JPS6089748A - Ultrasonic flaw detector - Google Patents

Ultrasonic flaw detector

Info

Publication number
JPS6089748A
JPS6089748A JP58196224A JP19622483A JPS6089748A JP S6089748 A JPS6089748 A JP S6089748A JP 58196224 A JP58196224 A JP 58196224A JP 19622483 A JP19622483 A JP 19622483A JP S6089748 A JPS6089748 A JP S6089748A
Authority
JP
Japan
Prior art keywords
wave
flaw detection
creeping
probe
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58196224A
Other languages
Japanese (ja)
Other versions
JPH0146826B2 (en
Inventor
Takeshi Yagi
健 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP58196224A priority Critical patent/JPS6089748A/en
Publication of JPS6089748A publication Critical patent/JPS6089748A/en
Publication of JPH0146826B2 publication Critical patent/JPH0146826B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/041Analysing solids on the surface of the material, e.g. using Lamb, Rayleigh or shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/056Angular incidence, angular propagation

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To perform flaw detection at the dead zone part of corner part of a material to be detected by making a creeping wave incident from the surface of the material to be detected, and receiving its reflected wave. CONSTITUTION:A flaw detector 6 is equipped with a longitudinal critical angle ultrasonic wave (creeping wave) probe 5 and the creeping wave 8 is emitted to the material 1 to be detected. In this case, the wave 8 is emitted from the surface of the material 1 to a corner part 7. The creeping wave incident to the material 1 to be detected propagates the material 1 toward the corner part 7 along its section-directional surface to perform the flaw detection. Consequently, the flaw detection of the corner part which is improssible by a conventional method is attained. The creeping wave oscillaters as a compressional wave parallel to the traveling direction, so the influence of a water drop, etc., on a propagation path is eliminated.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、角ビレット鋼材外どの角隅部をもつ断面形状
の被検材の内部欠陥を検出するための超音波探傷装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an ultrasonic flaw detection device for detecting internal defects in a test material having a cross-sectional shape having any corner portion other than a square billet steel material.

〔従来技術〕[Prior art]

鋼材の表層或いは内部欠陥の超音波探傷は、従来より被
検材表面から真下に超音波を入れる垂直法、表面から屈
折を利用して斜めに入れ横波を使用する斜角法、或いは
表面波を使用して表層部のみを探傷する表面波法りどの
方式を個々に或いは組合わせて行なっている。
Ultrasonic flaw detection for surface or internal defects in steel materials has conventionally been carried out using the vertical method, in which ultrasonic waves are applied directly below the surface of the material to be inspected, the oblique method, in which ultrasonic waves are applied obliquely from the surface using refraction, and the surface wave is used. The surface wave method, which detects flaws only in the surface layer, is used individually or in combination.

