JPS5933988B2 - Electrostatic induction thyristor - Google Patents

Electrostatic induction thyristor

Info

Publication number
JPS5933988B2
JPS5933988B2 JP6488576A JP6488576A JPS5933988B2 JP S5933988 B2 JPS5933988 B2 JP S5933988B2 JP 6488576 A JP6488576 A JP 6488576A JP 6488576 A JP6488576 A JP 6488576A JP S5933988 B2 JPS5933988 B2 JP S5933988B2
Authority
JP
Japan
Prior art keywords
type semiconductor
semiconductor layer
layer
electrostatic induction
induction thyristor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6488576A
Other languages
Japanese (ja)
Other versions
JPS52147985A (en
Inventor
浩 蒲生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6488576A priority Critical patent/JPS5933988B2/en
Publication of JPS52147985A publication Critical patent/JPS52147985A/en
Publication of JPS5933988B2 publication Critical patent/JPS5933988B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1066Gate region of field-effect devices with PN junction gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/083Anode or cathode regions of thyristors or gated bipolar-mode devices
    • H01L29/0834Anode regions of thyristors or gated bipolar-mode devices, e.g. supplementary regions surrounding anode regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Description

【発明の詳細な説明】 本発明は静電誘導形サイリスタに関する。[Detailed description of the invention] The present invention relates to a static induction thyristor.

スイッチング特性の特に優れたサイリスタとして、近年
、静電誘導形サイリスタが実用化されている。
In recent years, electrostatic induction thyristors have been put into practical use as thyristors with particularly excellent switching characteristics.

その一般的構造は第1図で示すように、格子状あるいは
網目状のP型半導体層1を埋込んでいるN−型半導体層
2の表裏面にそれぞれP゛型半導体層3およびNf型半
導体層4を形成したものである。前記P″4″型半導体
層3、N’I’型半導体層4はそれぞれアノード層、カ
ソード層と称され、この間に電流を流すように、それぞ
れの表面にはアノード電極5およびカソード電極6が形
成されている。
Its general structure is as shown in FIG. 1, where a P-type semiconductor layer 3 and an Nf-type semiconductor layer 3 and an Nf-type semiconductor layer are formed on the front and back surfaces of an N-type semiconductor layer 2 in which a lattice-like or mesh-like P-type semiconductor layer 1 is embedded, respectively. Layer 4 was formed. The P"4" type semiconductor layer 3 and the N'I' type semiconductor layer 4 are called an anode layer and a cathode layer, respectively, and an anode electrode 5 and a cathode electrode 6 are provided on their surfaces so that a current can flow between them. It is formed.

そして前記P型半導体層1はゲート層と称され、ここに
前記カソード電極6に対し負の電圧を印加すると、P型
半導体層1の周囲に空乏層Tが発生し、アノード電極5
、力ソーhンd極6間を流れる電流が制御される。この状
態を示す電圧電流特性は第2図のグラフのようになれ、
縦軸に電流、横軸にアノード電圧をとD、まずゲート層
であるP型半導体層1に電圧を印加しないで、アノード
゛電極5および力ソード電極6間に電流を流すと曲線イ
のようになD1これはP+N−N+型のダイオード特性
と同じものとなる。
The P-type semiconductor layer 1 is called a gate layer, and when a negative voltage is applied to the cathode electrode 6, a depletion layer T is generated around the P-type semiconductor layer 1, and the anode electrode 5
, the current flowing between the power saw poles 6 is controlled. The voltage-current characteristics showing this state are as shown in the graph in Figure 2,
The vertical axis represents the current, and the horizontal axis represents the anode voltage. First, without applying a voltage to the P-type semiconductor layer 1, which is the gate layer, when a current is passed between the anode electrode 5 and the power source electrode 6, the curve A appears. D1 This has the same characteristics as a P+N-N+ type diode.

