JPH02150765A - Ultrasonic flaw detecting method - Google Patents

Ultrasonic flaw detecting method

Info

Publication number
JPH02150765A
JPH02150765A JP63304967A JP30496788A JPH02150765A JP H02150765 A JPH02150765 A JP H02150765A JP 63304967 A JP63304967 A JP 63304967A JP 30496788 A JP30496788 A JP 30496788A JP H02150765 A JPH02150765 A JP H02150765A
Authority
JP
Japan
Prior art keywords
signals
signal
ultrasonic
reflected
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63304967A
Other languages
Japanese (ja)
Inventor
Yutaka Ishimaru
裕 石丸
Hisakazu Mori
久和 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP63304967A priority Critical patent/JPH02150765A/en
Publication of JPH02150765A publication Critical patent/JPH02150765A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Abstract

PURPOSE:To surely detect various flows with high accuracy by using signals obtained by processing two selected signals indicating variation out of each signals from an object inspected by an ultrasonic flaw detector. CONSTITUTION:Two signals indicating variation are selected out of reflected or transmitted each signals obtained as continuous voltage signals during the course of ultrasonic flow detector performed on an object 2 to be inspected and signals f(C) obtained by performing signal processes expressed by prescribed formulae are used for fault detection. The f(S), f(BT), f(R), and f(F) of the formulae respectively represent the reflected/transmitted echo signals from the surface of the object, bottom of the object, a reflecting plate 1, and a fault. The f(Th) and f(C) respectively represent the transmitted echo signals and signals obtained as a result of signal processing. In addition, the A and B respectively represent coefficients for matching the amplitude and level. Namely, two signals, one of which decreases and the other increases, are selected and both signals are processed so that most of them can be superimposed upon another. Since the signal thus obtained is free from the influence of attenuation caused by factors other than a fault, the fault can be recognized clearly.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は機械装置、構造物等の構造部材や電子部品等に
用いられる金属、非金属材料、複合材料等に内在する欠
陥を超音波を用いて探傷する方法に関する。さらに詳し
くは被検体の表面状態や材料組織の不均一さ、または材
料端部等の影響を軽減する信号処理を行うことによって
欠陥を精度良く検出する方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention uses ultrasonic waves to remove defects inherent in metals, non-metal materials, composite materials, etc. used in structural members of mechanical devices, structures, etc., electronic parts, etc. It relates to a method of flaw detection using More specifically, the present invention relates to a method of detecting defects with high accuracy by performing signal processing to reduce the influence of the surface condition of the object, non-uniformity of the material structure, or the edges of the material.

〈従来の技術〉 超音波探傷法は金属、非金属、セラミックス、複合材料
等に内在する欠陥の検査を非破壊的に行う最も有効な定
量的手段であり、広く利用されている。
<Prior Art> Ultrasonic flaw detection is the most effective quantitative means for nondestructively inspecting defects inherent in metals, nonmetals, ceramics, composite materials, etc., and is widely used.

被検体内の欠陥により影響を受けた超音波から、欠陥の
有無や大きさを判定するには超音波信号の強さ、すなわ
ち超音波の振幅値に注目して行われる。超音波反射法で
は欠陥から反射する超音波の信号が強いほど、超音波透
過法では逆に欠陥によって信号が弱められるほど、欠陥
は大きいと判断される。超音波は健全な材料中を伝播す
る過程でもそのエネルギーは消費され、減衰するが、こ
の超音波が伝播する路程距離による減衰の影響はDAC
(Distance A+nplitudeCompe
nsation ) 、またはA V G (Abst
andVerstarkung GroBe>線図と一
般的に呼ばれる方法゛によって補正可能であり、この方
法は広く使用されている。(非破壊検査便覧:昭和53
年4月28日、日刊工業新聞社発行) く解決しようとする課題〉 被検体表面にあらさやうねり等がある場合には、被検体
表面で超音波が散乱するために被検体内部へ入射する超
音波量は平滑面に比べて減少する。また被検体の端部で
は探触子より出た超音波の全てが被検体に入射しなくな
るため、ここでも平滑面に比べて被検体に入射する超音
波量は減少する。そのため対比のために用いたある大き
さの人工欠陥からの反射エコー信号の減衰量にしきい値
を設定して欠陥の有無を判定する場合に、内部欠陥から
の反射エゴー信号が弱くなると、大きい欠陥があっても
欠陥ではないとの判断を下す場合がある。
Determining the presence or absence of a defect and its size from ultrasound waves affected by a defect within a subject is performed by focusing on the strength of the ultrasound signal, that is, the amplitude value of the ultrasound waves. In the ultrasonic reflection method, the stronger the ultrasonic signal reflected from the defect, the more weakened the signal by the defect in the ultrasonic transmission method, the larger the defect. Ultrasonic waves consume energy and attenuate even in the process of propagating through healthy materials, but the effect of attenuation due to the path distance of this ultrasonic wave is
(Distance A + amplitude Compe
nsation), or AVG (Abst
This can be corrected by a method commonly referred to as "and Verstarkung GroBe" diagram, and this method is widely used. (Non-destructive inspection handbook: 1973
(Published by Nikkan Kogyo Shimbun, April 28, 2017) Problems to be Solved> If the surface of the object to be examined has roughness or undulations, ultrasonic waves will be scattered on the surface of the object and may enter the inside of the object. The amount of ultrasonic waves is reduced compared to a smooth surface. In addition, since all of the ultrasound waves emitted from the probe do not enter the object at the end of the object, the amount of ultrasonic waves that enter the object also decreases here as compared to a smooth surface. Therefore, when determining the presence or absence of a defect by setting a threshold value for the amount of attenuation of the reflected echo signal from an artificial defect of a certain size used for comparison, if the reflected echo signal from an internal defect becomes weaker, a larger defect Even if there is a defect, it may be determined that it is not a defect.