しかしながらこれら従来方式の超音波探傷では、被検材
の断面形状に角隅部があると、被検材外表面上での探触
子プローブ配置場所の制約がら探傷不能領埴、いわゆる
不感帯が生じ、各方式をいかに組合わせても探傷できな
い部位が残るという不都合がある。例えば被検材として
角ビレツト鋼材を例にとると、第1図(alに示すよう
に角ビレット1の横断面方向に表面からグローブ2a[
よって真下へ向けて超音波3aを発射して行なう垂直法
では、同図(blに斜線部4aで示すように角ビレツト
横断面全周に亘る表面及び表皮下と四隅コーナ部に不感
帯が生じ、また82図(alに示すように表面からプロ
ーブ2bによって斜めに超音波6bを入れて行なう斜角
法では、同図rb)K g:Jr 8部4bで示すよう
に四隅コーナ部および中心部に不感帯が生じ、さらに第
6図(alに示すように表面波3cをプローブ2cから
発射して表面探傷を行なう表面波法では、同図(clに
示すように斜線部4cで示した内部を除く全周の表面欠
陥の検出ができるものの、超音波3cの進行経路上に水
滴等が存在するとそれによる著るしい減衰や疑似エコー
によって誤検出を招き、安定な探傷が困難であるという
欠点が避けられない。
However, in these conventional ultrasonic flaw detection methods, if the cross-sectional shape of the material to be tested has corners, a so-called dead zone, which is impossible to detect, occurs due to restrictions on the location of the probe on the outer surface of the material to be tested. However, no matter how the various methods are combined, there are still parts that cannot be detected. For example, if we take a square billet steel material as an example of a material to be inspected, as shown in FIG. 1 (al), the globe 2a [
Therefore, in the vertical method in which the ultrasonic waves 3a are emitted directly downward, a dead zone occurs on the surface of the entire circumference of the square billet cross section, under the epidermis, and at the four corners, as shown by the shaded area 4a in the same figure (bl). In addition, as shown in Fig. 82 (al), in the bevel method in which the ultrasonic wave 6b is applied obliquely from the surface with the probe 2b, the four corners and the central part are A dead zone occurs, and in the surface wave method in which surface flaw detection is performed by emitting a surface wave 3c from the probe 2c as shown in Fig. 6 (al), the area shown by the shaded area 4c is excluded as shown in Fig. 6 (cl). Although it is possible to detect surface defects around the entire circumference, if there are water droplets, etc. on the path of the ultrasonic wave 3c, it will cause significant attenuation and false echoes, leading to false detection, and avoiding the disadvantage that stable flaw detection is difficult. I can't do it.

〔発明の概要〕[Summary of the invention]

本発明はこのような従来方式の欠点を無くすためになさ
れたもので、垂直法と斜角法の併用方式でも尚残存する
ような表面を含む四隅コーナ部の不感帯部分を探傷可能
で、しかも表面の水温等の存在によって悪影響を受けず
、垂直法や斜角法と組合わせて用いることさえ可能な超
音波探傷装置を提供しようとするものである。
The present invention has been made to eliminate these drawbacks of the conventional method, and is capable of detecting dead zones at the four corners, including the surfaces that still remain even with the combination of the vertical method and the oblique method. The present invention aims to provide an ultrasonic flaw detection device that is not adversely affected by the presence of water temperature, etc., and can even be used in combination with the vertical method or the oblique method.

すなわち本発明の超音波探傷装置の特徴とするところは
、角隅部をもつ断面形状の被検材に対して表面から縦波
臨界角超音波(クリーピングウェーブ)を前記断面方向
に入射してその反射波から被検材角隅部の欠陥を検出す
るクリーピングウェーブ探傷系を備えた点にある。
In other words, the feature of the ultrasonic flaw detection device of the present invention is that longitudinal critical angle ultrasonic waves (creeping waves) are incident on the surface of a test material having a cross-sectional shape with corners in the cross-sectional direction. It is equipped with a creeping wave flaw detection system that detects defects in the corners of the test material from the reflected waves.

本発明で探傷に用いる縦波臨界角超音波(クリーピング
ウェーブ) r、I’、i 4図に示すように入射角θ
で境界面に入射する縦波の屈折角90度付近においてそ
の最大エネルギーが得られ、入射材質音速C1,屈折材
質音速c2において前記入射角。は次式で与えられる。
Longitudinal wave critical angle ultrasonic wave (creeping wave) used for flaw detection in the present invention r, I', i Incident angle θ as shown in Figure 4
The maximum energy is obtained near the refraction angle of 90 degrees of the longitudinal wave incident on the boundary surface, and the incident angle is at the sound speed C1 of the incident material and the sound speed C2 of the refracting material. is given by the following equation.