そして、前記ゲート層1にカソード電極6に対して負の
電圧を印加すると、曲線口のようにあるアノード電圧V
BOに到るまではわずかなもれ電流が流れるにとどまる
が、それ以上の電圧では負性抵抗を示して導通状態にな
る。曲線ハの場合はさらにゲート層1に印加する電圧を
高めた場合である。しかしながら、このような構成から
なる静電誘導形サイリスタはその接合部に卦いて温度上
昇がなされると、阻止電圧VBOが低下し、またわずか
の電圧上昇率(Dv/Dt)でスイツチしてしまうとい
う欠点があり1電力制御用としては不適であつた。
When a negative voltage is applied to the gate layer 1 with respect to the cathode electrode 6, a certain anode voltage V
Only a small amount of leakage current flows until it reaches BO, but if the voltage is higher than that, it exhibits negative resistance and becomes conductive. In the case of curve C, the voltage applied to the gate layer 1 is further increased. However, when the temperature of the electrostatic induction thyristor with such a structure increases at its junction, the blocking voltage VBO decreases and it switches at a small rate of voltage increase (Dv/Dt). This drawback made it unsuitable for single power control.

それ故本発明者は、この欠点を改善した静電誘導形サイ
リスタを提案し、先に出願をした。
Therefore, the present inventor proposed an electrostatic induction thyristor that improved this drawback and filed an application earlier.

すなわち第3図で示すように、ゲート層となるP型半導
体層1が埋込まれたN一型半導体層2上にN型半導体層
8を形成し、この面に例えば格子状のp+型半導体層3
を選択拡散等で形成し、そして前記N型半導体層8卦よ
びP+型半導体層3いずれにも接続されたアノード電極
5を形成したものである。な卦第1図と同符号のものは
同一材料、同一機能を有するものである。このような構
成に卦いて、アノード電極5卦よびカソード電極6間に
、N型半導体層8の横方向抵抗(シート抵抗)に発生す
る電圧降下が、戸型半導体層3とN型半導体層8との接
合部における拡散電位(0.6〜0.9)を越えない程
度の電流を流せば、この電流はN型半導体層8、N一型
半導体層2、N+型半導体層4を流れ、この流れは電圧
が印加されるP型半導体層1から生ずる空乏層によつて
制御される。
That is, as shown in FIG. 3, an N-type semiconductor layer 8 is formed on an N1-type semiconductor layer 2 in which a P-type semiconductor layer 1 serving as a gate layer is buried, and a lattice-shaped p+ type semiconductor is formed on this surface. layer 3
is formed by selective diffusion or the like, and an anode electrode 5 connected to both the N type semiconductor layer 8 and the P+ type semiconductor layer 3 is formed. Items with the same symbols as in Figure 1 are made of the same material and have the same functions. In addition to such a configuration, a voltage drop occurring in the lateral resistance (sheet resistance) of the N-type semiconductor layer 8 between the anode electrode 5 and the cathode electrode 6 is caused by the voltage drop occurring between the door-shaped semiconductor layer 3 and the N-type semiconductor layer 8. If a current that does not exceed the diffusion potential (0.6 to 0.9) at the junction with the N-type semiconductor layer 8, N-type semiconductor layer 2, and N+-type semiconductor layer 4 flows, This flow is controlled by a depletion layer arising from the P-type semiconductor layer 1 to which voltage is applied.

