JPS5935138A - Shape-discrimination type 2 mode angle beam probe - Google Patents

Shape-discrimination type 2 mode angle beam probe

Info

Publication number
JPS5935138A
JPS5935138A JP57144637A JP14463782A JPS5935138A JP S5935138 A JPS5935138 A JP S5935138A JP 57144637 A JP57144637 A JP 57144637A JP 14463782 A JP14463782 A JP 14463782A JP S5935138 A JPS5935138 A JP S5935138A
Authority
JP
Japan
Prior art keywords
wave
defects
probe
longitudinal
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57144637A
Other languages
Japanese (ja)
Inventor
Sumio Kogure
木暮 澄夫
Masayuki Kato
加藤 政之
Iwao Kuroda
黒田 「巌」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP57144637A priority Critical patent/JPS5935138A/en
Publication of JPS5935138A publication Critical patent/JPS5935138A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2487Directing probes, e.g. angle probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4445Classification of defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/056Angular incidence, angular propagation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/104Number of transducers two or more emitters, one receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To enable the discrimination of flat defects roughly at the right angle to the bottom surface from other defects irrelevant to the thickness by providing two vibrators on the same probe so that a slant longitudinal wave and a slant hateral wave refractively enter a test piece at the same incident point. CONSTITUTION:A longitudinal wave vibrator 2 with the angle of refraction of 45 deg. and lateral wave vibrator 3 with the angle of refraction of 45 deg. are arranged in the same probe 1 so that the longitudinal ultrasonic beam 5 and the lateral ultrasonic wave 6 reflactively enter a steel material 4 at the same incident point 7. This enables the discrimination of vertical flat defects roughly at the right angle to the bottom surface of the steel material 4 from other defects irrelevant to the thickness.

Description

【発明の詳細な説明】 本発明は、欠陥の超音波探傷に係り、特に欠陥形状の判
別に好適な形状判別型2モード斜角探触子に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to ultrasonic flaw detection of defects, and particularly to a shape-discriminating two-mode angle probe suitable for determining the shape of defects.

従来の斜角探触子では、1つの探触子に対して1振動子
となっていたので、欠陥の形状を判別することが、困難
でるるという欠点があった。
Conventional bevel probes have one transducer for one probe, which has the disadvantage that it is difficult to determine the shape of a defect.

また先に申請した形状判別型の斜角探触子では屈折角の
異なる2つの横波を便用していたため、両者のビーム父
差点深さが一定でめシ板厚により多くの探触子を用慧し
なければならない欠点があった。
In addition, the shape-discriminating type bevel probe that we applied for earlier used two transverse waves with different refraction angles, so the depth of the beam difference point between the two was constant, and the number of probes could be increased due to the thickness of the female plate. There were drawbacks that needed to be taken care of.

本発明の目的は、斜角探傷において、底面にほぼ直角な
角を有する垂直な平面状欠陥とそれ以外の欠陥を板厚に
関係なく一個の探触子で判別可能とする2モード斜角探
触子を提供することにある。
An object of the present invention is to provide a two-mode angle flaw detection method that enables a single probe to distinguish between vertical planar defects having an angle substantially perpendicular to the bottom surface and other defects, regardless of plate thickness. The purpose is to provide tentacles.

底面に垂直な平面状欠陥に対する2回反射の音圧反射率
が、屈折角約35°〜55°範囲では、縦波と横波で著
しく異なる現象を利用し、且つ試験材表面における縦波
と横波の屈折入射点を同一とすることによって、板厚に
関係なく材料の底面近傍に存在する欠陥の種類の判別を
行なうことを案出した。
In the refraction angle range of approximately 35° to 55°, the sound pressure reflectance of the double reflection from a planar defect perpendicular to the bottom surface is significantly different between longitudinal waves and transverse waves. By making the refraction incident point the same, we devised a method to determine the type of defect existing near the bottom of the material regardless of the plate thickness.