これらの現象以外に、被検体内の平面方向に組織の変化
があると、被検体を透過する超音波が強くなったり、弱
くなったり変動するため、欠陥による減衰と組織変化に
よる変動との識別が困難になり、欠陥の判定は難しくな
る。
In addition to these phenomena, if there are tissue changes in the plane of the object, the ultrasound that passes through the object will become stronger or weaker, making it difficult to distinguish between attenuation due to defects and fluctuations due to tissue changes. This makes it difficult to determine defects.

かかる事情に鑑み、本発明者は金属、非金属、複合材料
等の被検体表面にあらさやうねり等がある材料や、被検
体内の平面方向に組織が変化している材料等の内部にあ
る欠陥、または被検体端部にある欠陥の位置、形状を正
確に把握できる超音波探傷方法について鋭意検討した結
果、本発明を完成するに至った。
In view of these circumstances, the present inventor has developed materials such as metals, non-metals, composite materials, etc., which have roughness or undulations on the surface of the specimen, or materials whose structure changes in the plane direction inside the specimen. As a result of extensive research into an ultrasonic flaw detection method that can accurately determine the position and shape of a defect or a defect at the edge of a test object, the present invention has been completed.

〈課題を解決するための手段) すなわち本発明は被検体の超音波探傷によって連続した
電圧信号として得られる反射または透過エコー信号の中
から変動が現れている2つのエコー信号を選択し、次式
で表される信号処理によって得られる信号f (C)を
用いて欠陥を検出することを特徴とする超音波探傷方法
である。
<Means for Solving the Problems> In other words, the present invention selects two echo signals in which fluctuations appear from reflected or transmitted echo signals obtained as continuous voltage signals through ultrasonic flaw detection of a test object, and calculates the following equation by selecting two echo signals showing fluctuations. This is an ultrasonic flaw detection method characterized by detecting defects using a signal f (C) obtained by signal processing expressed as f (C).

{f(R)X^十B ) /f(S)=f(C)、{f
(BT)  ×A +B ) /f(S)=f(C)、
f (R) /f (S) = f (C)、f(BT
) /f(S)=f(C)、f(F)x^/f(BT)
 =f(C)、f(F)X^/f(R) =f((:)
、{f(Th)  x^十B ) /f(S>=f(C
)、f(Th) /f(S)=f(C)またはf(F)
 ×A /f(Th> =f(C)本発明において、超
音波の探傷方式は一般に行われている次の3方式から選
ばれる。
{f(R)X^1B) /f(S)=f(C), {f
(BT) ×A + B) /f(S)=f(C),
f (R) / f (S) = f (C), f (BT
) /f(S)=f(C), f(F)x^/f(BT)
=f(C), f(F)X^/f(R) =f((:)
, {f(Th) x^1B ) /f(S>=f(C
), f(Th) /f(S)=f(C) or f(F)
×A /f(Th>=f(C) In the present invention, the ultrasonic flaw detection method is selected from the following three commonly used methods.

(1)超音波を1個の探触子を用いて被検体表面から入
射し、欠陥から反射する超音波エコーを同じ探触子で検
出する方法(超音波反射法)(2)1個の探触子て超音
波を被検体中に入射し、被検体をはさんで対称側に反射
体を置いて一度被検体を透過した超音波が反射体で反射
して再び被検体を透過してくる超音波エコーを検出する
方法(超音波反射板法) (3)被検体をはさんで対称に2個の探触子を配置し、
1個で超音波を発射してもう1個の探触子で被検体中を
透過してくる超音波エコーを検出する方法(超音波透過
法) これらの方法において、探触子を被検体に直接接触させ
る方法または距離を置き水等の超音波伝達媒体を介在さ
せる方法がとられる。これらの超音波伝播過程において
解析対象となるエコーとしては被検体表面からの反射エ
コー、被検体内の欠陥からの反射エコー、被検体底面か
らの反射エコー、超音波反射板からの反射エコーおよび
被検体を透過した透過エコーがある。
(1) A method in which ultrasonic waves are incident from the surface of the object using one probe, and the ultrasonic echoes reflected from defects are detected using the same probe (ultrasonic reflection method) (2) One probe Ultrasonic waves are incident into the subject using a probe, and a reflector is placed on the symmetrical side of the subject, so that the ultrasonic waves that have once passed through the subject are reflected by the reflector and pass through the subject again. (3) Two probes are placed symmetrically across the subject,
A method in which one probe emits ultrasonic waves and the other probe detects the ultrasonic echoes that pass through the subject (ultrasonic transmission method). A method of direct contact or a method of keeping a distance and using an ultrasonic transmission medium such as water is used. In these ultrasound propagation processes, the echoes to be analyzed include the reflected echo from the surface of the object, the reflected echo from defects inside the object, the reflected echo from the bottom of the object, the reflected echo from the ultrasonic reflector, and the reflected echo from the object. There is a transmitted echo that has passed through the specimen.

被検体表面からの表面エコー信号は、材料中の組織や欠
陥の影響は全く受けず、単に表面状態のみの影響を受け
、表面にあらさやうねり等があると減衰する。表面にあ
らさやうねり等があると入射する超音波量が減少するの
で被検体底面や欠陥からの反射エコー信号等は減衰する
The surface echo signal from the surface of the object is not affected by the structure or defects in the material at all, but only by the surface condition, and is attenuated if the surface has roughness or waviness. If the surface has roughness or undulations, the amount of incident ultrasonic waves will be reduced, and therefore reflected echo signals from the bottom surface of the object or defects will be attenuated.

また欠陥があると被検体底面あるいは超音波反射板から
の反射エコー信号は、欠陥の影響を受けて減衰する一方
、欠陥からの反射エコー信号が現れる。被検体内に組織
変化があるとその影響は欠陥からの反射エコーに重なっ
て現れる。
Furthermore, if there is a defect, the reflected echo signal from the bottom surface of the object or the ultrasonic reflector is attenuated due to the influence of the defect, while the reflected echo signal from the defect appears. If there is a tissue change within the subject, its influence will appear superimposed on the reflected echo from the defect.