すなわち、N型半導体層8をドレイン層、P型半導体層
1をゲート層、そしてN+型半導体層4をソース層とす
る電界効果型トランジスタFETとまつたく同様な動作
を示すことになる。電界効果型トランジスタは周知のよ
うに、耐圧の温度依存性は少ないものである。そして電
流を増大させ、N型半導体層8の横方向抵抗(シート抵
抗)に発生する電圧降下がP+型半導体層3とN型半導
体層8との接合部に}ける拡散電位を越えた場合、P+
型半導体層3とN型半導体層8の接合部は順方向にバイ
アスされることから、第1図に示す状態とまつたく同様
の動作が行なわれる。つまb1アノード電流が小なる間
(阻止状態)は電界効果型トランジスタFETの動作特
性をもたせ、ある電流値を越えたとき、静電誘導形サイ
リスタの動作特性をもたせることによつて上述した欠点
を除去せしめたものである。このような構成からなる静
電誘導形サイリスタは、一応、従来の課題を解決したも
のであるが、導通状態での電圧降下は一般のサイリスタ
のそれに比較して数倍高いという欠点を有した。したが
つて本発明の目的は耐圧の温度依存性が少なく、かつ導
通状態での電圧降下が小さい静電誘導形サイリスタを提
供するものである。
That is, it exhibits an operation similar to that of a field effect transistor FET in which the N-type semiconductor layer 8 is the drain layer, the P-type semiconductor layer 1 is the gate layer, and the N+-type semiconductor layer 4 is the source layer. As is well known, the withstand voltage of field effect transistors has little dependence on temperature. Then, when the current is increased and the voltage drop generated in the lateral resistance (sheet resistance) of the N-type semiconductor layer 8 exceeds the diffusion potential at the junction between the P+-type semiconductor layer 3 and the N-type semiconductor layer 8, P+
Since the junction between type semiconductor layer 3 and N type semiconductor layer 8 is biased in the forward direction, an operation exactly similar to that shown in FIG. 1 is performed. The shortcomings described above can be overcome by providing the operating characteristics of a field effect transistor FET while the b1 anode current is small (blocking state), and by providing the operating characteristics of a static induction thyristor when the current exceeds a certain value. It has been removed. Although the electrostatic induction thyristor having such a configuration has solved the conventional problems, it has the disadvantage that the voltage drop in the conductive state is several times higher than that of a general thyristor. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an electrostatic induction thyristor whose breakdown voltage is less dependent on temperature and whose voltage drop in a conductive state is small.

この目的を達成するために本発明は、ゲート層を内在す
るNO))型半導体層の一面に選択的に形成されたP〜
型半導体層と、前記P〜型半導体層とN(P)型半導体
層とを接続して形成されたアノード電極と、前記N(P
)型半導体層の他の面に形成されたカソード層と、前記
カソード層とN(P)型半導体層間で前記ゲート層の下
方部を除く領域に形成されたP〜型半導体層とからなる
ものである。
In order to achieve this object, the present invention provides a structure in which P--
type semiconductor layer, an anode electrode formed by connecting the P~ type semiconductor layer and the N(P) type semiconductor layer, and the N(P) type semiconductor layer;
)-type semiconductor layer, and a P~-type semiconductor layer formed in a region between the cathode layer and the N(P)-type semiconductor layer except for the lower part of the gate layer. It is.

以下、実施例を用いて本発明を説明する。第4図は本発
明に係る静電誘導形サイリスタの一実施例を示す断面図
である。
The present invention will be explained below using Examples. FIG. 4 is a sectional view showing an embodiment of the electrostatic induction thyristor according to the present invention.

同図に卦いて第3図と同符号のものは同一材料、同一機
能を有するものでありNN一型半導体層2卦よびN+型
半導体層4との界面に、例えば格子状あるいは網目状の
P型半導体層9を埋込んだものである。な卦このP型半
導体層9はp+型半導体層3の下方部にくるように配設
され、しかもP型半導体層9が形成されていない領域上
にはゲート層となるP型半導体層1が配設されるように
なつている。このようにする理由は、アノード電極5か
ら直接N型半導体層8卦よびN′″型半導体層2を横切
る電流の容量減少訃よび漏れ電流の発生を防止すること
にある。このような構成に卦いて、アノード電極5に若
干の正電圧、カンード電極6に負電圧、またこのカソー
ド1極6に対してゲート層であるP形半導体層1に負電
圧を印加する場合、ゲート層の周囲には空乏層が発生し
、阻止状態となる。
In this figure, the same reference numerals as those in FIG. 3 are made of the same material and have the same function. A type semiconductor layer 9 is embedded therein. This P-type semiconductor layer 9 is disposed below the p+-type semiconductor layer 3, and the P-type semiconductor layer 1, which will become a gate layer, is provided on the region where the P-type semiconductor layer 9 is not formed. It is starting to be installed. The reason for doing this is to prevent a decrease in the current capacity and generation of leakage current that directly crosses the N-type semiconductor layer 8 and the N''-type semiconductor layer 2 from the anode electrode 5. In addition, when applying a slight positive voltage to the anode electrode 5, a negative voltage to the cando electrode 6, and a negative voltage to the P-type semiconductor layer 1 which is the gate layer with respect to the cathode 1 electrode 6, the voltage around the gate layer increases. A depletion layer is generated and a blocking state occurs.

