JPS6073453A - Ultrasonic flaw detecting method - Google Patents

Ultrasonic flaw detecting method

Info

Publication number
JPS6073453A
JPS6073453A JP58182694A JP18269483A JPS6073453A JP S6073453 A JPS6073453 A JP S6073453A JP 58182694 A JP58182694 A JP 58182694A JP 18269483 A JP18269483 A JP 18269483A JP S6073453 A JPS6073453 A JP S6073453A
Authority
JP
Japan
Prior art keywords
ultrasonic
indication
plate
defects
flaw detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58182694A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kakihara
柿原 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58182694A priority Critical patent/JPS6073453A/en
Publication of JPS6073453A publication Critical patent/JPS6073453A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/056Angular incidence, angular propagation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/267Welds
    • G01N2291/2675Seam, butt welding

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To easily detect a planar defect such as ''cracking'' and measure its position and shape by comparing an ultrasonic indicator pattern with standard ultrasonic indicator patterns measured previously in various defect states, and measuring various defects. CONSTITUTION:An ultrasonic beam is transmitted from an oblique probe 1 for ultrasonic wave transmission on a plate 3 where X=infinity , namely, where there is no influence of a rib plate 4, and received by an oblique probe 2 ultrasonic wave reception, whose reception sensitivity is regarded as a reference level. The position on the bottom surface of the plate 3 where the ultrasonic beam is reflected is a measurement point. An indication received at sufficient distance from the rib plate 4 is at the reference level, but the amount of the ultrasonic wave beam reflected by the bottom surface of the plate 3 decreases as the position comes closer to the rib plate 4, the indication (of transmission into the rib plate 4) becomes lower than the reference level. A comparison with the standard indication pattern of every structure is made to estimate whether ''cracking'' occurs or not, or its length.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は非破壊検査の手法の一つである超音波探傷法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an ultrasonic flaw detection method, which is one of the methods of non-destructive testing.

[発明の技術的背景とその問題点コ 一般に欠陥検出のために超音波探傷試験で用いられてい
る一探触子を使用した超音波パルス反射法は、探触子か
ら放たれた超音波パルスが欠陥に当たり、その反射パル
スを同じ探触子で受信づることによって、欠陥の存在と
位置、大きさ、性状等を推測する手法である。この場合
、超音波の反射パルスを送信と同じ位置でとらえなけれ
ばならないことから、入射音波ビームと垂直な面を有す
る欠陥に対して欠陥検出感度が最大となる。
[Technical background of the invention and its problems] The ultrasonic pulse reflection method using a probe, which is generally used in ultrasonic flaw detection tests to detect defects, uses ultrasonic pulses emitted from a probe. This is a method of estimating the existence, location, size, and properties of a defect by receiving the reflected pulses with the same probe. In this case, since the reflected ultrasonic pulse must be captured at the same position as the transmitted ultrasonic pulse, the defect detection sensitivity is maximized for defects that have a plane perpendicular to the incident acoustic beam.

構造物における探傷検査において対象とする欠陥の中で
は「溶接ねれ」や「疲労われ」等の平面的な「われ」や
溶接部の融合不良、溶込み不足の検出が特に重視される
。そして、近f」き1ワない内部に存在するこれら「ね
れ」を初めとする平面的欠陥の検出には、非破壊検査手
法の中では超音波探傷試験が有効に刊用されているが、
先に述べたように超音波ビームにこれら欠陥が平行に存
在夛るとき、その検出能は極めて小さいという問題があ
る。
Among the defects targeted during flaw detection inspection of structures, particular importance is placed on detecting planar "warps" such as "weld curls" and "fatigue cracks," as well as poor fusion of welds and insufficient penetration. Among non-destructive inspection methods, ultrasonic flaw detection is effectively used to detect planar defects such as these "curvatures" that exist inside the interior of the building. ,
As mentioned above, there is a problem in that when these defects exist parallel to each other in an ultrasonic beam, the detectability thereof is extremely small.

超音波探傷技術の分野においても、これら欠陥の有効な
検出、位置の測定、およびその形状測定 □に関する研
究が近年特に精力的に行なわれている。
In the field of ultrasonic flaw detection technology, research on the effective detection, position measurement, and shape measurement of these defects has been particularly vigorously conducted in recent years.

