductor substrate into two large and small portions in which currents flow in opposite directions. A fourth conductive region of an opposite conductivity type, which is provided adjacent to the boundary portion and exposes the junction with the first conductive region on the main surface, and the fourth conductive region is adjacent to the boundary portion. a fifth conductive region of an opposite conductivity type, which is provided in a spaced apart manner near the fourth conductive region and exposes the junction with the first conductive region on the principal surface; is provided in a second conductive region adjacent to the boundary portion on the other main surface side of the small portion where the conductive region is connected to the second conductive region, and exposes the junction with the second conductive region to the other main surface and reaches a third conductive region. a sixth conductive region of opposite conductivity type; a first conductive region connected to the first conductive region of the middle portion, the boundary portion and the fourth conductive region at the -main surface; the second conductive region and the third conductive region; The second main electrode connected to the sixth conductive region and the junction exposed on the negative main surface of the fifth conductive region on the side opposite to the fourth conductive region are short-circuited, and the fourth conductive region is connected to the fourth conductive region. an auxiliary electrode connected to the first conductive region of the large portion and equally spaced from the region; and an auxiliary electrode connected to the first conductive region of the large portion; and a control electrode spaced apart and connected to the first conductive region.
JP1981164855U 1981-11-06 1981-11-06 reverse conducting thyristor Expired JPS603584Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981164855U JPS603584Y2 (en) 1981-11-06 1981-11-06 reverse conducting thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981164855U JPS603584Y2 (en) 1981-11-06 1981-11-06 reverse conducting thyristor

Publications (2)

Publication Number Publication Date
JPS57100243U JPS57100243U (en) 1982-06-19
JPS603584Y2 true JPS603584Y2 (en) 1985-01-31

Family

ID=29957078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981164855U Expired JPS603584Y2 (en) 1981-11-06 1981-11-06 reverse conducting thyristor

Country Status (1)

Country Link
JP (1) JPS603584Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50156381A (en) * 1974-06-05 1975-12-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50156381A (en) * 1974-06-05 1975-12-17

Also Published As

Publication number Publication date
JPS57100243U (en) 1982-06-19

Similar Documents

Publication Publication Date Title
US4443810A (en) Gate turn-off amplified thyristor with non-shorted auxiliary anode
JPH04291767A (en) Conductivity modulation mosfet
JP2000049360A (en) Semiconductor device
JPH0534834B2 (en)
US5936267A (en) Insulated gate thyristor
US3978514A (en) Diode-integrated high speed thyristor
JPS603584Y2 (en) reverse conducting thyristor
JPS62109365A (en) Semiconductor device
JPH01286465A (en) Bidirectional control rectification semiconductor device
JP3297087B2 (en) High voltage semiconductor device
US4609933A (en) Gate turn-off thyristor having P+ gate and emitter
US3990090A (en) Semiconductor controlled rectifier
JPS5933988B2 (en) Electrostatic induction thyristor
JP7432098B2 (en) Power semiconductor devices with thyristors and bipolar junction transistors
JP2504609B2 (en) Semiconductor device
JPS6399568A (en) Semiconductor device
JPS5938056Y2 (en) semiconductor switchgear
JPS63265465A (en) Semiconductor device
JPS63284856A (en) Buried-gate type gto thyristor
JP2023545215A (en) bidirectional thyristor device
JPS6048911B2 (en) semiconductor equipment
JP3222500B2 (en) Bidirectional high voltage semiconductor device
JP2797890B2 (en) Composite semiconductor device
JPS60154564A (en) Semiconductor device
JPS6044830B2 (en) semiconductor equipment