JPS6126857A - Ultrasonic flaw detecting method and defect deciding method of centrifugally cast iron pipe - Google Patents

Ultrasonic flaw detecting method and defect deciding method of centrifugally cast iron pipe

Info

Publication number
JPS6126857A
JPS6126857A JP14779784A JP14779784A JPS6126857A JP S6126857 A JPS6126857 A JP S6126857A JP 14779784 A JP14779784 A JP 14779784A JP 14779784 A JP14779784 A JP 14779784A JP S6126857 A JPS6126857 A JP S6126857A
Authority
JP
Japan
Prior art keywords
defect
flaw detection
signal
wave
flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14779784A
Other languages
Japanese (ja)
Inventor
Sadao Kawashima
貞夫 河島
Yoshiichi Mori
森 芳一
Akio Suzuki
紀生 鈴木
Masayoshi Iwasaki
岩崎 全良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP14779784A priority Critical patent/JPS6126857A/en
Publication of JPS6126857A publication Critical patent/JPS6126857A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/38Detecting the response signal, e.g. electronic circuits specially adapted therefor by time filtering, e.g. using time gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0428Mode conversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/056Angular incidence, angular propagation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2634Surfaces cylindrical from outside

Abstract

PURPOSE:To detect a flaw in a centrifugally cast iron pipe accurately by processing flaw detection data collected by an ultrasonic flaw detecting method as specified and setting a mean noise level, and regarding signals having large deviation from the noise level as defect signals. CONSTITUTION:A longitudinal ultrasonic wave incident from one probe 4A is caused to strike a defect 3 directly and its regularly reflected ultrasonic wave 5' is received by the other probe 4B. The longitudinal ultrasonic wave is used, so a wave containing defect information is received firstly as to the reflected wave which is reflected by the defect regularly and a ripple echo noise as a scattered wave from a crystal grain boundary, etc., or a lateral wave converted to reflection mode is received later. For the purpose, gating is set almost at the time obtained by dividing the beam path length by the speed of the longitudinal wave, thereby detecting the defect information selectively. Data obtained by performing flaw detection over a specific range are summed up and averaged to improve the S/N ratio, and the multiplication and division process covering the whole is performed so that the noise level is some constant output, detecting the defect signal securely.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、水蒸気接触改質用加熱管を代表例とする遠心
鋳造管につき、経年変化により発生する内部欠陥、特に
管周方向欠陥の超音波探傷の困難性を解決する超音波探
傷方決とその欠陥判定方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to the prevention of internal defects, particularly defects in the tube circumferential direction, that occur due to aging in centrifugally cast tubes, typically heating tubes for steam catalytic reforming. This article relates to an ultrasonic flaw detection method that solves the difficulties of sonic flaw detection and its defect determination method.

この種水蒸気接触改質用加熱管は、使用条件からの必要
にLすHK −40(0,4096C、2596Or、
 20%Ni系)等のオーストナイト系耐熱鋳鋼材を遠
心鋳造によジ製管し所定長に複数本溶接接続してつくら
れている。使用状li!iiにおいては、触媒の充填さ
れノζ管内にメタン等の原料ガスと高圧水蒸気を圧送し
管外から加熱するので管内は高温高圧下に曝される。こ
の状態のもとに長期使用されると使用時間の経過に伴い
7−1応力によるクリープフィンシャーが管内面エフ外
面に向って放射状に進展する傾向がるり、また管内外の
温度差(外熱内冷)に起因して管内面の円周方向に欠陥
全発生する怖れがある。
This type of heating tube for steam catalytic reforming is used for HK-40 (0,4096C, 2596Or,
It is made by centrifugally casting austonite heat-resistant cast steel such as 20% Ni-based steel and welding a plurality of pipes to a predetermined length. Letter of use li! In step ii, raw material gas such as methane and high-pressure steam are fed under pressure into the ζ tube filled with catalyst and heated from outside the tube, so the inside of the tube is exposed to high temperature and high pressure. If it is used for a long time under this condition, creep fin shear due to 7-1 stress tends to develop radially toward the inner surface of the tube and the outer surface of the tube. There is a risk that defects may occur in the circumferential direction of the inner surface of the tube due to internal cooling.

従って上記加熱管の経年変化を把握し残存寿命を推定す
ること1−1t操業安定上不可欠の事項である。
Therefore, understanding the aging of the heating tube and estimating its remaining life is essential for stable 1-1t operation.