例えば、これら欠陥に起因する超音波波形とその他の溶
接部ブロホールやスラグ巻込み等の欠陥の波形とを周波
数分析して弁別しようとする試みや、「われ」等鋭いエ
ツジを有する平面的欠陥の先端近傍での超音波散乱を利
用する端部ビークエコー検出法の研究がそれである。し
かし、周波数分析の手法は個々の超音波波形毎に周波数
分析し、これら周波数スペクi〜ルのパターン比較を要
することからリアルタイムの探傷が容易ではない。また
、端部ビークエコー法は超音波主ビームのエネルギに比
べ端部ビークエコーのそれは相対的に小さく、そのため
端部ビークエコーの検出に際し、充分に感度を高めて探
傷するので、複雑な構造物形状や種々の溶接欠陥が存在
する場合、それらに起因するインジケーションに端部ビ
ークインジケーションが埋もれてしまうことがある。つ
まり、端部ビークエコー法は構造が簡単なもので、溶接
欠陥も少なくある程度「ねれ」等平面的欠陥の存在が明
らかな場合の精密測定としては極めて有効な手法である
が、精密な手法であるが故に広い領域を探傷しようとす
ると探傷に時間がかかり適用に問題が生ずる。
For example, attempts are being made to differentiate the ultrasonic waveforms caused by these defects from the waveforms of other defects such as weld blowholes and slag entrainment by frequency analysis, and attempts are being made to distinguish between the ultrasonic waveforms caused by these defects and the waveforms of other defects such as weld blowholes and slag entrainment, and planar defects with sharp edges such as "wara". One example of this is research on an edge peak echo detection method that uses ultrasonic scattering near the tip. However, since the frequency analysis method requires frequency analysis for each individual ultrasonic waveform and pattern comparison of these frequency spectra, real-time flaw detection is not easy. In addition, in the edge beak echo method, the energy of the edge beak echo is relatively small compared to the energy of the ultrasonic main beam, so when detecting the edge beak echo, the sensitivity is sufficiently increased. If welding defects exist, the edge beak indication may be obscured by the indications caused by them. In other words, the edge beak echo method has a simple structure, has few welding defects, and is an extremely effective method for precision measurement when the presence of planar defects such as "wavy" is obvious to some extent. Therefore, when trying to detect flaws in a wide area, it takes time to detect flaws, which causes problems in application.

[発明の目的コ 本発明の目的とするところは、複雑な構造物や溶接欠陥
に影響されることが少なく、容易に「ねれ」等の平面的
欠陥の検出、位置の測定および形状測定を可能とする超
音波探傷法を提供することにある。
[Objective of the Invention] The object of the present invention is to easily detect planar defects such as "curvature", measure position, and measure shape without being affected by complex structures or welding defects. The objective is to provide an ultrasonic flaw detection method that makes it possible.

[発明の概要] 本発明は、超音波ビームの送受に際し、例えば「われ」
等の欠陥が主ビームの通過経路中に存在すると受信され
る超音波エネルギが減少することを利用し、一対以上の
斜角探触子を用い、探傷点位置を走査して音波の送受を
行なって超音波インジケーションパターンを19、この
探1均によって19られた超音波インジケーションパタ
ーンを、あらかじめ同様の手法により欠陥の種々の存在
状態についてめておいた標準インジケーションパターン
と比較して、欠陥の存在、位置、または形状を評価測定
することを特徴とするものである。
[Summary of the Invention] The present invention provides a method for transmitting and receiving ultrasonic beams.
Taking advantage of the fact that the received ultrasonic energy decreases when a defect such as a defect exists in the path of the main beam, one or more pairs of angle probes are used to scan the flaw detection point position and send and receive sound waves. The ultrasonic indication pattern determined by this method was compared with a standard indication pattern that had been determined in advance for various states of defects using the same method. It is characterized by evaluating and measuring the existence, position, or shape of.

すなわち、探傷しようとする4R造物形状および「われ
」等の平面的欠陥が存在すると推定される位置や方向性
から超音波送信用斜角探触子の屈折角と受信用斜角探触
子の屈折角を選択し、「われ」等の存在する位置近傍で
超音波ビームが反射するように探触子位置を決定し固定
する。この斜角探触子対の探傷点は上記超音波ビームの
反射点であり、この探傷点位置を精確に測定しつつ該探
傷点を掃引する。欠陥のない健全部の場合と欠陥が存在
する場合の超音波ビームの伝達の程度に差異があること
から、そのインジケーションパターンを種々の探傷点位
置に対してあらかじめ測定しておき、これと実際に探傷
したときのインジケーションパターンを比較することに
よって「ねれ」等の平面的欠陥の存在を検知しその位置
および形状を測定する。
In other words, the refraction angle of the ultrasonic transmitting angle probe and the receiving angle probe are determined based on the shape of the 4R structure to be detected and the position and direction where planar defects such as "cracks" are estimated to exist. The refraction angle is selected, and the probe position is determined and fixed so that the ultrasonic beam is reflected near the position where the "crack" or the like exists. The flaw detection point of this pair of oblique probes is the reflection point of the ultrasonic beam, and the flaw detection point is swept while accurately measuring the position of the flaw detection point. Since there is a difference in the degree of ultrasonic beam transmission between a healthy part with no defects and a defect, the indication pattern is measured in advance at various detection point positions and compared to the actual one. By comparing the indication patterns obtained during flaw detection, the presence of planar defects such as ``curvature'' is detected and their positions and shapes are measured.