すなわち探触子を連続的に被検体に対して接触または近
接して移動させながら探傷して電圧信号として得られる
連続した被検体表面、被検体内欠陥、被検体底面、超音
波反射板からの反射エコー信号、及び被検体を透過した
透過エコー信号の中から減衰しているエコー信号を見出
し、その減衰量を把握する。被検体の表面による散乱、
被検体端部や被検体内の組織変化または被検体内の欠陥
による変動が同じように影響してエコー信号に現れ、欠
陥がない場合には類似した、または欠陥がある場合には
一方が減衰し、他方が増加する相反した変動が連続した
エコー信号として現れる。これらの変動が現れている2
つの信号を選び出し、2つの信号がほぼ重なり合うよう
に信号処理し、変動の影響を軽減して欠陥からの反射エ
コー信号を明確にす石。
In other words, the probe is continuously moved in contact with or close to the test object to perform flaw detection, and the continuous voltage signals obtained from the test object surface, defects inside the test object, the bottom surface of the test object, and the ultrasonic reflector are obtained as voltage signals. An attenuated echo signal is found from the reflected echo signal and the transmitted echo signal transmitted through the object, and the amount of attenuation is determined. scattering by the surface of the object,
Variations due to tissue changes at the edge of the object or defects within the object will affect the echo signal in the same way, resulting in similar attenuation in the absence of a defect or one attenuation in the presence of a defect. However, contradictory fluctuations in which one increases and the other increases appear as a continuous echo signal. These fluctuations are appearing2
A stone that selects one signal, processes the two signals so that they almost overlap, reduces the effects of fluctuations, and clarifies the reflected echo signal from the defect.

以下、本発明を図面に基いて詳細に説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

第1図は本発明の被検体、探触子、信号処理装置および
出力装置の一例を示すブロック図である。探傷方法は超
音波反射板法を用いた配置で示している。
FIG. 1 is a block diagram showing an example of a subject, a probe, a signal processing device, and an output device of the present invention. The flaw detection method is shown using the ultrasonic reflector method.

この第1図において、探触子(3)はCスキャン制御プ
ログラム(ハ)の位置制御データに従って、モーターコ
ントローラーQ[ilでxlYの各軸が制御サレる。パ
ルサー・レシーバ−(4)は、探触子(3)に送信パル
ス信号を送り出し、超音波伝達媒体面を介して被検体(
2)からの表面エコー、欠陥からの反射エコー、反射板
(1)からの反射エコー等の超音波エコーの受信信号を
受ける。このパルサー・レシーバ−(4)によって増幅
または減衰したエコー信号に二つのゲートを設定し、ゲ
ート内の受信エコー信号の強度に合ったアナログ信号を
選択するゲート回路I(5)、■(6)、これらの受信
エコー信号をモニタリングするオシロスコープ(7)、
(8)、ゲート回路(5)、(6)により選択されたエ
コー信号(アナログ出力信号)を信号処理するアナログ
信号処理装置(9)、このゲート回路からの出力信号を
ディジタル信号に変換して波形記憶装置αDに送出する
A/D変換器α1、この波形記憶装置(社)より順次送
出されたディジタル化されたエコー信号を信号処理する
ディジタル信号処理装置■、画像入出力装置0は信号処
理装置で9)、面より伝送されたデータを画像データと
して記憶し、そのデータをCスコープ像としてCRTデ
イスプレィαOにそのデータを転送する。
In FIG. 1, the probe (3) is controlled by a motor controller Q[il to control each axis xlY according to the position control data of the C scan control program (c). The pulser/receiver (4) sends a transmission pulse signal to the probe (3) and transmits it to the object (
Receiving signals of ultrasonic echoes such as surface echoes from 2), reflected echoes from defects, and reflected echoes from the reflector plate (1) are received. Gate circuit I (5), (6) sets two gates for the echo signal amplified or attenuated by this pulser/receiver (4), and selects an analog signal that matches the strength of the received echo signal within the gate. , an oscilloscope (7) for monitoring these received echo signals,
(8), an analog signal processing device (9) that processes the echo signal (analog output signal) selected by the gate circuits (5) and (6), and converts the output signal from this gate circuit into a digital signal. The A/D converter α1 sends out to the waveform storage device αD, the digital signal processing device ■ performs signal processing on the digitized echo signals sequentially sent out from this waveform storage device αD, and the image input/output device 0 performs signal processing. At 9), the device stores the data transmitted from the screen as image data, and transfers the data to the CRT display αO as a C-scope image.

第2図は超音波反射法、第3図は超音波透過法の模式図
とブロック図の一部を表す図である。
FIG. 2 is a schematic diagram and part of a block diagram of the ultrasound reflection method, and FIG. 3 is a diagram showing a part of the block diagram of the ultrasound transmission method.

探触子(3)より送信された超音波が、被検体(2)の
表面で反射される表面エコー(B波)、欠陥から反射さ
れる欠陥エコー(F波)、底面から反射される底面エコ
ー(B波)、反射板(1)で反射される反射板エコー(
R波)、及び被検体(2)を透過して探触子0秒で受信
された透過エコー(Th波)が得られる。これらは第4
図に示すAスコープ波形としてオシロスコープ(7)、
(8)に表示される。符号51FSB、R,Thはそれ
ぞれB波、F波、B波、R波、Th波に対応するエコー
信号を表す。また、符号Tは送信パルス信号を表す。な
お、第2図、第3図の符号tは被検体の厚みを、第4図
の符号りは被検体中の超音波の伝播時間を表す。
The ultrasonic waves transmitted from the probe (3) are reflected on the surface of the object (2) to produce a surface echo (B wave), a defect echo (F wave) reflected from a defect, and a bottom surface reflected from the bottom surface. Echo (B wave), reflector echo reflected by reflector (1) (
R waves) and transmitted echoes (Th waves) transmitted through the object (2) and received by the probe at 0 seconds are obtained. These are the fourth
Oscilloscope (7) as the A scope waveform shown in the figure,
(8) is displayed. Symbols 51FSB, R, and Th represent echo signals corresponding to B waves, F waves, B waves, R waves, and Th waves, respectively. Further, the symbol T represents a transmission pulse signal. Note that the symbol t in FIGS. 2 and 3 represents the thickness of the subject, and the symbol t in FIG. 4 represents the propagation time of the ultrasound in the subject.

