JPH0129568Y2 - - Google Patents

Info

Publication number
JPH0129568Y2
JPH0129568Y2 JP1982130982U JP13098282U JPH0129568Y2 JP H0129568 Y2 JPH0129568 Y2 JP H0129568Y2 JP 1982130982 U JP1982130982 U JP 1982130982U JP 13098282 U JP13098282 U JP 13098282U JP H0129568 Y2 JPH0129568 Y2 JP H0129568Y2
Authority
JP
Japan
Prior art keywords
wedge
ultrasonic
ultrasonic probe
water reservoir
echo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982130982U
Other languages
Japanese (ja)
Other versions
JPS5934356U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13098282U priority Critical patent/JPS5934356U/en
Publication of JPS5934356U publication Critical patent/JPS5934356U/en
Application granted granted Critical
Publication of JPH0129568Y2 publication Critical patent/JPH0129568Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

【考案の詳細な説明】 この考案は鋼管の内外表面や丸棒の表層部に有
する欠陥を検出するための超音波探触子の改良に
関するものである。
[Detailed Description of the Invention] This invention relates to the improvement of an ultrasonic probe for detecting defects on the inner and outer surfaces of steel pipes and the surface layer of round bars.

まず、従来の超音波探触子について第1図a,
bを用いて説明する。
First, regarding the conventional ultrasonic probe, Figure 1a,
This will be explained using b.

第1図aは従来の超音波探触子の断面図と超音
波の伝播経路を示す図である。第1図bは従来の
超音波探触子による探傷波形図である。
FIG. 1a is a cross-sectional view of a conventional ultrasonic probe and a diagram showing the propagation path of ultrasonic waves. FIG. 1b is a flaw detection waveform diagram using a conventional ultrasonic probe.

第1図a,bにおいて、1は振動子、2は楔、
3はケース、4はしきり板、5はケース3の中が
しきり板4で分割された水溜部、6は反射板、7
は縦波モードの超音波、8は横波モードの超音
波、9は水、油等の接触媒体、10は被検材、1
1は欠陥、12は送信パルス、13は表面エコ
ー、14は横波モードの超音波による虚エコー、
15は欠陥エコー、16は反射板6からのカツプ
リングエコー、Aは被検材10に対向する楔2の
面、Bは水溜部5へ当接する楔2の面、θ1は被検
材10に対向する楔2の面に、温度補償用に設け
られた角度である。
In Figures 1a and b, 1 is a vibrator, 2 is a wedge,
3 is a case, 4 is a partition plate, 5 is a water reservoir portion in which the inside of the case 3 is divided by the partition plate 4, 6 is a reflector plate, 7
8 is a longitudinal wave mode ultrasonic wave, 8 is a transverse wave mode ultrasonic wave, 9 is a contact medium such as water or oil, 10 is a test material, 1
1 is a defect, 12 is a transmitted pulse, 13 is a surface echo, 14 is an imaginary echo caused by transverse mode ultrasound,
15 is a defect echo, 16 is a coupling echo from the reflection plate 6, A is the surface of the wedge 2 facing the specimen 10, B is the surface of the wedge 2 that comes into contact with the water reservoir 5, θ 1 is the specimen 10 This is an angle provided for temperature compensation on the surface of the wedge 2 facing the .