[発明の実施例] 第1図はT形溶接構造物で「ねれ」が入っている場合に
本発明を適用した一実施例を示すものである。
[Embodiment of the Invention] FIG. 1 shows an embodiment in which the present invention is applied to a T-shaped welded structure with a twist.

第1図(a)は検査部の構造を示すもので、図において
、1は超音波送信用斜角探触子であり、図示のように屈
折角θiて超音波ビームを発射する。2は超音波受信用
斜角探触子であり、屈折角θ「で超音波ビームを受信す
る。3は被検体である板厚tの板であり、リブ板4に溶
接されている。
FIG. 1(a) shows the structure of the inspection section. In the figure, reference numeral 1 denotes an oblique probe for transmitting ultrasonic waves, which emits an ultrasonic beam at a refraction angle θi as shown. Reference numeral 2 denotes an oblique angle probe for receiving ultrasonic waves, which receives an ultrasonic beam at a refraction angle θ'. Reference numeral 3 denotes a plate having a thickness t, which is an object to be examined, and is welded to a rib plate 4.

5は溶接部に残存Jるδなる長さを右する「ねれ」を示
し、この「われ」5はクレビス先端6を起点として初生
している。7は溶着金属である。
Reference numeral 5 indicates a ``curvature'' whose length is δ remaining in the welded portion, and this ``curvature'' 5 is initially generated from the clevis tip 6. 7 is weld metal.

斜角探触子1.2間の距MLθは斜角探触子1.2の屈
折角と共に「われ」の進展方向、長さ等に対して最適な
ものを選ぶが、そのとき次式の関係で固定する。
The distance MLθ between the angle probes 1.2 and the refraction angle of the angle probes 1.2, as well as the propagation direction and length of the curve, are selected to be optimal. Fixed by relationship.

Lθ−t (tanθi十tanθr)ここで、リブ板
4および溶着金属7の中心線をX=Oとする。板3上の
X=■すなわちリブ板4の影響を受けない位置で超音波
送信用斜角探触子1から超音波ビームを放ち、超音波受
信用斜角探触子2で受け、その受信感度を基準レベルと
する。
Lθ-t (tanθi + tanθr) Here, the center line of the rib plate 4 and the weld metal 7 is assumed to be X=O. X on the plate 3 =■ In other words, an ultrasonic beam is emitted from the ultrasonic transmitting angle probe 1 at a position not affected by the rib plate 4, and is received by the ultrasonic receiving angle probe 2. Sensitivity is the reference level.

板3の底面で超音波ビームが反射する位置(図において
X=X、すなわち送信用斜角探触子1hXら受信用斜角
探触子2の方へt・ 1a11θiの距離の位置)が測
定点である。リブ板4から充分に離れた位置において受
信されるインジケーション1.1基準レベルにあるが、
リブ板4に近付くにつれ板3の底面で反射される超音波
ビームの量が減少してゆくので(リブ板4の内部に透過
してゆく)インジケーションは基準レベルより低くなっ
てゆく。
The position where the ultrasonic beam is reflected on the bottom surface of the plate 3 (X=X in the figure, that is, the position at a distance of t・1a11θi from the transmitting angle probe 1hX to the receiving angle probe 2) is measured. It is a point. Indication 1.1 received at a position sufficiently distant from the rib plate 4 is at the reference level,
As the ultrasonic beam approaches the ribbed plate 4, the amount of the ultrasonic beam reflected from the bottom surface of the plate 3 decreases (transmits into the inside of the ribbed plate 4), so that the indication becomes lower than the reference level.

ここで、「われ」5がない場合、すなわちδ−〇のとき
の健全な場合について説明する。
Here, we will explain the case where there is no "I" 5, that is, the healthy case when δ-0.