以下、本発明の一実施例を図面を用いて説明する。第1
図は本発明による2モード斜角探触子の構成を示す。第
1図において、屈折角45°の縦波用振動子2と屈折角
45°の横波用振動子3は、縦波超音波ビーム5と横波
超音波ビーム6が同−入射点7で鋼材4に屈折入射する
ように同一探触子1内部に設置する。第2図は超音波ビ
ーム9が鋼1材4の底面に直角な角8に入射し、底面及
び角で2回反射する場合の経路を示す。第3図は超音波
ビーム9が銅材4の底面に平行なドリル穴10に入射し
、ドリル穴100表面で1回反射する場合の経路を示す
。第4図は横軸に縦波屈折角11゜縦軸に音圧反射率1
2τとった場合、縦波の超音波が2回反射した場合の音
圧反射率13と1回反射した場合の音圧反射率14の変
化を示す。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows the configuration of a two-mode angle probe according to the invention. In FIG. 1, a longitudinal wave transducer 2 with a refraction angle of 45° and a transverse wave transducer 3 with a refraction angle of 45° are arranged such that a longitudinal ultrasonic beam 5 and a transverse ultrasonic beam 6 are at the same incident point 7 on a steel material 4. It is installed inside the same probe 1 so that it is refracted and incident on the same probe. FIG. 2 shows a path where the ultrasonic beam 9 is incident on a corner 8 perpendicular to the bottom surface of the steel 1 material 4 and is reflected twice at the bottom surface and the corner. FIG. 3 shows a path where the ultrasonic beam 9 enters a drill hole 10 parallel to the bottom surface of the copper material 4 and is reflected once on the surface of the drill hole 100. Figure 4 shows longitudinal wave refraction angle 11° on the horizontal axis and sound pressure reflectance 1 on the vertical axis.
When 2τ is taken, the change in the sound pressure reflectance 13 when a longitudinal ultrasound wave is reflected twice and the sound pressure reflectance 14 when it is reflected once is shown.

第5図は、横軸に横波屈折角18、醸輔に音圧反射率1
2をとった場合、横波の超音波2回反射した場合の音圧
反射4A19と1回反射した場合の音圧反射率20の変
化を示す。
In Figure 5, the transverse wave refraction angle is 18 on the horizontal axis, and the sound pressure reflectance is 1 on the horizontal axis.
When 2 is taken, the change in sound pressure reflection 4A19 when the transverse ultrasonic wave is reflected twice and the change in the sound pressure reflectance 20 when it is reflected once is shown.

第4図、第5図において、屈折角が谷々45度16の場
合には底面に直角な開に対する2回反射の叶圧反射率の
比は、14%15対100%21となっている。まfc
球状欠陥に対する1回反射の音圧反射率の比は、100
XI 7対100X21である。
In Figures 4 and 5, when the refraction angle is 45 degrees 16 from valley to valley, the ratio of leaf pressure reflectance for two reflections to the opening perpendicular to the base is 14%15 to 100%21. . Mafc
The ratio of the sound pressure reflectance of a single reflection to a spherical defect is 100
XI 7 to 100X21.

本笑施例によれば、欠陥に対する両モードの音圧反射率
の比から底面に垂直な平面状欠陥とその他の欠陥を判別
することができ、またいかなる被試験体の板厚に対して
も1本探触子1箇で探傷することができる効果がある。
According to this example, it is possible to distinguish between a planar defect perpendicular to the bottom surface and other defects from the ratio of the sound pressure reflectance of both modes for the defect, and also for any thickness of the test object. This has the effect of being able to detect flaws with one probe.

以上詳述した様に、本発明によれば、屈折角約35°〜
55°範囲の縦波、横波の音圧反射率の差遂奮利用した
探触子により、谷々の比または差(l−表示する装置と
組合せることにより被試験材の底面に直角な欠陥とその
他の欠陥の判別ができる。
As detailed above, according to the present invention, the refraction angle is about 35° to
A probe that utilizes the difference in the sound pressure reflectivity of longitudinal waves and transverse waves in the 55° range can be used to detect defects perpendicular to the bottom surface of the test material by combining it with a device that displays the ratio or difference (l-) of the valleys. and other defects.