前記カソード電圧を徐々に高くしていくと、静電誘導現
象により1前記空乏層の電位が引き下げられることから
、アノード電極5卦よびカソード電極6間にわずかの電
流が流れる。この電流が少の場合には第3図で説明した
ように、静電誘導サイリスタはP型半導体層9となんら
関係なく電界効果形トランジスタFETと同様な特性を
呈することから、酎圧の温度依存性は少ない。そして前
記空乏層の電位が引き下げられることにより1アノード
電極5からの電流が増大し、N型半導体層8の横方向抵
抗(シート抵抗)に発生する電圧降下がP+型半導体層
3とN型半導体層8との接合部に卦ける拡散電位を越え
た場合、電流はp+型半導体層3を通じてN型半導体層
8へ流れ込むことになる。
When the cathode voltage is gradually increased, the potential of the depletion layer 1 is lowered due to the electrostatic induction phenomenon, so that a small amount of current flows between the anode electrode 5 and the cathode electrode 6. When this current is small, as explained in FIG. 3, the electrostatic induction thyristor exhibits the same characteristics as the field effect transistor FET regardless of the P-type semiconductor layer 9, so the temperature dependence of the electrostatic induction thyristor is There is little sex. As the potential of the depletion layer is lowered, the current from the first anode electrode 5 increases, and the voltage drop generated in the lateral resistance (sheet resistance) of the N-type semiconductor layer 8 is reduced between the P+ type semiconductor layer 3 and the N-type semiconductor layer 8. If the diffusion potential at the junction with the layer 8 is exceeded, the current will flow into the N-type semiconductor layer 8 through the p + -type semiconductor layer 3 .