θ= s in−” (Cs/Cz ) ”’ (1)
今、−例として入射材に通常の有機ガブス(cl= 2
720 mlB )を使用した場合の鋼材(Cz=59
00m/s ) 中へのクリーピングウェーブ発射条件
、すなわち入射角θは、前記(1)式より約27.4度
となる。この時、鋼材中には極〈わずかのエネルギーで
屈折角約36度の屈折横波も伝播するが、殆んどの伝播
波のエネルギーは上記クリーピングウェーブで占められ
ている。
θ=s in-” (Cs/Cz) ”’ (1)
Now - as an example, if the incident material is a normal organic gas (cl = 2
720 mlB) steel material (Cz=59
00 m/s) The creeping wave emission condition, that is, the incident angle θ, is approximately 27.4 degrees from the above equation (1). At this time, a refracted transverse wave with a refraction angle of about 36 degrees also propagates in the steel with very little energy, but most of the energy of the propagating wave is occupied by the creeping wave.

クリーピングウェーブは、縦波斜角の臨界角ウェーブと
17て被検材表面を含む皮下近傍を主エネルギーが伝播
し、表面下伝播深では、表向波のそれが実用上1波長程
度であるのに対し、数層から十数口にも達する。また伝
播経路中の材料粒子の振動方向は、表面波では材料表面
で楕円回転運動するのに対し、クリ−ピンクウェーブで
は拐科表面に沿って超音波進行方向に平行な疎密波とし
て振動する。このため、表面波においては超音波伝播経
路上に存在する水膜や水滴等によってエネルギーが著る
しく減衰され、同時に疑似エコーを生じたりするのに対
し、クリーピングウェーブではこれらの影響をほとんど
受けること々(、安定な状態で皮下深層部までの探傷が
可能である。このように探傷に先立って被検材表面の水
除去処置などを必要としない点は表面波法に比べて極め
て有利な点といえる。寸た垂直法および斜角法のいずれ
によっても探傷不可能な部位の探傷が達成できるので、
これら各法と併用して被検材断面の全壊を探傷すること
が可能となる。
A creeping wave is a critical angle wave with a longitudinal wave oblique angle.17 The main energy propagates near the subcutaneous area, including the surface of the specimen, and at the subsurface propagation depth, that of the surface wave is practically one wavelength. On the other hand, it can range from several layers to more than a dozen mouths. In addition, in the case of a surface wave, the material particles in the propagation path vibrate in an elliptical rotation motion on the material surface, whereas in the case of a creeping wave, they vibrate along the particle surface as a compressional wave parallel to the direction in which the ultrasonic wave travels. For this reason, in surface waves, the energy is significantly attenuated by water films and water droplets that exist on the ultrasonic propagation path, and at the same time generates false echoes, whereas in creeping waves, the energy is largely attenuated by these effects. It is possible to detect flaws deep under the skin in stable conditions.This method has an extremely advantageous feature over the surface wave method in that it does not require treatment to remove water from the surface of the material being tested prior to flaw detection. This can be said to be a point.Since it is possible to detect defects in areas that cannot be detected by either the vertical method or the oblique method,
When used in combination with each of these methods, it becomes possible to detect complete damage in the cross section of the test material.

〔発明の実施例〕[Embodiments of the invention]