測定点がリブ板4に近付くにつれインジケーションレベ
ルは基準レベルより小さくなってゆくが、クレビス6の
先端近傍まで達すると端部ピークエコーが最大となり、
第1図(b)に示すインジケーションパターンのδ−0
の場合のようにインジケーションレベルは一部立上がり
ピークを呈した後再び低下してゆく。
As the measurement point approaches the rib plate 4, the indication level becomes smaller than the reference level, but when it reaches near the tip of the clevis 6, the end peak echo reaches its maximum.
δ−0 of the indication pattern shown in FIG. 1(b)
As in the case of , the indication level partially rises to a peak and then falls again.

「われ」5が存在する場合、健全な場合に比べ、基準レ
ベルからのインジケーションレベルの低下はX=XO(
健全な場合のインジケーションの低下開始点)よりXが
大きい位置から始まり、また減衰の程度が大きくなる。
When “I” 5 exists, the decrease in the indication level from the standard level compared to the healthy case is X=XO(
It starts from a position where X is larger than the point at which the indication starts to decline in a healthy case, and the degree of attenuation increases.

δが小さい間はクレビス6の先端近傍からの端部ビーク
エコーによるインジケーション減衰パターン上のピーク
は若干弱くなるもののなお存在しているが、δが大きく
、すなわち「ねれ」5の長さが大きくなる程そのピーク
も小さく消えてゆき、減衰の程度も急峻となる。
While δ is small, the peak on the indication attenuation pattern due to the end beak echo from near the tip of the clevis 6 becomes slightly weaker but still exists, but when δ is large, that is, the length of the "curvature" 5 is large. Indeed, the peak becomes smaller and disappears, and the degree of attenuation becomes steeper.

第1図(b)に示すインジケーションパターンは「われ
」5の長さδをパラメータとしてまとめたものであり、
構造物毎にあらかじめこの減衰特性データすなわちイン
ジケーションパターンを入手(測定)し、標準インジケ
ーションパターンとして記録または記憶しておく。そし
て、探傷の際に得られたインジケーションの減衰パター
ンを、上記あらかじめ得た標準インジケーションパター
ンと比較することによって(減衰パターンにおいてイン
ジケーションレベルの低下開始点、減衰の程度、健全部
におけるパターン上のピーク等が比較対象となる) 「
われ」の有無あるいはその長さを推定することができる
。このインジケーションパターンは「われ」長さが小さ
い場合も健全部のパターンとは明瞭に異fc【るので、
初生した「われ」に対しても有効である。また、測定点
の位置、例えば溶接部中央からの距離を精確に測定して
おくことによって「われ」の位置も推定可能である。
The indication pattern shown in FIG. 1(b) is summarized using the length δ of "I" 5 as a parameter.
This attenuation characteristic data, ie, an indication pattern, is obtained (measured) in advance for each structure and recorded or stored as a standard indication pattern. Then, by comparing the attenuation pattern of the indication obtained during flaw detection with the standard indication pattern obtained in advance, peaks, etc. will be compared)
It is possible to estimate the presence or absence of "we" or its length. This indication pattern is clearly different from the pattern of the healthy part even when the "we" length is small, so
It is also effective for the newly born "I". Furthermore, by accurately measuring the position of the measurement point, for example, the distance from the center of the weld, the position of the "break" can also be estimated.

なお、上述した「われ」に限らず、溶着金属7の融合不
良や溶込み不足に対しても上述と同じ方法にて探傷する
ことができる。
In addition, it is possible to detect not only the above-mentioned "flaws" but also poor fusion and insufficient penetration of the weld metal 7 using the same method as described above.

先に述べたように従来の通常の探傷では溶接部の残存ク
レビスIbリブ板4との構成等の影響で、殊に初生し始
めた「われ」の検出は、それらのインジケーションの判
断を伴うので充分な経験を有する技能者による探傷が要
求されるなど容易ではなかった。これに対して、上述し
た本発明による手法は、インジケーションの減衰パター
ンを捉えるだけでよく、誰にでも、極初期の「われ」の
存在をも判断できる。また、「われ」探傷時には「われ
」に関して以外のインジケーション個々の評価を必要と
しないので、対象を例えば「ねれ」検出に絞れば探傷時
間を削減覆ることが可能となる。しかも、溶接部に局部
的に溶接欠陥が存在していても減衰特性が大きく影響さ
れることもなく、「われ」検出のみを対象とした検査が
可能である。
As mentioned earlier, in conventional normal flaw detection, due to the influence of the structure of the remaining clevis Ib rib plate 4 of the welded part, the detection of "cracks" that have started to occur, in particular, involves judgment of those indications. Therefore, flaw detection was not easy, requiring a technician with sufficient experience to perform flaw detection. In contrast, the method according to the present invention described above only needs to capture the attenuation pattern of the indication, and anyone can determine the existence of "I" even in the very early stages. In addition, since it is not necessary to evaluate each indication other than "we" during "we" flaw detection, it is possible to reduce the flaw detection time by narrowing down the target to, for example, "curvature" detection. Furthermore, even if a welding defect exists locally in a welded part, the attenuation characteristics are not significantly affected, and inspection can be performed only for detecting "cracks".