第3図において、レシーバ−側はI 触子(3)より送
信された超音波が被検体(2)を透過して探触子α■で
受信された透過エコーの信号を受けてふり、ゲート回路
(5)、(6)以降は第1図のブロック図と同様に配置
されている。
In Figure 3, on the receiver side, the ultrasonic wave transmitted from the probe (3) passes through the object (2) and is received by the probe α. Circuits (5), (6) and subsequent circuits are arranged in the same manner as in the block diagram of FIG.

第2図に示す超音波反射法において、被検体の厚みが薄
い場合には第6図に示すように超音波の伝播時間りも少
なくなり、それぞれの受信エコー信号が重なりあって分
離できなくなる。
In the ultrasonic reflection method shown in FIG. 2, when the thickness of the subject is thin, the propagation time of the ultrasonic waves becomes short as shown in FIG. 6, and the received echo signals overlap and cannot be separated.

このような場合には第1図に示した超音波反射板法が用
いられる。また被検体の形状が曲面構造等、複雑なもの
になると反射板の配置が難しくなり、その場合には第3
図に示した超音波透過法が用いられる。
In such a case, the ultrasonic reflector method shown in FIG. 1 is used. Also, if the shape of the object to be examined becomes complex, such as a curved surface structure, it becomes difficult to arrange the reflector, and in that case, the third
The ultrasound transmission method shown in the figure is used.

超音波反射法を用いる場合には、第5図に示すようにB
波とB波のエコー信号にゲートを設定する。
When using the ultrasonic reflection method, as shown in Figure 5, B
Set a gate on the wave and B wave echo signals.

被検体の厚みが薄い場合とか被検体の形状が曲面構造等
、複雑な場合には第6図に示すようにそれぞれのエコー
信号S波、F波、B波含めてゲート設定し、それと反射
板(1)からのエコー信号のR波または探触子0で受信
されたTh波にゲート設定し、ゲート回路(5)、(6
)からのエコー信号(アナログ出力信号)をアナログ信
号処理装置(9)および/またはA/D変換器aQへ送
出する。
When the thickness of the object to be examined is thin or the shape of the object is complicated, such as a curved structure, set a gate for each echo signal including S wave, F wave, and B wave as shown in Figure 6, and use a reflector and a gate. A gate is set on the R wave of the echo signal from (1) or the Th wave received by probe 0, and gate circuits (5) and (6
) is sent to an analog signal processing device (9) and/or an A/D converter aQ.

これら送り出された信号はアナログ信号処理装置(9)
および/またはディジタル信号処理装置側で信号処理が
行われる。
These sent signals are processed by an analog signal processing device (9)
And/or signal processing is performed on the digital signal processing device side.

第7図は本発明の信号処理の一例を示す図である。超音
波反射板法によって被検体の’、zjにうねりがある場
合の探傷の様子を示す模式図と得られる信号の処理手順
の例が示されている。
FIG. 7 is a diagram showing an example of signal processing according to the present invention. A schematic diagram illustrating the state of flaw detection when there is waviness in ', zj of an object by the ultrasonic reflector method and an example of the processing procedure of the obtained signal are shown.

表面のうねりによって超音波が散乱し、表面からの反射
エコー信号r (s)は減衰する。散乱の程度により減
衰の大きさ(振幅)は変動する。反射板からの反射エコ
ーは表面からの反射!、ココ−り弱くなるのでその信号
f (R)のレベルは反射エコー信号f (S)のレベ
ルより低くなる。f (R)は表面からの反射の影響と
被検体組織そのものの影響を受けて減衰し、欠陥のない
ところでは振幅量は異なるもののf (S)と類似した
変動を示す。
Ultrasonic waves are scattered by the surface undulations, and the reflected echo signal r (s) from the surface is attenuated. The magnitude of attenuation (amplitude) varies depending on the degree of scattering. The reflected echo from the reflector is a reflection from the surface! , the signal f (R) becomes lower than the level of the reflected echo signal f (S). f (R) is attenuated due to the influence of reflection from the surface and the influence of the subject tissue itself, and exhibits a variation similar to f (S) in areas without defects, although the amplitude is different.

欠陥があるとf (R)は更に減衰したものになり、一
方欠陥からの反射エコー(F波)が現れ(第7図には示
していない。)、相反する変動が現れる。
If there is a defect, f(R) becomes further attenuated, while a reflected echo (F wave) from the defect appears (not shown in FIG. 7), and contradictory fluctuations appear.

このf (R)とf (S)に注目して、f (R)の
振幅量とレベルをf (S)の振幅量とレベルに近づけ
るための信号処理を行う。f (R)とf (S)にゲ
ート回路を設定し、f (R)とf (S)をCRTデ
イスプレィに表示させる。
Focusing on f (R) and f (S), signal processing is performed to bring the amplitude and level of f (R) closer to the amplitude and level of f (S). Gate circuits are set for f (R) and f (S), and f (R) and f (S) are displayed on the CRT display.

まずf (R)の振幅量をf (S)の振幅量に近づけ
るための乗算処理を行う。両信号の振幅値が同じように
なるように係数Aをf (R)に乗算する。
First, a multiplication process is performed to bring the amplitude of f (R) closer to the amplitude of f (S). Multiply f (R) by a coefficient A so that the amplitude values of both signals are the same.

f(R) X A =f(^)〔f(^)は係数Aを乗
算処理して得られる信号を表す。〕 表示される信号f
(^)の振幅を見ながら係数Aを調整する。係数Aは正
の実数を表し、両信号の振幅値にもよるが、通常lO以
下の値である。この処理によって欠陥のないところのf
 (R)とf (S)の振幅量はほとんど同じになる。
f(R) ] Displayed signal f
Adjust coefficient A while checking the amplitude of (^). The coefficient A represents a positive real number, and although it depends on the amplitude values of both signals, it is usually a value less than lO. By this process, f
The amplitudes of (R) and f (S) are almost the same.