そしてこの電流は正数キヤリア(正孔)が大部分で、拡
散現象によりゲート層周囲に発生している空乏層内へ入
る。この空乏層は少数キヤリア(正孔)を吸収する方向
の電界が加わつていることから、さらに流れ込みそして
これがさらにゲート層の逆電圧を引き下げる結果となる
。そしてアノード電極5からの電流は増大し、ターンオ
ンに至る。次に、この少数キヤリア(正孔)はP型半導
体層3中に入D込む。このP型半導体層9をベース層、
N+型半導体層4をエミツタ層とするバイポーラトラン
ジスタを考えた場合、周知のようにP型半導体層9に流
れ込んだ少数キヤリア(正孔)は、多量の電子をN+型
半導体層4から注入させることとなる。そしてP型半導
体層9を拡散で通過し、N一型半導体層2卦よびN型半
導体層8に入D込み、さらにP+型半導体層3からの正
孔の注入をさそう。したがつてPNPN構造のサイリス
タと同じ特性を有し、導通状態での電圧降下を小さくす
ることができる。本実施例ではN一型半導体層2の上面
にN型半導体層8を形成し、この面にP+型半導体層3
を選択的に形成しているものであるが、このP+型半導
体層3は直接N一型半導体層2面に形成してもよいもの
である。この場合、各p+型半導体層3間の距離を少と
し密に分布させれば同様の効果を有するものである。さ
らに本実施例ではゲート層であるP型半導体層1は格子
状あるいは網目状にし、N一型半導体層2に埋込ませた
構成にしているものであるが、第5図に示すように、N
′″型半導体層2の他面にゲート層となる格子状あるい
は網目状のP型半導体層1を形成し、これらに囲まれた
領域にカソード層となるN+型半導体層4を形成した静
電誘導形サイリスタに卦いて、前記N+型半導体層4と
N一型半導体層2間にP型半導体層9を形成したもので
もよい。
The majority of this current is positive carriers (holes), which enter the depletion layer generated around the gate layer due to a diffusion phenomenon. Since an electric field is applied to this depletion layer in the direction of absorbing minority carriers (holes), the depletion layer further flows into the depletion layer, which further lowers the reverse voltage of the gate layer. The current from the anode electrode 5 increases and turns on. Next, these minority carriers (holes) enter the P-type semiconductor layer 3. This P-type semiconductor layer 9 is used as a base layer,
When considering a bipolar transistor in which the N+ type semiconductor layer 4 is an emitter layer, as is well known, the minority carriers (holes) flowing into the P type semiconductor layer 9 cause a large amount of electrons to be injected from the N+ type semiconductor layer 4. becomes. The holes then diffuse through the P-type semiconductor layer 9, enter the N1-type semiconductor layer 2 and the N-type semiconductor layer 8, and further induce hole injection from the P+-type semiconductor layer 3. Therefore, it has the same characteristics as a thyristor with a PNPN structure, and the voltage drop in the conductive state can be reduced. In this embodiment, an N-type semiconductor layer 8 is formed on the upper surface of the N1-type semiconductor layer 2, and a P+-type semiconductor layer 3 is formed on this surface.
Although the P+ type semiconductor layer 3 is selectively formed, the P+ type semiconductor layer 3 may be formed directly on the N1 type semiconductor layer 2. In this case, the same effect can be obtained if the distance between each p+ type semiconductor layer 3 is shortened and the layers are distributed densely. Furthermore, in this embodiment, the P-type semiconductor layer 1, which is the gate layer, has a lattice-like or mesh-like structure and is embedded in the N-type semiconductor layer 2, as shown in FIG. N
A lattice-like or mesh-like P-type semiconductor layer 1 is formed on the other surface of the ``''-type semiconductor layer 2 to become a gate layer, and an N+-type semiconductor layer 4 to become a cathode layer is formed in a region surrounded by these. In addition to the inductive thyristor, a P-type semiconductor layer 9 may be formed between the N+-type semiconductor layer 4 and the N1-type semiconductor layer 2.

な卦第4図と同符号のものは同一材料、同一機能を有す
るものである。本実施例で述べた半導体層は全て逆導電
型にしたものであつてもよいことはもちろんである。
Items with the same symbols as in Figure 4 are made of the same material and have the same functions. Of course, all the semiconductor layers described in this embodiment may be of opposite conductivity type.

以上述べたように本発明に係る静電誘導形サイリスタに
よれば、耐圧の温度依存性が少なく、かつ導通状態での
電圧降下が少ないものが得られる。
As described above, according to the electrostatic induction thyristor according to the present invention, it is possible to obtain one in which the temperature dependence of the withstand voltage is small and the voltage drop in the conductive state is small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図卦よび第2図は従来の静電誘導型サイリスタの一
例を示す説明図卦よびその特性図、第3図は従来の静電
誘導型サイリスタの他の例を示す断面図、第4図は本発
明による静電誘導型サイリスタの一実施例を示す断面図
、第5図は本発明による静電誘導型サイリスタの他の実
施例を示す断面図である。 1・・・P型半導体層(ゲート層)、2・・・N一型半
導体層、3・・・P+型半導体層、4・・・N+型半導
体層、5・・・アノード電極、6・・・カソード電極、
7・・・空乏層、8・・・N型半導体層、9・・・P型
半導体層。
Figures 1 and 2 are explanatory diagrams and characteristic diagrams showing an example of a conventional electrostatic induction thyristor, Figure 3 is a sectional view showing another example of a conventional electrostatic induction thyristor, and Figure 4 is a cross-sectional diagram showing another example of a conventional electrostatic induction thyristor. The figure is a sectional view showing one embodiment of the electrostatic induction thyristor according to the invention, and FIG. 5 is a sectional view showing another embodiment of the electrostatic induction thyristor according to the invention. DESCRIPTION OF SYMBOLS 1...P type semiconductor layer (gate layer), 2...N type semiconductor layer, 3...P+ type semiconductor layer, 4...N+ type semiconductor layer, 5...Anode electrode, 6...・Cathode electrode,
7... Depletion layer, 8... N type semiconductor layer, 9... P type semiconductor layer.