1%j、縦波、@波全同−屈折角及び同−入射点とした
ことによシ本探触子1個であらゆる彼試験体板厚に対し
て適用できる。
By using 1% j, longitudinal wave, @wave with the same refraction angle and the same incident point, one probe can be applied to any thickness of the test specimen.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の形状判別型2モード糾角探
触子の探傷時における断面図、第2図は超音波が鋼材の
底面に直角な角に入射した場合のvf面図、第3図は超
音波が鋼材中のドリル穴に入射した場合の断面図、第4
図は鋼材の直角な角又はドリル穴において縦波の超音波
が縦波として反射する場合の反射率線図、第5図は鋼材
の直角な角又はドリル穴において横波の超音波として反
射する場合の反射率線図である。 1・・・探触子、2・・・屈折角45°の縦波用振動子
、3・・・屈折角45°の横波用振動子、4・・・鋼材
、5・・・縦波超音波ビーム、6・・・横波超音波ビー
ム、7・・・入射点、8・・・トエスリット、9・・・
超音波ビーム。 10・・・ドリル穴、11・・・縦波屈折角、12・・
・音圧反射率、13・・・縦波2回反射の音圧反射率、
14・・・縦波1回反射の音圧反射率、15・・・音圧
反射率14%、16・・・45°、17・・・100x
、18・・・横波屈折角、19・・・横波2回反射の音
圧反射率、20・・・横波1回反射の1回反射の音圧反
射率、第1(2) f]3図
Fig. 1 is a cross-sectional view of a shape-discriminating type two-mode convergence angle probe according to an embodiment of the present invention during flaw detection, and Fig. 2 is a vf plane view when ultrasonic waves are incident on a corner perpendicular to the bottom surface of a steel material. , Figure 3 is a cross-sectional view when ultrasonic waves are incident on a drill hole in steel material, Figure 4
The figure shows a reflectance diagram when a longitudinal ultrasonic wave is reflected as a longitudinal wave at a right angle corner of a steel material or a drill hole. Figure 5 is a reflectance diagram when a longitudinal ultrasonic wave is reflected as a transverse wave at a right angle corner of a steel material or a drill hole. FIG. 1... Probe, 2... Longitudinal wave transducer with a refraction angle of 45°, 3... Transverse wave transducer with a refraction angle of 45°, 4... Steel material, 5... Longitudinal wave transducer Sonic beam, 6... transverse ultrasonic beam, 7... incident point, 8... toeslit, 9...
Ultrasonic beam. 10...Drill hole, 11...Longitudinal wave refraction angle, 12...
・Sound pressure reflectance, 13...Sound pressure reflectance of longitudinal wave reflection twice,
14...Sound pressure reflectance of one longitudinal wave reflection, 15...Sound pressure reflectance 14%, 16...45°, 17...100x
, 18... Transverse wave refraction angle, 19... Sound pressure reflectance of double reflection of transverse wave, 20... Sound pressure reflectance of single reflection of transverse wave, 1st (2) f] Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、被試験材の表面において、斜角縦波と斜角横波が同
−入射点で屈折入射するように2圀の熾動子を同一探触
子に設けたことを特徴とする形状判別型2モード斜角探
触子。
1. A shape-discriminating type characterized in that two-wave actuators are provided on the same probe so that oblique longitudinal waves and oblique transverse waves are refracted and incident at the same incident point on the surface of the material to be tested. 2-mode angle probe.
JP57144637A 1982-08-23 1982-08-23 Shape-discrimination type 2 mode angle beam probe Pending JPS5935138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57144637A JPS5935138A (en) 1982-08-23 1982-08-23 Shape-discrimination type 2 mode angle beam probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57144637A JPS5935138A (en) 1982-08-23 1982-08-23 Shape-discrimination type 2 mode angle beam probe

Publications (1)

Publication Number Publication Date
JPS5935138A true JPS5935138A (en) 1984-02-25

Family

ID=15366687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57144637A Pending JPS5935138A (en) 1982-08-23 1982-08-23 Shape-discrimination type 2 mode angle beam probe

Country Status (1)

Country Link
JP (1) JPS5935138A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104458912A (en) * 2014-12-17 2015-03-25 国家电网公司 Method for measuring incidence point, incidence angle and delay of small-angle longitudinal wave angle probe for porcelain insulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104458912A (en) * 2014-12-17 2015-03-25 国家电网公司 Method for measuring incidence point, incidence angle and delay of small-angle longitudinal wave angle probe for porcelain insulator

Similar Documents

Publication Publication Date Title
ATE70915T1 (en) METHOD OF DETERMINING THE TYPE OF POINT AND EXTENDED SINGLE DEFECTS IN WORKPIECES BY ULTRASONIC.
CN103512953B (en) Adopt multi-probe supersonic testing method
US3776026A (en) Ultrasonic flaw determination by spectral anaylsis
JP2002062281A (en) Flaw depth measuring method and its device
CN106383175A (en) Ultrasonic flaw detection test block for blade detection
JPS5935138A (en) Shape-discrimination type 2 mode angle beam probe
JP2002243703A (en) Ultrasonic flaw detector
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JPS63221211A (en) Ultrasonic thickness measuring method for laminar body
Smith et al. Diffraction and shadowing errors in-6 dB defect sizing of delaminations in composites
RU2791670C1 (en) Method for checking quality of acoustic contact between ultrasonic transducer and ceramic product during ultrasonic flaw detection
CN203479758U (en) Multi-probe device
JPH0136130Y2 (en)
JPH1164300A (en) Ultrasonic probe and ultrasonic flaw detecting apparatus
JPS5831870B2 (en) Ultrasonic flaw detection equipment
JPH0212609Y2 (en)
JPH07325070A (en) Ultrasonic method for measuring depth of defect
SU996934A1 (en) Article ultrasonic checking method
JPS63261151A (en) Ultrasonic probe
SU989472A1 (en) Article welded joint ultrasonic checking method
SU1296928A1 (en) Method of ultrasonic checking of welded joints
SU1569696A1 (en) Transducer for ultrasonic inspection
JPH0326958A (en) Method for ultrasonic flaw detection of pipe body
JPH0129568Y2 (en)
RU2055359C1 (en) Prismatic ultrasonic piezoelectric converter