このように、「われ」の初生推定領域等を超音波ビーム
が通過するだけて「われ」その他の平面的欠陥の検出と
その形状の測定等が可能である。
In this way, it is possible to detect planar defects such as "cracks" and measure their shapes simply by passing the ultrasonic beam through the estimated initial region of "cracks".

なお、本発明は上述し且つ図面に示す実施例にのみ限定
されることなく、その要旨を変更しない範囲内で種々変
形して実施することができる。
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, but can be implemented with various modifications without changing the gist thereof.

例えば、第2図は第1図と同様の構造物を対象としてい
るが、近接可能な面が板3のリブ板4側である場合の実
施例を示すもので、このような場合、例えば図示のよう
に超音波ビームを板3内で3回反射させて「われ」初生
推定領域を探傷するなどすればよい。
For example, FIG. 2 is intended for the same structure as in FIG. 1, but shows an example in which the approachable surface is the rib plate 4 side of the plate 3. For example, the ultrasonic beam may be reflected three times within the plate 3 to detect the estimated area where the "war" is first formed.

また、第3図(a)、(b)はそれぞれ通常の超音波探
傷試験では検出困難な板3にほぼ垂直に「われ」5が入
っている場合の測定部構成およびインジケーションパタ
ーンを示しており、基準しベルに対し、「われ」5の存
在する位置で[われJ5の深さδに応じてインジケーシ
ョンレベルが下がることを利用して「われ」存在とその
長さを測定する。
In addition, Figures 3(a) and 3(b) respectively show the configuration of the measuring section and the indication pattern when the plate 3 has a nearly perpendicular "warp" 5 that is difficult to detect in a normal ultrasonic flaw detection test. Then, with respect to the reference bell, at the position where "I" 5 exists, the existence of "I" and its length are measured using the fact that the indication level decreases according to the depth δ of "I" J5.

[発明の効果コ 本発明によれば、超音波送信用斜角探触子と受信用斜角
探触子との間に、通過する超音波ビームを妨げる欠陥、
例えば「われ」が存在するときと存在しないときとで超
音波インジケーションパターンが異なることを利用し、
検査に際して計測した超音波インジケーションパターン
をあらかじめ各種の欠陥状態について計測しておいた標
準の超音波インジケーションパターンと比較して、上記
各種欠陥の測定を行なうようにすることによって、複雑
な構造物や溶接欠陥に影響されることが少なく、容易に
[われJ等の平面的欠陥の検出、位置の測定および形状
測定を可能とする超音波探傷法を提供することができる
[Effects of the Invention] According to the present invention, there is no defect between the ultrasonic transmitting angle probe and the receiving angle probe that obstructs the passing ultrasonic beam;
For example, by using the fact that the ultrasonic indication pattern is different depending on when "we" exist and when "we" do not exist,
By comparing the ultrasonic indication pattern measured during inspection with a standard ultrasonic indication pattern that has been measured in advance for various defect conditions, the various defects mentioned above can be measured. It is possible to provide an ultrasonic flaw detection method that is less affected by cracks and welding defects and can easily detect planar defects such as cracks, measure the position, and measure the shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はT形溶接構造物のクレビス部から[われ」が入
っている場合における本発明の一実施例による探傷例を
示す図、第2図は本発明の他の実施例(第1図とは逆の
面からの探傷例)を示1図、第3図は本発明のその他の
実施例(板にほぼ垂直に入っている「われ」の探傷例)
を示す図である。 1・・・超音波送信用斜角探触子、2・・・超音波受信
用斜角探触子、3・・・板、4・・・リブ板、5・・・
「ねれ」、6・・・クレビス、7・・・溶着金属。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 s3図
Fig. 1 is a diagram showing an example of flaw detection according to an embodiment of the present invention in the case where there is a crack in the clevis of a T-shaped welded structure, and Fig. 2 is a diagram showing another embodiment of the present invention (Fig. 1). Figure 1 shows an example of flaw detection from the opposite side, and Figure 3 shows another embodiment of the present invention (an example of flaw detection from the side that is almost perpendicular to the plate).
FIG. DESCRIPTION OF SYMBOLS 1... Bevel probe for ultrasound transmission, 2... Bevel probe for ultrasound reception, 3... Plate, 4... Rib plate, 5...
"Nare", 6... Clevis, 7... Welded metal. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure s3