〔従来の技術〕[Conventional technology]

水蒸気接触改質炉内茫立設されている多数の加熱管につ
き、経年変化に工9発生する可能性のある内部欠陥を調
べるには非破壊検査を個別に実施することが必要になる
。一般にこの目的に対し適用しうる非破壊検査としては
放射線透過検査と超音波探傷とがあるが、放射線透過検
査は放射線の進行方向にある程度以上の厚さ、一般的に
は板厚の196程度以上の厚さと放射線の進行方向に対
して直角方向の拡がりを持った欠陥でないと検出さt′
L難く、それ以外の欠陥、例えばワレ状欠陥のよう72
18合は検出できず。
In order to investigate the internal defects that may occur due to aging in the large number of heating tubes installed vertically in the steam catalytic reforming reactor, it is necessary to individually conduct non-destructive testing. In general, non-destructive inspections that can be applied for this purpose include radiographic inspection and ultrasonic flaw detection, but radiographic inspection is performed when the thickness exceeds a certain level in the direction of radiation propagation, generally about 196 mm or more of the plate thickness. It is detected that the defect does not have a thickness of
Other defects such as crack defects72
Unable to detect 18th.

従って検出精度が悪い。Therefore, detection accuracy is poor.

他方、超音波探傷法は比較的均質な鉄鋼材料の場合には
内部欠陥の非破壊検査に有効茫利用でき、具体的実施方
法としてパルス反射法、透過法、共振法等かあり1tた
探触子を1個あるいは2個の対を使用する方法、さらk
は被検体への超音波入射方向を垂直あるいは斜角(設定
する方法等が知られており、それぞれの被検査体の形状
、欠陥の種類等の適用条件に応じて選択使用されている
。しかし前記の遠心鋳造オーステナイト系耐熱鋳鋼管の
場合茫は、一般鍜圧いこと、また結晶が粗大で粒界反射
による林状エコーφに出易くて受信波形が複雑となるこ
とから欠陥清報との判別が困難かつ不a1実となる0従
って前記遠心鋳造管の場合には、先行技術の超音波探傷
は何れも、材質面からする粗害要因に対する判別性向上
の対策に欠けるため、精度の点で確実な探傷は困難とさ
れていた。
On the other hand, ultrasonic flaw detection can be effectively used for nondestructive inspection of internal defects in relatively homogeneous steel materials, and specific methods include pulse reflection method, transmission method, resonance method, etc. Methods using pairs of one or two children, and
There are known methods for setting the direction of ultrasonic incidence on the object to be inspected, either vertically or at an oblique angle, and these methods are selected depending on the application conditions such as the shape of the object to be inspected and the type of defect.However, In the case of the above-mentioned centrifugally cast austenitic heat-resistant cast steel pipe, the tin is generally under pressure, and the crystals are coarse and forest-like echoes due to grain boundary reflection are likely to appear, making the received waveform complex, so it is often considered a defect report. Therefore, in the case of centrifugally cast pipes, all of the prior art ultrasonic flaw detection methods lack measures to improve the discrimination against roughness factors from the material aspect, resulting in poor accuracy. Therefore, reliable flaw detection was considered difficult.

(発明が解決しようとする問題点) 本発明は、結晶粒が粗大で超音波の減衰が大きい遠心鋳
造管の超音波探傷に閃し、先行技術の方法の前記困難t
−解決して、内掛欠陥の探傷。
(Problems to be Solved by the Invention) The present invention is inspired by the ultrasonic flaw detection of centrifugally cast tubes with coarse crystal grains and large attenuation of ultrasonic waves, and solves the above-mentioned difficulties of the prior art methods.
- Solve and detect internal defects.

主に周方向の欠陥の検出に有効となりつる超音波探傷法
、¥fにその欠陥判定方法を捉供することを目的とする
The purpose of this paper is to provide an ultrasonic flaw detection method which is mainly effective for detecting defects in the circumferential direction, and a defect determination method thereof.

(問題点を解決するための手段および作用および実施例
〕 本発明の遠心鋳造管の超音波探傷法の欠陥#1]定方法
は、被検査管に対し2iR触子をその一力の探触子から
縦波の超音波を発信し欠陥での正反射波を他方の探触子
で受信するよう配置して探傷を行い、管周方向の探傷信
号を所定範囲にわたり平均化しレベルtJI4整した信
号を利用して変化の大きい探傷信号を欠陥信号と判定す
る仁とを特徴とする。
(Defect #1 of the ultrasonic flaw detection method for centrifugally cast pipes of the present invention) Defect #1 of the ultrasonic flaw detection method for centrifugally cast pipes of the present invention Flaw detection is performed by emitting longitudinal ultrasonic waves from one probe and receiving the specularly reflected wave from the defect with the other probe.The flaw detection signal in the pipe circumferential direction is averaged over a predetermined range and the level tJI4 is adjusted. The method is characterized in that a flaw detection signal with a large change is determined to be a defect signal by using the following.

すなわち、不発BAFi持定の探触子配置とその探傷様
式により超音波の減衰が少くしかも採取探傷データを特
定の処fM!を行なって平均的ノイズレベルを設定しそ
れからの飼差値の大きいものを検出して欠陥信号と判定
することの相互関連にLv成立つ。
In other words, due to the probe arrangement and flaw detection method of unexploded BAFi, the attenuation of ultrasonic waves is small, and the collected flaw detection data can be processed in a specific manner. Lv is established in the mutual relationship between setting the average noise level by performing the above steps, detecting a large differential value from that level, and determining it as a defective signal.