Claims (1)

【特許請求の範囲】 1 ゲート層を内在するN(P)型半導体層の一面に選
択的に形成されたP^+(N^+)型半導体層と、前記
P^+(N^+)型半導体層とN(P)型半導体層とを
接続して形成されたアノード電極と、前記N(P)型半
導体層の他の面に形成されたカソード層と、前記カソー
ド層とN(P)型半導体層内で前記ゲート層の下方部を
除く領域に形成されたP(N)型半導体層とからなるこ
とを特徴とする静電誘導形サイリスタ。 2 前記N(P)型半導体層はN^−(P^−)型半導
体層とN(P)型半導体層との二重からなり、P(N)
型半導体層はN(P)型半導体層面に形成されている特
許請求の範囲第1項記載の静電誘導形サイリスタ。 3 格子状あるいは網目状のゲート層をN(P)型半導
体層中に介在させた特許請求の範囲第1項記載の静電誘
導形サイリスタ。 4 格子状あるいは網目状のゲート層に囲まれた領域下
に選択的に形成されたP(N)型半導体層を有する特許
請求の範囲第3項記載の静電誘導形サイ リスタ。 5 格子状あるいは網目状のゲート層に囲まれた領域上
に選択的に形成されたP^+(N^+)型半導体層を有
する特許請求の範囲第3項記載の静電誘導形サイリスタ
。 6 N(P)型半導体層裏面に格子状に形成されたゲー
ト層を有する特許請求の範囲第1項記載の静電誘導形サ
イリスタ。 7 格子状に形成されたゲート層内の領域にカソード層
が形成された特許請求の範囲第6項記載の静電誘導形サ
イリスタ。 8 N(P)型半導体層面に格子状に形成されたカソー
ド層を有する特許請求の範囲第1項記載の静電誘導形サ
イリスタ。 9 格子状に形成されたカソード層内の領域にゲート層
が形成された特許請求の範囲第8項記載の静電誘導形サ
イリスタ。
[Scope of Claims] 1. A P^+ (N^+) type semiconductor layer selectively formed on one surface of the N(P) type semiconductor layer including the gate layer, and the P^+ (N^+) an anode electrode formed by connecting an N(P) type semiconductor layer and an N(P) type semiconductor layer; a cathode layer formed on the other surface of the N(P) type semiconductor layer; A static induction thyristor comprising: a P(N) type semiconductor layer formed in a region of the ) type semiconductor layer excluding the lower part of the gate layer. 2 The N(P) type semiconductor layer is composed of a double layer of an N^-(P^-) type semiconductor layer and an N(P) type semiconductor layer, and has a P(N) type semiconductor layer.
2. The electrostatic induction thyristor according to claim 1, wherein the type semiconductor layer is formed on the surface of the N(P) type semiconductor layer. 3. The electrostatic induction thyristor according to claim 1, wherein a lattice-like or mesh-like gate layer is interposed in an N(P) type semiconductor layer. 4. The electrostatic induction thyristor according to claim 3, comprising a P(N) type semiconductor layer selectively formed under a region surrounded by a lattice-like or mesh-like gate layer. 5. The electrostatic induction thyristor according to claim 3, comprising a P^+ (N^+) type semiconductor layer selectively formed on a region surrounded by a grid-like or mesh-like gate layer. 6. The electrostatic induction thyristor according to claim 1, which has a gate layer formed in a lattice pattern on the back surface of the N(P) type semiconductor layer. 7. The electrostatic induction thyristor according to claim 6, wherein the cathode layer is formed in a region within the gate layer formed in a lattice shape. 8. The electrostatic induction thyristor according to claim 1, which has a cathode layer formed in a lattice pattern on the surface of the N(P) type semiconductor layer. 9. The electrostatic induction thyristor according to claim 8, wherein a gate layer is formed in a region within the cathode layer formed in a lattice shape.
JP6488576A 1976-06-02 1976-06-02 Electrostatic induction thyristor Expired JPS5933988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6488576A JPS5933988B2 (en) 1976-06-02 1976-06-02 Electrostatic induction thyristor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6488576A JPS5933988B2 (en) 1976-06-02 1976-06-02 Electrostatic induction thyristor

