JPS60925B2 - Method for manufacturing oxide semiconductor material for thermistor - Google Patents

Method for manufacturing oxide semiconductor material for thermistor

Info

Publication number
JPS60925B2
JPS60925B2 JP490580A JP490580A JPS60925B2 JP S60925 B2 JPS60925 B2 JP S60925B2 JP 490580 A JP490580 A JP 490580A JP 490580 A JP490580 A JP 490580A JP S60925 B2 JPS60925 B2 JP S60925B2
Authority
JP
Japan
Prior art keywords
thermistor
oxide semiconductor
semiconductor material
manufacturing
manufacturing oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP490580A
Other languages
Japanese (ja)
Other versions
JPS56101706A (en
Inventor
拓興 畑
嘉浩 松尾
孝之 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP490580A priority Critical patent/JPS60925B2/en
Priority to US06/201,441 priority patent/US4324702A/en
Priority to CA000363406A priority patent/CA1147945A/en
Priority to DE8080303866T priority patent/DE3069423D1/en
Priority to EP80303866A priority patent/EP0028510B1/en
Publication of JPS56101706A publication Critical patent/JPS56101706A/en
Publication of JPS60925B2 publication Critical patent/JPS60925B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 本発明は、酸化マンガンを主成分とし、特に酸化ジルコ
ニウムを含有することを特徴とした負の抵抗温度係数を
有するサーミスタ用酸化物半導体材料の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an oxide semiconductor material for a thermistor, which has a negative temperature coefficient of resistance and is characterized by containing manganese oxide as a main component and, in particular, containing zirconium oxide.

従来、負の抵抗温度係数を有する市販の汎用サーミスタ
材料の製造方法は、他のセラミックスの製造工程と同様
、湿式混合・仮焼・湿式粉砕が−般的である。
Conventionally, the manufacturing method of commercially available general-purpose thermistor materials having a negative temperature coefficient of resistance generally involves wet mixing, calcination, and wet pulverization, similar to the manufacturing process of other ceramics.

また、不純物の混入を極度に嫌う場合には、溶液法が導
入されている。上記湿式混合および湿式粉砕に使用され
る玉石はメノウ玉石が一般的である。また、酸化ジルコ
ニウムを含有し、酸化マンガンを主成分とするサーミス
タ用酸化物組成としては「Mn−Z「系、Co−Zr系
、Ni−Zr系、Cu−Zr系の2成分系がよく知られ
ている〔■日立製作所、中央研究所創立二十周年記念論
文集、P30〜40昭和37年〕。
In addition, when contamination with impurities is extremely objectionable, a solution method has been introduced. Agate cobbles are generally used as the cobblestones for the above-mentioned wet mixing and wet grinding. Furthermore, as oxide compositions for thermistors containing zirconium oxide and manganese oxide as the main component, two-component systems such as "Mn-Z" system, Co-Zr system, Ni-Zr system, and Cu-Zr system are well known. [■Hitachi, Ltd., Collected Papers Commemorating the 20th Anniversary of the Central Research Institute, P30-40, 1960].

本発明は、Nm−Niスピネルに鉄もしくはクロムおよ
び鉄とクロムを含有させることにより比抵抗をコントロ
ールし、しかも酸化ジルコニウム含有効果として常温比
抵抗のわりにB定数が大きく、安定しているMn−Ni
−Fe−Zr系もしくはMn−Ni−Cr−Zr系ある
いはMn−Ni−Fe−Cr−Zr系酸化物材料の製造
方法で、ジルコニアボールを玉石として湿式混合・湿式
粉砕を行い、Mn−Ni−Fe系もしくはMn−Nj−
Cr系あるいはMn−Ni−Fe−Cr系材料にZrを
ジルコニアボールからの摩耗により添加することを特徴
とする。
The present invention controls the resistivity by containing iron or chromium or iron and chromium in Nm-Ni spinel, and furthermore, as an effect of containing zirconium oxide, the B constant is large compared to the resistivity at room temperature, making the Mn-Ni spinel stable.
- A method for producing Fe-Zr-based, Mn-Ni-Cr-Zr-based, or Mn-Ni-Fe-Cr-Zr-based oxide materials, in which wet mixing and wet pulverization are performed using zirconia balls as cobblestones, and Mn-Ni- Fe-based or Mn-Nj-
It is characterized in that Zr is added to the Cr-based or Mn-Ni-Fe-Cr-based material by abrasion from the zirconia balls.

以下、実施例を挙げて説明する。Examples will be described below.

市販の原料MhC03,NOおよびCr203をMn三
Ni:Cr=81.5:17.5:1.0原子%になる
ように配合し、これをl iMhendmdbnsty
pe(アメリカ、ノートン社製)のジルコニアボールを
玉石としてボールミルで湿式混合し、これらのスラリー
を乾燥後、800qoの温度で仮擁し「 これらの仮焼
物を上記のボールミルで湿式粉砕混合を行った。
Commercially available raw materials MhC03, NO and Cr203 were blended so that Mn3Ni:Cr=81.5:17.5:1.0 at%, and this was mixed with l iMhendmdbnsty.
PE (manufactured by Norton, Inc., USA) were used as cobblestones for wet mixing in a ball mill, and after drying these slurries, they were temporarily held at a temperature of 800 qo and wet-pulverized and mixed these calcined products in the above ball mill.