以下、本発明を添付図を参照して具体的に詳細に説明し
その特質を明らかにする。
Hereinafter, the present invention will be specifically explained in detail with reference to the accompanying drawings to clarify its characteristics.

一般!1:、超音波の反射により材料中の欠陥を探傷す
るには、第7図q)の被検査体母材(1)、溶接部(2
)、欠陥(3)、探触子(4)、超音波ビーム(5)の
関係に示すように、縦波の超音波を底面部で一度反射さ
せ欠陥部でさらに反射させて返って来る超音波を受信す
るのが普通である。
General! 1: In order to detect defects in a material by reflection of ultrasonic waves, the base material (1) of the object to be inspected and the welded part (2) shown in Fig. 7 (q) are
), the defect (3), the probe (4), and the ultrasonic beam (5). It usually receives sound waves.

縦波の2回反射の場合、第7図(ハ)の横軸の入射角に
対する縦軸の2回の音圧反射率の関係に示すように、入
射角20″〜7σの反射率は一定ではあるが1596以
下と低い。横波では第7図←)に示すLうに入射角の変
化11:よる2回の音圧反射率の変化が著しい。縦波で
は底面と欠陥部との2回の反射でエネルギー損失が太き
(、t*底面での反射の際モード変換して縦波の一部が
横波になりエネルギー損失を生ずる状態となる。
In the case of two-time reflection of a longitudinal wave, as shown in the relationship between the two-time sound pressure reflectance on the vertical axis and the incident angle on the horizontal axis in Figure 7 (C), the reflectance for incident angles of 20'' to 7σ is constant. However, it is low at less than 1596.For transverse waves, there is a remarkable change in sound pressure reflectance twice due to the change in the angle of incidence 11: shown in Figure 7←).For longitudinal waves, there is a significant change in the sound pressure reflectance twice between the bottom surface and the defect. Energy loss due to reflection is large (, t* When reflected at the bottom surface, mode conversion occurs and part of the longitudinal wave becomes a transverse wave, causing energy loss.

従って2回反射では本発明の対象とする遠心鋳造管のL
うにただでさえ減衰の大きい材料では欠陥の検出は困難
である。縦波Mi音波を1回反射させる場合の結果は第
7図(へ)に示すようになり入射角が60〜50の範囲
では反射率は入射角にほぼ1次比例の開係となりかつ第
7図(→の場合工りも大きい。
Therefore, in the double reflection, L of the centrifugally cast tube which is the object of the present invention
It is difficult to detect defects in materials that already have high attenuation. The results when a longitudinal Mi sound wave is reflected once are shown in Fig. 7 (f), and when the incident angle is in the range of 60 to 50, the reflectance is approximately linearly proportional to the incident angle, and the 7th Figure (In the case of →, the machining is also large.

この特性を利用し、また被検体の形状が管であることを
利用し、末完8Ak:おいては、第1図(イ)お工び(
ロ)に示すように、1つの探触子(4A〕から入射した
縦波の超音波(5ンを欠陥(3)に直接当てその正反射
の超音波(5)をもう1つの探触子(4幻で受信する探
触子配置構成お↓び探傷様式とする。
Utilizing this characteristic and the fact that the shape of the object is a tube, we can construct the final version of 8Ak in Figure 1 (a).
As shown in (b), a longitudinal ultrasonic wave (5 N) incident from one probe (4A) is directly applied to the defect (3), and the specularly reflected ultrasonic wave (5) is transferred to the other probe. (Probe arrangement configuration and flaw detection style for receiving with 4 phantoms.

そして本発明では、この配[構成に、次の諸般の設定が
なされるようにする。すなわち先づ縦波の超音波を使用
したことにエリ、欠陥(3)がある場合に欠陥で正反射
して受信探触子(4B)に到達する反射波としては、欠
陥情報を持った波が一番最初Qコ伝わり、結晶粒界等の
赦乱波または反射時モード変換した横波等による林状エ
コーノイズはそれエリ遅れて到来することになる。
In the present invention, the following various settings are made in this arrangement. In other words, first of all, the reason for using longitudinal ultrasound is that if there is a defect (3), the reflected wave that is specularly reflected by the defect and reaches the receiving probe (4B) is a wave that carries defect information. is first transmitted in the Q-column, and forest-like echo noise due to perturbed waves from grain boundaries or transverse waves whose mode has been converted upon reflection arrives later.

そこで、ビーム路程を縦波の速度で除して得る時間の近
傍にダートをかけておくと欠陥情報を選択的に含む出力
を得ることが可能となる。
Therefore, by applying darts near the time obtained by dividing the beam path by the velocity of the longitudinal wave, it becomes possible to obtain an output that selectively includes defect information.

また、被検体のもつ異方性により、超音波が曲げらnる
程度が、横波に比べて縦波の方が少ないことも利点とし
て挙げらnる。
Another advantage is that, due to the anisotropy of the object, the degree to which the ultrasonic waves are bent is less with longitudinal waves than with transverse waves.