第5図(alは本発明の実施例に係る装置の主要部の構
成を示すブロック図で、クリーピングウェーブ探触子5
と探傷器本体6とがら成る。探傷器本体6は、探触子5
の駆動および受信エコーの信号処理と表示記録部を含む
通常のものとahがないので説明は省略する。クリ−ピ
ンクウェーブ探触子5は、被検材1の表面から角隅部7
へ向けて縦波に対する臨界角の超音波(クリーピングウ
ェーブ)8を斜めに発射しそのエコーを受信するもので
ある。探触子5は被検材1の平坦部の表面上に好ましく
は0.5〜1.Ow厚程度の水ギャップ9を介して配置
される。探触子5がら発射された超音波クリーピングウ
ェーブ8け被検材1の断面方向(長手方向と直角な方向
)に表面に沿って角隅部7に向って表面を含む内部を伝
播する。角隅部7では、一般的な鋼材(例えば角ビレッ
ト)は通常成る曲率半径の曲面(アール)加工が施され
ており、このため角隅部で探触子方向に反射する成分は
極めて少なく、通常はいわゆるコーナ反射エコーは生じ
ない。
FIG. 5 (al is a block diagram showing the configuration of the main parts of the device according to the embodiment of the present invention, and the creeping wave probe 5
and a flaw detector main body 6. The flaw detector main body 6 includes a probe 5
Since there is no normal type and ah including the driving of the , the signal processing of the received echoes, and the display/recording unit, the description thereof will be omitted. The creapin wave probe 5 moves from the surface of the material 1 to the corner 7.
Ultrasonic waves (creeping waves) 8 at a critical angle with respect to longitudinal waves are emitted diagonally toward the object, and the echoes thereof are received. The probe 5 is preferably placed on the flat surface of the test material 1 at a distance of 0.5 to 1. It is arranged through a water gap 9 of approximately Ow thickness. Eight ultrasonic creeping waves emitted from the probe 5 propagate along the surface of the specimen 1 in the cross-sectional direction (direction perpendicular to the longitudinal direction) toward the corner 7 in the interior including the surface. At the corner portion 7, a general steel material (for example, a square billet) is processed to have a curved surface (R) with a normal radius of curvature, so that the component reflected in the direction of the probe at the corner portion is extremely small. Normally, so-called corner reflection echoes do not occur.

第51山)は第1図(blおよび第2図(blと対比す
るために角ビレツト断面での本発明にょる探触子配置例
と探傷領域を示す説明図で、斜線部分1oを除く部分1
1が本発明のクリーピングウェーブ探傷系で探傷可能な
領域である。この領域11は第1図(blと第2図(b
lのいずれによっても残存する不感歪部分を包含する。
51) is an explanatory diagram showing an example of the probe arrangement and the flaw detection area according to the present invention in a cross section of a square billet in order to contrast with Fig. 1 (bl) and Fig. 2 (bl), excluding the shaded area 1o. 1
1 is the area that can be detected by the creeping wave flaw detection system of the present invention. This region 11 is shown in Fig. 1 (bl) and Fig. 2 (b).
It includes the insensible distortion portion remaining by any of l.

この第5図(blに示すように、角ビレットに対しては
その断面の四辺のそれぞれに2個ずつの探触子5を夫々
角隅部7に向けて配置することによって四隅表面を含む
角隅部の欠陥を検出することが可能である3、 第6図に本発明による角ビレットの探傷の探触子配置と
試験ホール(欠陥)の位置を示し、各配置位置の探触子
による探傷結果のエコー波形ヲ第7図(al (b)(
c)に示す。第6図において位置Aに配置された探触子
5aによって第7図(alに示すようなエコー波形が得
られ、試験ホールa + b * cの個所に対応した
時間軸上の位置にそれぞれ欠陥エコa 、 b + e
が現われている。第7図fal中のdは、クリーピング
ウェーブ探触子5aから同時的に発信されている屈折横
波超音波によって検出された第6図中の試験ホールdの
欠陥エコーとして表示されている。また位置Bに配置さ
れた探触子5bによって第7図(blに示すようなエコ
ー波形が得られ、試験ホールeの個所に対応した時間軸
上の位置に欠陥エコーeが現われている。さらに位@C
に配置された探触子5cは試験ホールの無い角隅部を狙
っておシ、それによるエコー波形は第7図(c)に示す
通シ健全部であることを示している。
As shown in this FIG. It is possible to detect defects in corners. 3. Figure 6 shows the probe arrangement and test hole (defect) position for flaw detection of a square billet according to the present invention, and shows the flaw detection by the probe at each arrangement position. The resulting echo waveform is shown in Figure 7 (al (b) (
Shown in c). An echo waveform as shown in FIG. 7 (al) is obtained by the probe 5a placed at position A in FIG. Eco a, b + e
is appearing. d in FIG. 7 fal is displayed as a defective echo of the test hole d in FIG. 6 detected by the refracted transverse wave ultrasound simultaneously transmitted from the creeping wave probe 5a. Further, an echo waveform as shown in FIG. 7 (bl) is obtained by the probe 5b placed at position B, and a defective echo e appears at a position on the time axis corresponding to the test hole e. Place @C
The probe 5c placed at the corner is aimed at a corner where there is no test hole, and the resulting echo waveform shows that it is a sound area as shown in FIG. 7(c).