次にf(A)のレベルをf (S>に近づけるための加
算処理を行う。f (A)とf (S)のレベル差に相
当する係数Bをf (A)に加算する。f (A)+B
=f(B) {f(B)は係数Aを乗算処理して得られ
る信号を表す。〕 表示される信号f (B)のレベル
を見ながら係数Aを増減する。係数Bは正または負の実
数(単位:v)を表す。通常、超音波探傷器から得られ
る信号強度は最高10V程度であるので係数BはlOv
以下の値である。
Next, an addition process is performed to bring the level of f (A) closer to f (S>. A coefficient B corresponding to the level difference between f (A) and f (S) is added to f (A). f ( A)+B
=f(B) {f(B) represents a signal obtained by multiplying the coefficient A. ] Increase or decrease the coefficient A while watching the level of the displayed signal f (B). Coefficient B represents a positive or negative real number (unit: v). Normally, the maximum signal strength obtained from an ultrasonic flaw detector is about 10V, so the coefficient B is 1Ov.
The value is as follows.

この処理によって欠陥があるところ以外のf (B)゛
とf (S)は重なりあう。 次にf(B)とf (S
)の除算処理を行う。f(B}/f(S)=f(C) 
{f(C)は除算処理して得られる信号を表す。〕この
処理によって被検体内に欠陥が存在しなければf (C
)は振幅のなくなったある一定の値の信号に近づくこと
になる。被検体内に欠陥が存在すれば欠陥で超音波が減
衰するためにその部分だけf (S)と「(R)は類似
した変動量にはならず、f (C)は欠陥のみが振幅量
の変化として出力されることになり、しきい値を設定し
ての超音波探傷が可能となる。
By this process, f(B)' and f(S) other than the defective area overlap. Next, f(B) and f(S
) is performed. f(B}/f(S)=f(C)
{f(C) represents a signal obtained by division processing. ] If there is no defect in the object as a result of this process, then f (C
) approaches a signal of a certain value with no amplitude. If there is a defect in the object, the defect attenuates the ultrasonic waves, so f (S) and (R) will not have similar fluctuations in that part, and f (C) will have an amplitude only due to the defect. This makes it possible to perform ultrasonic flaw detection by setting a threshold value.

以上述べた超音波反射板法は被検体表面からのエコー信
号と被検体底面からのエコー信号が重なって分離できな
いような被検体の厚みが薄い場合に用いられる方法であ
るが、これらのエコー信号が分離できる場合には超音波
反射法が用いられる。その場合被検体底面からの反射エ
コー信号をf (BT>として、{f(BT)  ×A
+B}/f (S) = f (C)の信号処理を行い
、被検体表面のあらさまたはうねり等による超音波の減
衰の影響を軽減した信号f (C)によって欠陥を正確
に把握することができる。
The ultrasonic reflector method described above is a method used when the thickness of the subject is so thin that the echo signals from the surface of the subject and the echo signals from the bottom of the subject overlap and cannot be separated. The ultrasonic reflection method is used when the two can be separated. In that case, the reflected echo signal from the bottom surface of the object is defined as f (BT>), {f(BT) ×A
+B}/f (S) = f (C) signal processing is performed, and the defect can be accurately identified using the signal f (C) that reduces the effect of ultrasonic attenuation due to roughness or undulations on the surface of the object to be inspected. can.

超音波の減衰が少なく、被検体表面からのエコー信号と
被検体底面あるいは超音波反射板からのエコー信号の振
幅量とレベルが異なっているものの、近い場合にはf(
BT) /f(S)=f(C)またはf (R) /f
 (S) = f (C)の信号処理のみで被検体表面
のあらさまたはうねり等による超音波の減衰の影響を軽
減し、信号f (C)によって欠陥を正確に把握するこ
とができる。
Although the attenuation of the ultrasound is small and the amplitude and level of the echo signal from the surface of the object and the echo signal from the bottom of the object or the ultrasound reflector are different, if they are close, f(
BT) /f(S)=f(C) or f(R)/f
Only by signal processing of (S) = f (C), it is possible to reduce the effect of attenuation of ultrasonic waves due to roughness or undulations on the surface of the object to be inspected, and it is possible to accurately grasp defects using the signal f (C).

上記の方法で被検体端部における超音波の減衰の影響を
軽減することも可能である。
It is also possible to reduce the effect of ultrasound attenuation at the end of the object using the above method.

また被検体内部の組織変化による超音波の減衰の影響を
軽減する方法として、被検体内の欠陥からの反射エコー
信号をf (P)として、f(F)×A/f(BT) 
=f(C)またはf(F) x A/f(R) =f(
C)の信号処理が行われる。
In addition, as a method to reduce the effect of attenuation of ultrasound waves due to tissue changes inside the object, where the reflected echo signal from a defect inside the object is f (P), f (F) × A / f (BT)
=f(C) or f(F) x A/f(R) =f(
C) signal processing is performed.

超音波透過法で被検体の向う側に配置した探触子で受信
した透過エコー信号をf(Th) とすれば、f (R
)をf(Th)に置き換えて行うこともできる。なお以
上述べた信号処理の中で、除算処理の分母と分子の置き
換えも可能である。
If the transmitted echo signal received by the probe placed on the opposite side of the subject in the ultrasonic transmission method is f (Th), then f (R
) can also be replaced with f(Th). Note that in the signal processing described above, it is also possible to replace the denominator and numerator of the division processing.

上記のどの信号処理を行うかは、被検体の形状、エコー
信号の分離の程度および減衰の影響の軽減度合いを勘案
しながら適宜選択される。
Which of the above signal processes is to be performed is appropriately selected in consideration of the shape of the subject, the degree of separation of echo signals, and the degree of reduction of the influence of attenuation.

2つの信号の内、1つの信号に減衰等の変動が現れてい
ない場合でも本発明の信号処理を実施しても構わない。
The signal processing of the present invention may be performed even when one of the two signals does not exhibit any fluctuations such as attenuation.