次に探傷@域に対する探傷子の配置位置は、想定する欠
陥部に対しビーム路程が可能な限り短い近接位置である
ことが減衰を少くする観点から有利であることFiδう
迄もない。しかし現*に#−を被検管の溶接部の周辺茫
は機械加工による段付部(テーパS)が存在するという
幾何学的な制約があり、また、第2図に示すように、探
触子を想定した欠陥位置にあまり近付は過ぎると、超音
波のビームが円周方向に近づくため紀、発信探触子(4
A)から出射した超音波の一部が欠陥での正反射を経な
いで(5ンに示すように直接受信探触子(4B)に到達
して受信データのBlMを低下させることになる。
Next, it goes without saying that it is advantageous, from the viewpoint of reducing attenuation, to place the flaw detector in the flaw detection @ area in a position close to the assumed defective part where the beam path is as short as possible. However, there is currently a geometrical constraint in that there is a stepped part (taper S) formed by machining around the welded part of the test tube. If the probe gets too close to the defect position, the ultrasonic beam will approach the circumferential direction.
A part of the ultrasonic waves emitted from A) directly reaches the reception probe (4B) without undergoing specular reflection at the defect (as shown in Figure 5), thereby lowering the BIM of the reception data.

従って本発明では与え得る探触子配置は妥当入射角範囲
内で前記制約条件外範囲とすることが必要となる。実験
によると、第1図0)記入の記号でL+=15〜40轄
、Lm−15〜4oa、LmI−+十しツ=50〜B□
a、w=50〜100轄の範囲で良好なS/Hの探傷デ
ータが得られることが判明した。
Therefore, in the present invention, the probe arrangement that can be provided needs to be within the range of reasonable incidence angles and outside the above-mentioned constraint conditions. According to the experiment, L+ = 15 to 40, Lm - 15 to 4 oa, LmI - + 10 = 50 to B□ with the symbols written in Figure 1 (0).
It was found that good S/H flaw detection data could be obtained in the range of a, w = 50 to 100.

@5iC%8/Nは超音波ビームの拡がりに影響される
ので、管壁等で反射さiLる正体不明のエコーの発生を
少くするkめ、探触子に音響レンズを付設してビームの
太さを絞るようにするのが有効である。
@5iC%8/N is affected by the spread of the ultrasonic beam, so in order to reduce the generation of unidentified echoes reflected from tube walls etc., an acoustic lens is attached to the probe to reduce the beam width. It is effective to reduce the thickness.

本発明においては、上記の探触子配置にエフ設定様式の
もとに探傷を実施するだけでなく、さらにとの探傷を一
定の範囲(わfcり実施して得られた探傷デ〜りに基い
て欠陥表示特性改善のため加算平均化とレベルvj4整
との2段階の信号処1Mを施す。
In the present invention, in addition to performing flaw detection based on the above-mentioned probe arrangement and fc setting format, the flaw detection data obtained by performing flaw detection within a certain range (W fc) Based on this, two-stage signal processing 1M of averaging and level vj4 adjustment is performed to improve defect display characteristics.

第6図は前記探触子配置および探傷様式にエフ探傷を実
施して得た探傷データの1例を示す。
FIG. 6 shows an example of flaw detection data obtained by performing F flaw detection using the above-mentioned probe arrangement and flaw detection method.

横軸に被検査管の管周方向の角度位置をとり、縦軸はダ
ートをかけた範囲のピーク値の電圧をプロットしたもの
である。被検査管Fi、条件を単純化するためのテスト
ピースとして第7図に示すように人工欠陥(5A)t−
設けた遠心鋳造管を供試した。管の肉厚itとし、管周
90°の位置に1/3tの深さの人工欠陥、管周270
の位置に1/2tの深さの人工欠陥を持つ。第3図の探
傷データの探傷波状は林状エコーノイズを含んで数多く
のピークからなる不規則的な波形であるがテストピース
を使用したため欠陥らしきものが一応認められている。
The horizontal axis represents the angular position of the tube to be inspected in the tube circumferential direction, and the vertical axis plots the voltage at the peak value in the darted range. The tube to be inspected Fi, an artificial defect (5A) t- as shown in Fig. 7 is used as a test piece to simplify the conditions.
The prepared centrifugal casting tube was tested. The wall thickness of the pipe is set to 1, and an artificial defect with a depth of 1/3t is placed at a position of 90° on the pipe circumference, and the pipe circumference is 270°.
There is an artificial defect with a depth of 1/2t at the position. The flaw detection waveform of the flaw detection data shown in Fig. 3 is an irregular waveform consisting of many peaks, including forest echo noise, but since a test piece was used, what appears to be a defect has been observed.