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明によれば従来の垂直法や斜
角法或いは表面波法によって探傷できなかった角隅部の
不感領域に対して有効な超音波探傷が果せ、表面波法の
場合のような被検材表面の水除去処理等の前処理も不要
である。また探触子を表面に倣わせることにより被検材
の断面形状変化の影響を殆んど受けることな(クリーピ
ングウェーブの発生が維祷できるので安定な探傷が可能
であり、従来の垂直法や斜角法との併用で矩形断面形状
の被検材の全断面検査が可能であ勺、各探傷方式のエコ
ー信号を分離処理すれば、表層欠陥と内部欠陥の識別も
可能となる。
As described above, according to the present invention, effective ultrasonic flaw detection can be performed on dead areas at corners that could not be detected by the conventional vertical method, oblique angle method, or surface wave method. There is no need for pre-treatment such as water removal treatment on the surface of the test material as in the case of . In addition, by making the probe follow the surface, it is virtually unaffected by changes in the cross-sectional shape of the material to be tested (creating waves can be prevented, making stable flaw detection possible, and compared to conventional vertical flaw detection). It is possible to inspect the entire cross section of a specimen with a rectangular cross section by using it in combination with the flaw detection method and the oblique angle method.If the echo signals of each flaw detection method are processed separately, it is also possible to distinguish between surface defects and internal defects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al (blは垂直法の超音波探傷方式を示す
説明図とそれによる探傷断面不感帯を示す模式図、第2
図(al (b)は斜角法の超音波探傷方式を示す説明
図とそれによる探傷断面不感帯を示す模式図、第3図(
al (b)は表面波法の超音波探傷方式を示す説明図
とそれによる探傷断面不感帯を示す模式図、第4図は縦
波臨界角超音波(グリ−ピングウェーブ)を説明する説
明図、第5図(alは本発明の実施例に係る装置の主要
部の構成を示すブロック図、第5図(blは角ビレツト
断面に対する本発明による探触子配置例と探傷領域を示
す説明図、第6図は本発明による角ビレットの探傷の探
触子配置と試験ホール(欠陥)の位置を示す説明図、第
7図(al (bl (c)は前回の各探触子による探
傷結果を示すエコー波形図である。 1・・・被検材、5.5m、5b、5c・・・クリーピ
ングウェーブ探触子、6・・・探傷器本体、7・・・角
隅部、8・・・超音波クリーピングウェーブ、9・・・
水ギャップ。 代理人 弁理士 木 村 三 朗
Figure 1 (al (bl) is an explanatory diagram showing the vertical method of ultrasonic flaw detection and a schematic diagram showing the dead zone of the flaw detection cross section,
Figure (al) (b) is an explanatory diagram showing the oblique angle method ultrasonic flaw detection method and a schematic diagram showing the dead zone of the flaw detection cross section, and Fig. 3 (
al (b) is an explanatory diagram showing the ultrasonic flaw detection method of the surface wave method and a schematic diagram showing the dead zone of the flaw detection cross section by it, FIG. FIG. 5 (al is a block diagram showing the configuration of the main part of the apparatus according to the embodiment of the present invention, FIG. 5 (bl is an explanatory diagram showing an example of the arrangement of the probe according to the present invention and the flaw detection area for the cross section of a square billet, Fig. 6 is an explanatory diagram showing the probe arrangement and the position of the test hole (defect) for flaw detection of a square billet according to the present invention, and Fig. 7 (al (bl) (c) shows the previous flaw detection results with each probe. It is an echo waveform diagram shown. 1... Test material, 5.5m, 5b, 5c... Creeping wave probe, 6... Flaw detector main body, 7... Corner part, 8... ...Ultrasonic Creeping Wave, 9...
water gap. Agent Patent Attorney Sanro Kimura