〈実施例〉 以下、本発明を実施例に基いて詳細に説明するが、本発
明はこの実施例に制限されない。
<Examples> Hereinafter, the present invention will be explained in detail based on Examples, but the present invention is not limited to these Examples.

第8図に不規則な表面状態の被検体を示した。FIG. 8 shows a specimen with an irregular surface condition.

被検体(2)はアクリル板であり、その表面には幅2〜
3mmX深さ2〜3IIII11のし形溝を3Mピッチ
で加工している。また超音波は材料の密度と音速の異な
る界面、すなわち音響インピーダンスの異なる界面で反
射するので、その反射体として3mm幅のA1テープを
5枚、被検体底面に貼りつけて模擬欠陥とし、超音波反
射板法を用いて探傷した。ここに符号■〜■は、人工欠
陥として被検体底面に貼りつけたA1テープであり、電
圧出力チャート及びCスキャン表示中の符号■〜■はこ
のA1テープの位置を示している。
The object (2) is an acrylic plate, and its surface has a width of 2~
A rectangular groove of 3mm x depth 2-3III11 is machined at a 3M pitch. In addition, since ultrasonic waves are reflected at interfaces of materials with different densities and sound velocities, that is, interfaces with different acoustic impedances, five pieces of 3mm wide A1 tape were pasted on the bottom of the specimen as reflectors to simulate defects, and ultrasonic waves were Flaws were detected using the reflector method. Here, the symbols ■ to ■ are A1 tapes attached to the bottom surface of the object as artificial defects, and the symbols ■ to ■ in the voltage output chart and the C-scan display indicate the positions of these A1 tapes.

まず信号処理を行わないで探触子(3)をCスキャンさ
せた時の超音波反射板からのエコー信号f (R)の一
部を電圧出力チャートとして第8図下欄に示した。被検
体(2)の不規則な表面状態による超音波の減衰の方が
、符号■〜■の人工欠陥よりも大きい部位が生じている
。その結果、しきい値を設定してのCスキャンで得られ
た結果を第8図右欄に示した。人工欠陥が検出されない
部位が、Cスキャン表示の符号■の位置で生じている。
First, a part of the echo signal f (R) from the ultrasonic reflector when the probe (3) is C-scanned without signal processing is shown as a voltage output chart in the lower column of FIG. There are parts where the attenuation of the ultrasonic waves due to the irregular surface condition of the object (2) is greater than the artificial defects marked with symbols (■) to (■). The results obtained by C-scanning with the threshold values set are shown in the right column of FIG. A region where no artificial defect is detected occurs at the position marked with symbol ■ in the C-scan display.

なお、f(R)のみの出力電圧チャートをみでもわかる
ように、人工欠陥のAIテープ5枚全てをCスコープ像
として表示するようにしきい値を設定すると、被検体表
面のし形溝形状による減衰や、被検体端部の影響による
減衰もCスコープ像として表示される。
As you can see from the output voltage chart of f(R) only, if you set the threshold so that all five AI tapes with artificial defects are displayed as C-scope images, the difference is due to the rectangular groove shape on the surface of the object. Attenuation and attenuation due to the influence of the end of the object are also displayed as a C scope image.

そこで被検体表面からのエコー信号をf (S)として
、f (R) /f (S) = f (C)の除算信
号処理を行った結果を第8図の中欄に示した。被検体底
面に5枚のA1テープを貼りつけた人工欠陥の全てがC
スコープ像として表示された。しかし、被検体表面のし
形溝形状や被検体端部も一部検出されCスコープ像とし
て表示された。
Therefore, assuming that the echo signal from the surface of the subject is f (S), the division signal processing of f (R) /f (S) = f (C) is performed, and the results are shown in the middle column of FIG. All of the artificial defects with 5 pieces of A1 tape pasted on the bottom of the specimen are C.
Displayed as a scope image. However, a portion of the rectangular groove shape on the surface of the object and the edge of the object was also detected and displayed as a C-scope image.

この信号処理でも人工欠陥のみを明瞭に識別しないので
、{f(R) x A+ B) /f(S) =f(C
)の信号処理を行った。結果を第8図上欄に示した。
This signal processing does not clearly identify only artificial defects, so {f(R) x A+ B) /f(S) = f(C
) signal processing was performed. The results are shown in the upper column of FIG.

ここで符号Aはf (R)の乗算係数、符号Bはf(R
)×Aに特定の一定値の信号を加えるための加算係数で
ある。この信号処理を行うことにより被検体端部の影響
による減衰が一部Cスコープ像として表示されているが
、模擬欠陥のみを明瞭に識別することができた。
Here, code A is the multiplication coefficient of f(R), and code B is f(R).
)×A is an addition coefficient for adding a signal of a specific constant value. By performing this signal processing, attenuation due to the influence of the edge of the object was partially displayed as a C scope image, but only the simulated defect could be clearly identified.

第9図には被検体(2)の表面にうねりがあり、かつ衝
撃損傷を有する被検体を探傷した例を示した。この被検
体(2)はカーボン繊維とガラス繊維を平織にした厚み
が2.3MのFRP織物材積層板である。この被検体(
2)の表面には4M程のピッチで100μm程度の高さ
のうねりが生じているものである。半径8IIlffi
、重さ6kgの鉄球がこのFRP織物材積層板の被検体
(2)に落下した結果、被検体内に衝撃損傷による欠陥
が発生したものである。また比較用に超音波の透過を遮
断する符号■〜■で示した6mIIX6am、4m×4
鰭、2mmX2mmのA1テープを被検体(2)の底面
に貼りつけた。
FIG. 9 shows an example in which a test object (2) having undulations on its surface and impact damage was detected. This test object (2) is a 2.3M thick FRP fabric laminate made of plain weave carbon fiber and glass fiber. This subject (
The surface of 2) has undulations with a pitch of about 4M and a height of about 100 μm. Radius 8 IIlffi
As a result of an iron ball weighing 6 kg falling onto the test object (2) of this FRP fabric material laminate, defects were generated in the test object due to impact damage. For comparison, 6m IIX6am, 4m
A 2 mm x 2 mm A1 tape was attached to the bottom of the subject (2).