しかし欠陥信号、パンクグラクンドノイズともに場所に
工V振幅が大き(8/H−= 1程度である。従って実
際の遠心鋳造管を探傷した場合には波形はもつと複雑で
内部欠陥tl−明確に指摘することは困難である。
However, both the defect signal and the puncture noise have a large amplitude (approximately 8/H- = 1). Therefore, when testing an actual centrifugally cast tube, the waveform is complex and indicates an internal defect tl- It is difficult to point out clearly.

そこで本発明においてFi皮下の信号処理を施す。先づ
第1段階の処理は次のLう(する。
Therefore, in the present invention, Fi subcutaneous signal processing is performed. First, the first stage of processing is as follows.

欠陥は管周方向にある程度の拡がりを持っているので、
管周方向に走査する間、その拡がりに相当する範囲につ
いて探傷データを採取し、それらを入力信号中の特定の
部分の時刻を原点として出力信号を時間的に同期加算し
、平均化する方法を採用する。これにより、欠陥情報は
M回の加算で約M倍になるのに対し、ノイズはランダム
であるためj高しかならず、従ってS/ffはM回の加
算で10 log M (dB)  改善される。第4
図は第3図の探傷データを得る場合に、このような加算
平均化処理を加えた結果全示し、B/Hは2〜3に改善
され、欠陥の検出精度が向上する。
Since the defect has a certain extent of expansion in the circumferential direction,
While scanning in the pipe circumferential direction, flaw detection data is collected in a range corresponding to the spread of the pipe circumference, and the output signal is summed in sync with the time of a specific part of the input signal as the origin, and the data is averaged. adopt. As a result, the defect information is multiplied by about M with M additions, whereas the noise is random, so it is only j high, and therefore S/ff is improved by 10 log M (dB) with M additions. . Fourth
The figure shows all the results obtained by adding such averaging processing when obtaining the flaw detection data shown in FIG. 3. The B/H is improved to 2 to 3, and the defect detection accuracy is improved.

前記の第1段階の処理を行なっても、尚欠陥信号の誤認
を生ずる可能性のあることが研究の結果判明した。そこ
で末完#iにおいては次のレベル調整の第2段階の処理
を行う。
As a result of research, it has been found that even if the first stage processing described above is performed, there is still a possibility that a defective signal may be misidentified. Therefore, in final completion #i, the second stage of the next level adjustment is performed.

第5図は、第6図と比較される探傷データの他例を示し
、第6図の被検査管テストピースは結晶粒子の比較的細
かいものであるのに対し、第5図の場合は粒の粗いもの
を供試した。第5図の場合のテストピースは管周180
の位11iに1/2tの人工欠陥を設けである。そして
第6図は第5図の探傷データから得る第1段階の処理を
行なった第4図と比較される結果を示す。こt′Lによ
り被検査管の材質の辺いkついて検討してみると、第4
図の粒の細かいものと、第6図の粒の粗いものとでは、
この場合75 dB  のゲインの差が認められる。従
って同じ探傷ゲインで内部欠陥の評価をする場合、実際
の遠心鋳造管では粗い粒の管の内部欠陥を見落すか、細
粒の管のノイズを過大評価して欠陥信号と誤認してYう
怖れがある。これに対して本発明の第2段階でVi、減
衰の大きなものは、欠陥信号レベルを減衰させるととも
紀ノイズレベルをも減少させることから1wJ1段階の
処理′ft施した後のノイズレベル′をある一定出力に
なるよう全体の乗除算処理を行なう。前出例につき具体
的に述べると、第6因のノイズレベルを第4図のノイズ
レベル(合せるため、約(5dB ゲインを増し、一定
レベル以上となった波形ピークを欠陥信号−と判定する
。他の判定法として変更したノイズレベルの平均値と一
定値との和を判定レベルとしそれを越えた信号全欠陥信
号と判定する。
Figure 5 shows another example of flaw detection data to be compared with Figure 6. The test piece of the pipe to be inspected in Figure 6 has relatively fine crystal grains, whereas the case in Figure 5 has relatively fine crystal grains. I tried a coarse one. The test piece in the case of Fig. 5 has a circumference of 180 mm.
An artificial defect of 1/2t is provided at position 11i. FIG. 6 shows the results compared with FIG. 4, which was obtained from the flaw detection data of FIG. 5 and subjected to the first stage processing. When considering the quality of the material of the pipe to be inspected using this t'L, we find that the fourth
The fine-grained one in the figure and the coarse-grained one in Figure 6 are
In this case, a gain difference of 75 dB is observed. Therefore, when evaluating internal defects with the same flaw detection gain, in actual centrifugally cast tubes, internal defects in coarse-grained tubes may be overlooked, or noise in fine-grained tubes may be overestimated and mistakenly interpreted as defect signals. There is fear. On the other hand, in the second stage of the present invention, the one with large attenuation attenuates the defective signal level and also reduces the noise level. The entire multiplication/division process is performed to obtain a certain constant output. To specifically describe the above example, in order to match the noise level of the 6th factor to the noise level of FIG. As another judgment method, the sum of the changed average value of the noise level and a constant value is set as a judgment level, and any signal exceeding the judgment level is judged to be a defective signal.