Claims (1)

【特許請求の範囲】[Claims] 角隅部をもつ断面形状の被検材に対して表面から縦波臨
界角超音波を前記断面方向に入射してその反射波から被
検材角隅部の欠陥を検出するクリーピングウェーブ探傷
系を備えたことを特徴とする超音波探傷装置。
A creeping wave flaw detection system that applies longitudinal critical angle ultrasonic waves from the surface of a specimen having a cross-sectional shape with corners in the cross-sectional direction and detects defects in the corners of the specimen from the reflected waves. An ultrasonic flaw detection device characterized by being equipped with.
JP58196224A 1983-10-21 1983-10-21 Ultrasonic flaw detector Granted JPS6089748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58196224A JPS6089748A (en) 1983-10-21 1983-10-21 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58196224A JPS6089748A (en) 1983-10-21 1983-10-21 Ultrasonic flaw detector

Publications (2)

Publication Number Publication Date
JPS6089748A true JPS6089748A (en) 1985-05-20
JPH0146826B2 JPH0146826B2 (en) 1989-10-11

Family

ID=16354262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58196224A Granted JPS6089748A (en) 1983-10-21 1983-10-21 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JPS6089748A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114749A (en) * 1987-10-29 1989-05-08 Nkk Corp Skew angle ultrasonic flaw detecting method and probe
WO2018147036A1 (en) * 2017-02-07 2018-08-16 株式会社神戸製鋼所 Ultrasound probe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129852A (en) * 1980-03-14 1981-10-12 Nippon Steel Corp Ultrasonic flaw detecting method for square bar

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129852A (en) * 1980-03-14 1981-10-12 Nippon Steel Corp Ultrasonic flaw detecting method for square bar

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114749A (en) * 1987-10-29 1989-05-08 Nkk Corp Skew angle ultrasonic flaw detecting method and probe
WO2018147036A1 (en) * 2017-02-07 2018-08-16 株式会社神戸製鋼所 Ultrasound probe

Also Published As

Publication number Publication date
JPH0146826B2 (en) 1989-10-11

Similar Documents

Publication Publication Date Title
US6945114B2 (en) Laser-air, hybrid, ultrasonic testing of railroad tracks
US6105431A (en) Ultrasonic inspection
Chang et al. A 3-D image detection method of a surface opening crack in concrete using ultrasonic transducer arrays
JPS6089748A (en) Ultrasonic flaw detector
JP2001208729A (en) Defect detector
JP2002243703A (en) Ultrasonic flaw detector
JPH02150765A (en) Ultrasonic flaw detecting method
JPS62162958A (en) Ultrasonic flaw detecting method
JPS63221211A (en) Ultrasonic thickness measuring method for laminar body
JPH10221308A (en) Method and device of detecting ruptured part in metal and probe
JPS5952983B2 (en) Ultrasonic angle flaw detection device
JPH07325070A (en) Ultrasonic method for measuring depth of defect
JPH06308097A (en) Ultrasonic flaw detection method
JPH02102450A (en) Flaw detecting method for pressure container or the like
JP3783979B2 (en) Ultrasonic inspection apparatus and ultrasonic inspection method
JPS62207957A (en) Ultrasonic flaw detecting method
Kenderian et al. Proof of concept of wayside railroad wheel inspection using a laser-air hybrid ultrasonic technique
JP2000028588A (en) Ultrasonic flaw detecting method
JPH0222695Y2 (en)
JPH06258294A (en) Ultrasonic flaw detector
JPH0618485A (en) Ultrasonic angle beam flaw detecting method for steel pipe
Li et al. Development of a PC-Based Signal Processing Unit for Nondestructive Testing: The ALC and Small Angle B-Scan Techniques
MA et al. 312 Sensitive Detection and Sizing of Small Cracks by Ultrasonic Shear Wave
JPH08220079A (en) Ultrasonic probe
JPS5935138A (en) Shape-discrimination type 2 mode angle beam probe