Publications (2)

Publication Number Publication Date
JPS52147985A JPS52147985A (en) 1977-12-08
JPS5933988B2 true JPS5933988B2 (en) 1984-08-20

Family

ID=13270992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6488576A Expired JPS5933988B2 (en) 1976-06-02 1976-06-02 Electrostatic induction thyristor

Country Status (1)

Country Link
JP (1) JPS5933988B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355723Y2 (en) * 1983-10-20 1991-12-12

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7813285L (en) * 1977-12-23 1979-06-24 Gen Electric FIELD-CONTROLLED, SLICKABLE THURISTOR AND FIELD POWER TRANSISTOR OF LOCK LAYER TYPE AND KIT FOR MANUFACTURE THEREOF
JPS59207640A (en) * 1983-05-11 1984-11-24 Hitachi Ltd Semiconductor device
JPS6033460U (en) * 1983-08-11 1985-03-07 三洋電機株式会社 Electrostatic induction semiconductor device
JPS62247567A (en) * 1986-08-21 1987-10-28 Semiconductor Res Found Electrostatic induction thyristor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0355723Y2 (en) * 1983-10-20 1991-12-12

Also Published As

Publication number Publication date
JPS52147985A (en) 1977-12-08

Similar Documents

Publication Publication Date Title
JP3321185B2 (en) High voltage semiconductor device
US4646117A (en) Power semiconductor devices with increased turn-off current ratings and limited current density in peripheral portions
IE52758B1 (en) Gate enhanced rectifier
US4611235A (en) Thyristor with turn-off FET
JPH0126187B2 (en)
JPH04283968A (en) Insulating gate type bipolar transistor
JPH0534834B2 (en)
JPS5940303B2 (en) semiconductor switching device
GB2305777A (en) Base resistance controlled thyristor structure with high density layout for increased current capacity
JPH0560263B2 (en)
JPS5933988B2 (en) Electrostatic induction thyristor
JPH0465552B2 (en)
CN112928155B (en) Groove gate super junction IGBT of floating p column
JPH06112494A (en) Insulated gate bipolar transistor
JPH0612823B2 (en) Bidirectional power high speed MOSFET device
JPH0888357A (en) Lateral igbt
JP2782638B2 (en) MOS control thyristor
JPS6153877B2 (en)
JPS6124832B2 (en)
US5005065A (en) High current gate turn-off thyristor
JPS5931869B2 (en) Electrostatic induction thyristor
JPS6257250A (en) Semiconductor device
JP2856257B2 (en) P-channel insulated gate bipolar transistor
JPH042169A (en) Horizontal type conductivity modulation semiconductor device
CN112652658B (en) Trench gate super junction IGBT (insulated Gate Bipolar transistor) with isolated p-top region