前例においては第1段階の信号−処理は管周方向に走査
する間の時間的同期加算平均によるイa号処理手法によ
り行うものとして説明したが、他の平均手法、例えば超
音波周波数を変更して得た探傷データを加算平均してノ
イズレベルを低減する手法あるいは管軸方向に小距離ず
らせて探傷するタンデム走査を行って得た探傷データを
加算平均してノイズを低減する手法l、:よることかで
き、探傷を行う場所的、時間的変更の設定範囲に対応し
て平均化の手法を適宜(選ぶことができる。
In the previous example, it was explained that the first stage signal processing was carried out using the No. A method of reducing the noise level by adding and averaging the flaw detection data obtained during the test, or a method of reducing the noise by adding and averaging the flaw detection data obtained by performing tandem scanning in which flaws are detected by shifting a small distance in the direction of the tube axis. Therefore, the averaging method can be selected as appropriate depending on the setting range of location and time changes in flaw detection.

以上は、局部的72欠陥に対する失施例を説明したもの
であるが、欠陥が全周にある場合は若干異なる態様で実
施する。すなわちこの場合、被検査管を管軸方向のAな
る位置で円周方向走査を行って数点の探傷データを採収
し、gB後位置の探傷データの比較にL9ゲインが大幅
に、例えば6dB変化しfc場合を全周欠陥とやJ定す
る。
The above is a description of a failed example for localized 72 defects, but if the defects are all around the circumference, the implementation will be done in a slightly different manner. In other words, in this case, the tube to be inspected is scanned in the circumferential direction at position A in the tube axis direction to collect flaw detection data at several points, and when comparing the flaw detection data at the position after gB, the L9 gain is significantly increased, for example by 6 dB. A case where fc changes is defined as a full-circumference defect.

欠陥が全周にある場合について考察すると次のとおりで
ある。すなわちこの場合は、−見ノイズレベルが上昇し
kことと等価となり、前出実施例の判定法では欠陥を見
逃す怖がるる。しかし、幸にして探傷する部分は一個所
でなく、同−被検査管につき数点で探傷テ゛−タ全採取
するので、mJ後位置の探傷結果のノイズレベルと比較
することが可能である。実際上、全周欠陥がある鐵度が
少いため、探傷を行う故点全てに全周欠陥がある場合の
確率は99%ないと考えら九る。従って前後探傷データ
と比較した場合。
The following is a consideration of the case where there are defects all around the circumference. In other words, in this case, the noise level increases, which is equivalent to k, and there is a fear that the determination method of the previous embodiment may miss the defect. However, fortunately, all of the flaw detection data is collected at several points on the tube to be inspected, rather than at one location, so it is possible to compare the noise level of the flaw detection results at the position after mJ. In reality, since only a small number of steels have defects all around, it is considered that there is less than a 99% probability that all the fault points to be inspected have defects all the way around. Therefore, when compared with the before and after flaw detection data.

大幅(約r5 dB)にレベルが変っている場合、そt
′Lを全周欠陥ど判定す九は工い。
If the level changes significantly (approximately 5 dB),
The ninth step is to determine if 'L is a defect all around.