Claims (1)

【特許請求の範囲】[Claims] 超音波送信用および受信用の斜角探触子により音波の送
受を行ない且つその探傷点位置を走査して超音波インジ
ケーションパターンを得、この探傷によって得られた超
音波インジケーションパターンを、あらかじめ同様の手
法により欠陥の種々の存在状態についてめておいた標準
インジケーションパターンと比較して、欠陥の存在、位
置、または形状を評価測定することを特徴とする超音波
探傷法。
Ultrasonic wave transmission and reception angle probes transmit and receive sound waves, and the flaw detection point position is scanned to obtain an ultrasonic indication pattern. An ultrasonic flaw detection method that is characterized by evaluating and measuring the presence, position, or shape of defects by comparing them with standard indication patterns that have been prepared for various states of existence of defects using a similar method.
JP58182694A 1983-09-30 1983-09-30 Ultrasonic flaw detecting method Pending JPS6073453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58182694A JPS6073453A (en) 1983-09-30 1983-09-30 Ultrasonic flaw detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58182694A JPS6073453A (en) 1983-09-30 1983-09-30 Ultrasonic flaw detecting method

Publications (1)

Publication Number Publication Date
JPS6073453A true JPS6073453A (en) 1985-04-25

Family

ID=16122796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58182694A Pending JPS6073453A (en) 1983-09-30 1983-09-30 Ultrasonic flaw detecting method

Country Status (1)

Country Link
JP (1) JPS6073453A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270824A (en) * 2008-04-30 2009-11-19 Kawasaki Heavy Ind Ltd Ultrasonic flaw detecting method and ultrasonic flaw detector
WO2019201804A1 (en) * 2018-04-20 2019-10-24 Rosen Swiss Ag Device and method for determining the expansion of imperfections by means of v-transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270824A (en) * 2008-04-30 2009-11-19 Kawasaki Heavy Ind Ltd Ultrasonic flaw detecting method and ultrasonic flaw detector
WO2019201804A1 (en) * 2018-04-20 2019-10-24 Rosen Swiss Ag Device and method for determining the expansion of imperfections by means of v-transmission

Similar Documents

Publication Publication Date Title
JP4747172B2 (en) Scratch height measuring method and apparatus in ultrasonic flaw detection test
US4658649A (en) Ultrasonic method and device for detecting and measuring defects in metal media
US5092176A (en) Method for determining deposit buildup
JP4166222B2 (en) Ultrasonic flaw detection method and apparatus
WO2006025591A1 (en) Evaluation method and device for spot welded portion by ultrasonic wave
US5804730A (en) Ultrasonic testing method
CN109196350B (en) Method for detecting defects in materials by ultrasound
US5005420A (en) Ultrasonic method for measurement of depth of surface opening flaw in solid mass
CA2258913C (en) Ultrasonic technique for inspection of weld and heat-affected zone for localized high temperature hydrogen attack
EP1271097A2 (en) Method for inspecting clad pipe
JP5192939B2 (en) Defect height estimation method by ultrasonic flaw detection
Kupperman et al. Ultrasonic NDE of cast stainless steel
JP5730644B2 (en) Ultrasonic measurement method and apparatus for surface crack depth
JP2001021542A (en) Measuring of weld line transverse crack defect length
CA2012374C (en) Ultrasonic crack sizing method
JPS6073453A (en) Ultrasonic flaw detecting method
JP3729686B2 (en) Defect detection method for piping
CN209014515U (en) The supersonic detection device of engine blade tenon
US7415865B2 (en) Determining the extent of a lateral shadow zone in an ultrasound inspection method
JPH09304363A (en) Method for ultrasonically detecting flaw in austenitic steel casting
JP2007205959A (en) Probe unit for ultrasonic flaw detector, and method of estimating crack depth by ultrasonic flaw detection method
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
WO2018135242A1 (en) Inspection method
JP2002277447A (en) Ultrasonic flaw detection method and apparatus
JPH07325070A (en) Ultrasonic method for measuring depth of defect