この被検体(2)について超音波反射板法によって探傷
した。2 tm X 2 mmのAlテープによる超音
波の減衰に相当するf (R)信号にしきい値を設定し
て、これを越える減衰を欠陥として表示したものは被検
体表面のうねりによる減衰もCスコープ像として表示さ
れた。
This specimen (2) was tested for flaws using the ultrasonic reflector method. A threshold is set for the f (R) signal, which corresponds to the attenuation of ultrasonic waves by a 2 tm x 2 mm Al tape, and attenuation exceeding this value is displayed as a defect. displayed as an image.

しかし、f (R) /f (S) = f (C) 
(7)信号処理を行い、f (C)を表示させることに
よって衝撃損傷による欠陥およびAlテープによる人工
欠陥が明瞭に識別できた。
However, f (R) / f (S) = f (C)
(7) By performing signal processing and displaying f (C), defects caused by impact damage and artificial defects caused by the Al tape could be clearly identified.

〈発明の効果) 本発明の方法は超音波入射の妨げになる被検体表面のあ
らさまたはうねり、あるいは被検体端部や被検体内の組
織変化等、欠陥以外の要因による超音波の減衰の影響を
軽減して、被検体内に存在する欠陥を明瞭に把握でき、
効率的な検査が可能になる。
<Effects of the Invention> The method of the present invention eliminates the effects of attenuation of ultrasound due to factors other than defects, such as roughness or undulations on the surface of the object that impede the incidence of ultrasound waves, or tissue changes at the edges of the object or inside the object. It is possible to clearly understand defects existing within the object by reducing
Efficient inspection becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超音波反射板法による超音波探傷方法のブロッ
ク図、第2図は超音波反射法の模式図、第3図は超音波
透過法及び超音波探傷方法の模式図とブロック図の1部
、第4図はAスコープ像の模式図、第5図は第2図で示
した探傷配置にふける信号処理のためのゲート設定方法
の模式図、第6図は第1図、第3図で示した探傷配置に
おける信号処理のためのゲート設定方法の模式図、第7
図は信号処理手順の説明図、第8図お、よび第9図は不
規則な表面状態の被検体について欠陥のみをCスコープ
像として表示させた図である。 (1)反射板      (2)被検体(3)   探
触子(4)   バ九す−・しシーバー(5)   ゲ
ート 回路 ■(6)   ゲート 回路■(7)  
オシロスコープ           (8)オシロス
コープ(9)アナログ信号処理装置 α(I  A/D
変換器(社)波形記憶装置   側 ディジタル信号処
理装置■ 画面入出力装置  Q4CRTデイスプレィ
α51Cスキャン制御プログラム   αe  モータ
コントローラーαで 超音波伝達媒体  0秒 探触子
α中  レシーバー 第 図 第 図 第 図 第 図
Figure 1 is a block diagram of the ultrasonic flaw detection method using the ultrasonic reflector method, Figure 2 is a schematic diagram of the ultrasonic reflection method, and Figure 3 is a schematic diagram and block diagram of the ultrasonic transmission method and ultrasonic flaw detection method. Part 1, Fig. 4 is a schematic diagram of the A scope image, Fig. 5 is a schematic diagram of the gate setting method for signal processing in accordance with the flaw detection arrangement shown in Fig. 2, and Fig. 6 is a schematic diagram of the A scope image. Schematic diagram of gate setting method for signal processing in the flaw detection arrangement shown in Figure 7.
This figure is an explanatory diagram of the signal processing procedure, and FIGS. 8 and 9 are diagrams in which only defects of a subject with an irregular surface state are displayed as C-scope images. (1) Reflector plate (2) Object (3) Probe (4) Vacuum/Shiba (5) Gate circuit (6) Gate circuit (7)
Oscilloscope (8) Oscilloscope (9) Analog signal processing device α (I A/D
Converter Corporation Waveform storage device side Digital signal processing device ■ Screen input/output device Q4 CRT display α51C scan control program αe Motor controller α Ultrasonic transmission medium 0 seconds Probe α inside Receiver Figure Figure Figure Figure Figure

Claims (1)

【特許請求の範囲】 1、被検体の超音波探傷によって電圧信号として連続し
て得られる反射または透過エコー信号の中から変動が現
れている2つのエコー信号を選択し、次式で表される信
号処理によって得られる信号f(C)を用いて欠陥を検
出することを特徴とする超音波探傷方法。 {f(R)×A+B)/f(S)=f(C)、 {f(BT)×A+B)/f(S)=f(C)、 f(R)/f(S)=f(C)、f(BT)/f(S)
=f(C)、 f(F)×A/f(BT)=f(C)、 f(F)×A/f(R)=f(C)、 {f(Th)×A+B}/f(S)=f(C)、 f(Th)/f(S)=f(C)または f(F)×A/f(Th)=f(C) [式中、f(S)、f(BT)、f(R)、f(F)お
よびf(Th)はそれぞれ被検体表面、底面、反射板、
欠陥からの反射エコー信号および透過エコー信号を表す
。f(C)は信号処理によって得られる信号を表す。A
は信号の振幅を合わせるための係数で正の実数を、Bは
信号レベルを合わせるための係数で正または負の実数(
単位:V)を表す。]
[Claims] 1. Select two echo signals showing fluctuations from among the reflected or transmitted echo signals that are continuously obtained as voltage signals through ultrasonic flaw detection of the test object, and select them as expressed by the following equation. An ultrasonic flaw detection method characterized by detecting defects using a signal f(C) obtained by signal processing. {f(R)×A+B)/f(S)=f(C), {f(BT)×A+B)/f(S)=f(C), f(R)/f(S)=f( C), f(BT)/f(S)
=f(C), f(F)×A/f(BT)=f(C), f(F)×A/f(R)=f(C), {f(Th)×A+B}/f (S)=f(C), f(Th)/f(S)=f(C) or f(F)×A/f(Th)=f(C) [where f(S), f (BT), f(R), f(F) and f(Th) are the object surface, bottom surface, reflector plate,
Represents the reflected and transmitted echo signals from the defect. f(C) represents a signal obtained by signal processing. A
is a positive real number that is a coefficient for adjusting the signal amplitude, and B is a positive or negative real number that is a coefficient for adjusting the signal level (
Unit: V). ]
JP63304967A 1988-11-30 1988-11-30 Ultrasonic flaw detecting method Pending JPH02150765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63304967A JPH02150765A (en) 1988-11-30 1988-11-30 Ultrasonic flaw detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63304967A JPH02150765A (en) 1988-11-30 1988-11-30 Ultrasonic flaw detecting method