(発明の効果) 以上のように本発明方法Mjると、水蒸気接触改質用加
熱管等の結晶粒が粗大で超音波の減衰が大きい遠心鋳造
管紀対し、経年変化により発生する内部欠陥を超音波探
傷法の非破壊検査により探傷する場合に、超音波の減衰
および散乱によるノイズの影響および管の材質によるそ
の影響差を減じて欠陥値91に確実に検出することが可
能と7:eす、検査の手数が少く、探傷の確実性により
管の信頼性%伐存痔命を的確釘類ることができる等の効
果がある。
(Effects of the Invention) As described above, the method Mj of the present invention eliminates internal defects that occur due to aging in centrifugal casting tubes, such as heating tubes for steam catalytic reforming, which have coarse grains and large attenuation of ultrasonic waves. When detecting flaws by non-destructive testing using ultrasonic flaw detection, it is possible to reliably detect defects with a defect value of 91 by reducing the effects of noise due to attenuation and scattering of ultrasonic waves and the difference in influence due to the material of the pipe. The number of inspection steps is small, and the reliability of the tube can be determined accurately due to the reliability of the flaw detection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)は本発明方法を実施するための被検査管に
対する超音波探触子の配置を示す側面略図、第1図(ロ
)はその増面略図、第2図は探触子配置が不適となる場
合の側面略図、第6図は横軸に管周角度位置をとり縦@
に反射強度をとって探傷データの1例を示す図表、第4
図は同じ縦横軸のもとに第6図の探傷データから導いた
平均化処理結果の図表、第5図は同じ縦横軸のもとII
:a2傷データの伐倒を示す図表、第6図は同じ縦横軸
のもとに第5図の探傷データから埠い友平均化処理結果
の図表、第7図は)は一般の2回反射による超音波探傷
の様式を示す縦IFI側面略図、第7図(ロ)は同じく
超音波ビーム方向を逆にした場合のビーム路程を示す図
、第7図(ハ)は縦波超音波の場合の横軸の入射角と縦
軸の2回反射の音圧反射率との関係を示す図表、第7図
に)は横波超音波の場合の横軸の入射角と縦軸の2回反
射の音圧反射率との関係を示す図表。 第7図(ホ)は縦波超音波の場合の横軸の入射角と縦軸
の縦波反射率との関係を示す図表である。 (1)・・被検査体、(2)拳φ溶接部、(3) C5
A)−Φ超音波ビーム、(θ)・・入射角%(In)(
L霊)(W)・拳距離、(t)・・肉厚。 持・許出願人代理人氏名
Fig. 1 (a) is a schematic side view showing the arrangement of an ultrasonic probe with respect to a pipe to be inspected for carrying out the method of the present invention, Fig. 1 (b) is a schematic enlarged view thereof, and Fig. 2 is a schematic side view showing the arrangement of an ultrasonic probe with respect to a pipe to be inspected for carrying out the method of the present invention. A schematic side view of the case where the arrangement is inappropriate, Figure 6 shows the tube circumferential angle position on the horizontal axis and the vertical @
Figure 4 shows an example of flaw detection data by measuring the reflection intensity.
The figure is a chart of the averaging processing results derived from the flaw detection data in Figure 6 under the same vertical and horizontal axes.
: Chart showing felling of a2 flaw data, Figure 6 is a chart showing the results of the normalization process from the flaw detection data in Figure 5 on the same vertical and horizontal axes, Figure 7 is a diagram showing the general double reflection. Fig. 7 (B) is a diagram showing the beam path when the ultrasonic beam direction is reversed, and Fig. 7 (C) is a longitudinal IFI side view showing the method of ultrasonic flaw detection. (Figure 7) is a chart showing the relationship between the incident angle on the horizontal axis and the sound pressure reflectance of twice reflected on the vertical axis. A chart showing the relationship with sound pressure reflectance. FIG. 7(e) is a chart showing the relationship between the incident angle on the horizontal axis and the longitudinal wave reflectance on the vertical axis in the case of longitudinal ultrasound. (1)...Object to be inspected, (2) Fist φ weld, (3) C5
A) -Φ Ultrasonic beam, (θ)... Incident angle % (In) (
L Spirit) (W)・Fist distance, (T)・Thickness. Name of applicant's agent

Claims (4)

【特許請求の範囲】[Claims] (1)被検査管に対し2探触子をその1方の探触子から
縦波の超音波を発信し欠陥での正反射波を他方の探触子
で受信するよう配置して探傷を行い、管周方向の探傷信
号を所定範囲にわたり平均化しレベル調整した信号を利
用して変化の大きい探傷信号を欠陥信号と判定すること
を特徴とする遠心鋳造管の超音波探傷法の欠陥判定方法
(1) Perform flaw detection by placing two probes on the pipe to be inspected so that one probe emits longitudinal ultrasonic waves and the other probe receives specularly reflected waves from defects. A flaw determination method using ultrasonic flaw detection for centrifugally cast pipes, characterized in that the flaw detection signals in the circumferential direction are averaged over a predetermined range and the levels are adjusted to determine a flaw detection signal with a large change as a flaw signal. .
(2)管周方向の探傷信号を所定時間範囲にわたる同期
加算平均法等により平均化し、全周探傷後にそのノイズ
レベルが一定になるよう全体の乗除算により調整した信
号を得て、その中であるしきい値を超えた信号を局部的
な欠陥信号と判定する特許請求の範囲第1項記載の欠陥
判定方法。
(2) Average the flaw detection signals in the circumferential direction of the pipe using a synchronous averaging method over a predetermined time range, obtain a signal adjusted by multiplication/division of the entire circumference so that the noise level becomes constant after all-round flaw detection, and The defect determination method according to claim 1, wherein a signal exceeding a certain threshold is determined to be a local defect signal.
(3)管周方向の探傷信号を所定時間範囲にわたる同期
加算平均法により平均化し、全周探傷後にそのノイズレ
ベルが一定値になるよう全体の乗除算により調整した信
号を得て、ノイズレベルの平均値と一定値との和を超え
た信号を局部的な欠陥信号と判定する特許請求の範囲第
1項記載の欠陥判定方法。
(3) The flaw detection signals in the pipe circumferential direction are averaged using the synchronous averaging method over a predetermined time range, and after all-round flaw detection, the signal is adjusted by multiplication/division of the whole so that the noise level becomes a constant value, and the noise level is The defect determination method according to claim 1, wherein a signal exceeding the sum of an average value and a constant value is determined to be a local defect signal.
(4)被検査管を管軸方向の異なる位置で管周方向に探
傷し、前後の探傷信号の比較によりゲインが一定値以上
変化している場合に全周欠陥と判定する特許請求の範囲
第1項に記載の欠陥判定方法。
(4) The pipe to be inspected is flaw-detected in the circumferential direction at different positions along the pipe axis, and if the gain changes by more than a certain value by comparison of the test signals before and after, it is determined that there is a defect all around the circumference. The defect determination method according to item 1.
JP14779784A 1984-07-16 1984-07-16 Ultrasonic flaw detecting method and defect deciding method of centrifugally cast iron pipe Pending JPS6126857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14779784A JPS6126857A (en) 1984-07-16 1984-07-16 Ultrasonic flaw detecting method and defect deciding method of centrifugally cast iron pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14779784A JPS6126857A (en) 1984-07-16 1984-07-16 Ultrasonic flaw detecting method and defect deciding method of centrifugally cast iron pipe