こうして得られたスラリーを乾燥し「半導体材料を得る
。ここで、粉砕条件を変えることにより添加するZd量
をコントロールできる。下表にボールミルの回転数およ
び粉砕時間を変えた場合の嫌絹体としての最終組成比を
示す。この最終組成比は、鱗結体を蛍光X線解析を行い
求めた。*は配合組成比Mn:Ni:Cr:Zr〒76
.5:17.5:1.0:5.0(原子%)上記表に示
すように、Zrを含有させる系で、しかも徴量添加が必
要な場合に最も適している。
The slurry thus obtained is dried to obtain a "semiconductor material." Here, the amount of Zd added can be controlled by changing the grinding conditions. This final composition ratio was determined by fluorescent X-ray analysis of the scale bodies. * indicates the compound composition ratio Mn:Ni:Cr:Zr〒76
.. 5:17.5:1.0:5.0 (atomic %) As shown in the table above, it is most suitable for systems that contain Zr and require addition of features.

従来のようにメノウ玉石を用いた場合には、玉石からS
P2,Ca○が混入し「特性上に大きな影響を与えt製
造上の再現性にも乏しい。また、溶液法に転換するには
設備面等の投資が必要である。以上のように本発明の製
造方法を用いれば、従来通りの設備を使用でき、且つ特
性の再現性が得られる点で産業上の効果は大きい。また
「請求の範囲の中で限定したサーミスタ組成の限定理由
は、既に市販されている汎用サーミスタの特性値(比抵
抗10Q伽〜lh40伽「 B定数は100びK〜60
0びKの範囲)からなるものである。
When using agate boulders as in the past, S
The contamination of P2 and Ca○ has a large effect on the properties and poor reproducibility in manufacturing.In addition, investment in equipment is required to convert to a solution method.As described above, the present invention If the manufacturing method is used, conventional equipment can be used and the characteristics can be reproducible, which has a great industrial effect. Characteristic values of commercially available general-purpose thermistors (resistivity: 10Q ~ 1h40; B constant: 100 and K ~ 60
0 to K).

Claims (1)

【特許請求の範囲】[Claims] 1 金属酸化物の焼結混合体において、その金属元素が
マンガン94.6〜55原子%、ニツケル5〜25原子
%、鉄およびクロムからなる群から選択した少なくとも
1種以上の元素を0.3〜5原子%、およびジルコニウ
ム0.3〜10原子%を含有し、合計少なくとも4種以
上の金属元素を総合計100原子%含有するサーミスタ
用酸化物半導体を得るために、粉末製造工程でジルコニ
アボールを玉石とした湿式混合・湿式粉砕工程を行なう
ことを特徴とするサーミスタ用酸化物半導体材料の製造
方法。
1. In a sintered mixture of metal oxides, the metal element is 94.6 to 55 atom% of manganese, 5 to 25 atom% of nickel, at least one element selected from the group consisting of iron and chromium. In order to obtain an oxide semiconductor for a thermistor containing 100 at% of at least four or more metal elements, including 0.3 to 10 at% of zirconium and 0.3 to 10 at% of zirconium, zirconia balls are produced in the powder manufacturing process. A method for producing an oxide semiconductor material for a thermistor, the method comprising performing a wet mixing/wet grinding process using cobblestones.
JP490580A 1979-11-02 1980-01-18 Method for manufacturing oxide semiconductor material for thermistor Expired JPS60925B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP490580A JPS60925B2 (en) 1980-01-18 1980-01-18 Method for manufacturing oxide semiconductor material for thermistor
US06/201,441 US4324702A (en) 1979-11-02 1980-10-28 Oxide thermistor compositions
CA000363406A CA1147945A (en) 1979-11-02 1980-10-28 Oxide thermistor compositions
DE8080303866T DE3069423D1 (en) 1979-11-02 1980-10-30 Oxide thermistor compositions and thermistors containing them
EP80303866A EP0028510B1 (en) 1979-11-02 1980-10-30 Oxide thermistor compositions and thermistors containing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP490580A JPS60925B2 (en) 1980-01-18 1980-01-18 Method for manufacturing oxide semiconductor material for thermistor

Publications (2)

Publication Number Publication Date
JPS56101706A JPS56101706A (en) 1981-08-14
JPS60925B2 true JPS60925B2 (en) 1985-01-11

Family

ID=11596659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP490580A Expired JPS60925B2 (en) 1979-11-02 1980-01-18 Method for manufacturing oxide semiconductor material for thermistor

Country Status (1)

Country Link
JP (1) JPS60925B2 (en)

Also Published As

Publication number Publication date
JPS56101706A (en) 1981-08-14

Similar Documents

Publication Publication Date Title
Pullar et al. Novel aqueous sol–gel preparation and characterization of barium M ferrite, BaFe12O19 fibres
JPH082962A (en) Sintering ceramics for highly stable thermistor and its preparation
JP3865970B2 (en) Porcelain composition
JPS6156184B2 (en)
JP3365072B2 (en) Ferrite material and method for producing the same
JPS60925B2 (en) Method for manufacturing oxide semiconductor material for thermistor
JPS5933242B2 (en) Manufacturing method of oxide semiconductor material for thermistor
JP3211536B2 (en) Method for manufacturing a thermistor element
JP2583935B2 (en) Oxide semiconductor for thermistor
JP2578804B2 (en) Oxide semiconductor for thermistor
JP2578807B2 (en) Oxide semiconductor for thermistor
JPH06251928A (en) Ferrite resin
JP3391190B2 (en) Thermistor composition
JPH08104561A (en) Oxide magnetic material
JPH0259462A (en) Composition for thermistor
JPS58155701A (en) Method of producing oxide semiconductor for thermistor
SU933248A1 (en) Method of producing litium-manganese ferrites
JPS6013285B2 (en) Oxide semiconductor for thermistor
JPS63308302A (en) Oxide semiconductor for thermistor
JPH0578921B2 (en)
JPS63296304A (en) Oxide semiconductor for thermistor
JPH043644B2 (en)
JPS61236653A (en) Chromium nitride-zirconia base ceramics and manufacture
JPS59107968A (en) Manufacture of zirconia ceramics
JPH0543161B2 (en)