Publications (1)

Publication Number Publication Date
JPH02150765A true JPH02150765A (en) 1990-06-11

Family

ID=17939469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63304967A Pending JPH02150765A (en) 1988-11-30 1988-11-30 Ultrasonic flaw detecting method

Country Status (1)

Country Link
JP (1) JPH02150765A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115720A1 (en) * 2013-01-22 2014-07-31 新日鐵住金株式会社 Method for correcting defect location
WO2014119454A1 (en) * 2013-02-01 2014-08-07 新日鐵住金株式会社 Flaw inspection method and flaw inspection device
WO2015052956A1 (en) 2013-10-11 2015-04-16 株式会社Ihi Fiber undulation detection method for conductive composite material and fiber undulation detection device
CN104755920A (en) * 2012-12-20 2015-07-01 新日铁住金株式会社 Defect inspection method and defect inspection device
WO2017158864A1 (en) 2016-03-16 2017-09-21 株式会社Ihi Method for inspecting electroconductive composite material and device for inspecting electroconductive composite material
US10656121B2 (en) 2015-10-09 2020-05-19 Ihi Corporation Method for detecting arrangement disorder of fibers in conductive composite material, and device for detecting arrangement disorder of fibers in conductive composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821162A (en) * 1981-07-29 1983-02-07 Nippon Kokan Kk <Nkk> Ultrasonic flaw detector
JPS61151458A (en) * 1984-12-25 1986-07-10 Kawasaki Steel Corp C-scanning ultrasonic flaw detection method and apparatus thereof
JPS62207957A (en) * 1986-03-10 1987-09-12 Kawasaki Steel Corp Ultrasonic flaw detecting method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5821162A (en) * 1981-07-29 1983-02-07 Nippon Kokan Kk <Nkk> Ultrasonic flaw detector
JPS61151458A (en) * 1984-12-25 1986-07-10 Kawasaki Steel Corp C-scanning ultrasonic flaw detection method and apparatus thereof
JPS62207957A (en) * 1986-03-10 1987-09-12 Kawasaki Steel Corp Ultrasonic flaw detecting method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104755920A (en) * 2012-12-20 2015-07-01 新日铁住金株式会社 Defect inspection method and defect inspection device
WO2014115720A1 (en) * 2013-01-22 2014-07-31 新日鐵住金株式会社 Method for correcting defect location
JP5692475B2 (en) * 2013-01-22 2015-04-01 新日鐵住金株式会社 Defect position correction method
CN104903719A (en) * 2013-01-22 2015-09-09 新日铁住金株式会社 Method for correcting defect location
WO2014119454A1 (en) * 2013-02-01 2014-08-07 新日鐵住金株式会社 Flaw inspection method and flaw inspection device
JP5692474B2 (en) * 2013-02-01 2015-04-01 新日鐵住金株式会社 Defect inspection method and defect inspection apparatus
KR20150103196A (en) * 2013-02-01 2015-09-09 신닛테츠스미킨 카부시키카이샤 Flaw inspection method and flaw inspection device
WO2015052956A1 (en) 2013-10-11 2015-04-16 株式会社Ihi Fiber undulation detection method for conductive composite material and fiber undulation detection device
US10132778B2 (en) 2013-10-11 2018-11-20 Ihi Corporation Fiber waviness detection method and apparatus for conductive composite materials
US10656121B2 (en) 2015-10-09 2020-05-19 Ihi Corporation Method for detecting arrangement disorder of fibers in conductive composite material, and device for detecting arrangement disorder of fibers in conductive composite material
WO2017158864A1 (en) 2016-03-16 2017-09-21 株式会社Ihi Method for inspecting electroconductive composite material and device for inspecting electroconductive composite material
US10605777B2 (en) 2016-03-16 2020-03-31 Ihi Corporation Method for inspecting electroconductive composite material and device for inspecting electroconductive composite material

Similar Documents

Publication Publication Date Title
US4744250A (en) Method for classification of point and elongated single defects in workpieces by means of ultrasonics
JPH02150765A (en) Ultrasonic flaw detecting method
CA2012374C (en) Ultrasonic crack sizing method
JP2002243703A (en) Ultrasonic flaw detector
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
US4253337A (en) Ultrasonic nondestructive testing method
JP2005147770A (en) Ultrasonic flaw detector
JPS62207957A (en) Ultrasonic flaw detecting method
JPH08160020A (en) Ultrasonic creep damage evaluating apparatus
JPS63221211A (en) Ultrasonic thickness measuring method for laminar body
JPH07248317A (en) Ultrasonic flaw detecting method
Rose A feature based ultrasonic system for reflector classification
JPH0587784A (en) Method and apparatus for estimation for quantification of defect
JPS62162958A (en) Ultrasonic flaw detecting method
JPS6126857A (en) Ultrasonic flaw detecting method and defect deciding method of centrifugally cast iron pipe
JPH06308097A (en) Ultrasonic flaw detection method
Chaffaï et al. Simulation tools for tofd inspection in CIVA software
Bond Basic inspection methods (Pulse-echo and transmission methods)
JPS6491055A (en) Measurement of gel physical property
JPS6089748A (en) Ultrasonic flaw detector
JPH01170850A (en) Method for examining material boundary surface of member
JPH06317568A (en) Ultrasonic flaw detection apparatus
JP2000028588A (en) Ultrasonic flaw detecting method
JPH1019859A (en) Non-destructive inspecting instrument
Kupperman Analytical ultrasonics for structural materials