Publications (1)

Publication Number Publication Date
JPS6126857A true JPS6126857A (en) 1986-02-06

Family

ID=15438423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14779784A Pending JPS6126857A (en) 1984-07-16 1984-07-16 Ultrasonic flaw detecting method and defect deciding method of centrifugally cast iron pipe

Country Status (1)

Country Link
JP (1) JPS6126857A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347654A (en) * 1986-08-13 1988-02-29 Kobe Steel Ltd Method for detecting disconnection of strands of parallel wire strand
JP2011203046A (en) * 2010-03-25 2011-10-13 Mitsui Eng & Shipbuild Co Ltd Underwater inspection system
US20160054266A1 (en) * 2013-04-02 2016-02-25 Jfe Steel Corporation Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
CN114137081A (en) * 2021-11-25 2022-03-04 中国航发哈尔滨轴承有限公司 High-sensitivity small-blind-area ultrasonic detection method for bearing ring

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627647A (en) * 1979-08-15 1981-03-18 Nippon Sekiyu Seisei Kk Supersonic flaw detecting method for centrifugal cast stainless steel pipe exposed to high temperature

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627647A (en) * 1979-08-15 1981-03-18 Nippon Sekiyu Seisei Kk Supersonic flaw detecting method for centrifugal cast stainless steel pipe exposed to high temperature

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347654A (en) * 1986-08-13 1988-02-29 Kobe Steel Ltd Method for detecting disconnection of strands of parallel wire strand
JPH0584863B2 (en) * 1986-08-13 1993-12-03 Kobe Steel Ltd
JP2011203046A (en) * 2010-03-25 2011-10-13 Mitsui Eng & Shipbuild Co Ltd Underwater inspection system
US20160054266A1 (en) * 2013-04-02 2016-02-25 Jfe Steel Corporation Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
CN114137081A (en) * 2021-11-25 2022-03-04 中国航发哈尔滨轴承有限公司 High-sensitivity small-blind-area ultrasonic detection method for bearing ring
CN114137081B (en) * 2021-11-25 2024-02-27 中国航发哈尔滨轴承有限公司 High-sensitivity small-blind-area ultrasonic detection method for bearing ring

Similar Documents

Publication Publication Date Title
JP6441321B2 (en) Improved inspection method by ultrasonic transmission
EP2053392A1 (en) Ultrasonic scanning device and method
US10908126B2 (en) Ultrasonic flaw detection device, ultrasonic flaw detection method, method of manufacturing welded steel pipe, and welded steel pipe quality control method
JPH0352908B2 (en)
JP2011027754A (en) Circuit device for ultrasonic nondestructive test of test object
US7762137B2 (en) Method for checking a weld between two metal pipelines
US5404754A (en) Ultrasonic detection of high temperature hydrogen attack
Kupperman et al. Ultrasonic NDE of cast stainless steel
JPS6126857A (en) Ultrasonic flaw detecting method and defect deciding method of centrifugally cast iron pipe
JP4371364B2 (en) Automatic ultrasonic flaw detector and automatic ultrasonic flaw detection method for thick structure
JPH058778B2 (en)
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP2004077292A (en) Method and device for inspecting stress corrosion cracking
CN103207240B (en) The measuring method of the longitudinal acoustic pressure distribution of a kind of angle probe ultrasonic field
JP2008111742A (en) Method and apparatus for non-destructive inspection of wheel welded part
Riahi et al. Substitution of the time-of-flight diffraction technique for nondestructive testing of welds and thick layers of steel: A comparative investigation
JPS612068A (en) Ultrasonic flaw detecting method of centrifugal casting pipe
JP5750066B2 (en) Non-destructive inspection method using guided waves
JPS60205356A (en) Ultrasonic flaw detecting method of steel tube weld zone
JP7318617B2 (en) Ultrasonic flaw detection method for tubular test object
Coffey et al. Fracture mechanics in design and service:‘living with defects’-Non-destructive testing: its relation to fracture mechanics and component design
Lubeigt et al. Flaws detection and localization in weld structure using the topological energy method
JPH0376864B2 (en)
JPS6073453A (en) Ultrasonic flaw detecting method
Jimmy et al. Identifying discontinuities of 6״ carbon steel pipe using advanced ultrasonic techniques