従来の超音波探触子においては振動子1より発
生した超音波は楔2と接触媒体9を経由して被検
材10表面へ到達する。この被検材10表面にお
いて超音波は大きく3つの経路に分岐される。第
1の経路は再び逆の経路で振動子1へ戻るもの
で、表面エコー13として現われる。第2の経路
は被検材10内部へ伝播し、欠陥11に到達し、
再び逆経路で振動子1へ戻るもので欠陥エコー1
5として現われる。第3の経路は水溜部5の方向
へ伝播するものであるが、楔2のA面に超音波が
入射すると楔2中を伝播する超音波は図中実線で
示される縦波モードの超音波7と図中破線で示さ
れる横波モードの超音波8にさらに分岐される。
この2つのモードの超音波は楔2中を伝播し楔2
のB面に到達し、さらにここで水溜部5内の接触
媒体9を経由し反射板6へ到達する成分と、楔2
のA面側に反射される成分とに分岐する。反射板
6へ到達した超音波は再び逆経路で振動子1へ戻
り、カツプリングエコー16として現われる。こ
のカツプリングエコー16のレベルと位置を常に
検知する事により、超音波探触子が正常に動作し
ている事や、超音波探触子と被検材10との位置
関係を含めた音響結合状態の確認が行なわれる。
又、楔2のA面側へ反射した超音波は従来の超音
波探触子の楔2ではA面とB面の距離がケース3
先端に近づくにつれて小さくなる構造であるた
め、A面及びB面でそれぞれ反射するたびにその
反射角は楔2のA面に設けられた角度θ1づつ減小
しながら楔2の先端へ伝播し、ついにはA面に対
する入射角が90゜に近づき逆戻りして来る。この
逆戻りして来る超音波の音圧は、楔2のA面とB
面との間で反射する回数が多いほど低くなる。
In a conventional ultrasonic probe, ultrasonic waves generated by a transducer 1 reach the surface of a specimen 10 via a wedge 2 and a contact medium 9. On the surface of the test material 10, the ultrasonic waves are broadly branched into three paths. The first path is a reverse path back to the vibrator 1 and appears as a surface echo 13. The second path propagates inside the test material 10 and reaches the defect 11,
It returns to transducer 1 via the reverse path again, which is defective echo 1.
Appears as 5. The third path propagates in the direction of the water reservoir 5, but when the ultrasonic wave is incident on the A side of the wedge 2, the ultrasonic wave propagating through the wedge 2 becomes a longitudinal wave mode ultrasonic wave shown by the solid line in the figure. 7 and is further branched into transverse wave mode ultrasonic waves 8 shown by broken lines in the figure.
These two modes of ultrasonic waves propagate through the wedge 2.
The component that reaches the B side of
It branches into a component reflected to the A-plane side. The ultrasonic wave that has reached the reflection plate 6 returns to the transducer 1 via the reverse path again and appears as a coupling echo 16. By constantly detecting the level and position of this coupling echo 16, it is possible to check whether the ultrasonic probe is operating normally and the acoustic coupling including the positional relationship between the ultrasonic probe and the test material 10. The status will be checked.
In addition, the ultrasonic waves reflected toward the A side of the wedge 2 are
Since it has a structure that becomes smaller as it approaches the tip, each time it is reflected from the A side and the B side, the reflection angle decreases by 1 at the angle θ set on the A side of the wedge 2, and propagates to the tip of the wedge 2. Finally, the angle of incidence with respect to the A plane approaches 90° and begins to reverse. The sound pressure of this returning ultrasonic wave is between the A side and B side of wedge 2.
The higher the number of reflections between surfaces, the lower the value.

従つて縦波モードの超音波7の場合には最初に
接触媒体9から楔2のA面に入射する角度が大き
いため、超音波が逆戻りするためにはかなりの反
射回数がありその音圧は低くなる。ところが、横
波モードの超音波8の場合には楔2中を伝播する
超音波の音速が縦波に比べて約1/2であるためス
ネルの法則により、かなり少ない反射回数で逆戻
りする。この横波モードの超音波8による楔2の
A面からの反射波の音圧はかなり高く、虚エコー
14として現われ、探傷信号上、S/N比を著し
く低下させる。
Therefore, in the case of the ultrasonic wave 7 in the longitudinal wave mode, since the angle at which the ultrasonic wave 7 first enters the A side of the wedge 2 from the contact medium 9 is large, there are a considerable number of reflections for the ultrasonic wave to go back, and the sound pressure is It gets lower. However, in the case of the ultrasonic wave 8 in the transverse wave mode, the sound speed of the ultrasonic wave propagating in the wedge 2 is about 1/2 that of a longitudinal wave, so according to Snell's law, the ultrasonic wave returns with a considerably smaller number of reflections. The sound pressure of the reflected wave from the A side of the wedge 2 due to the ultrasonic wave 8 in the transverse wave mode is quite high and appears as an imaginary echo 14, which significantly lowers the S/N ratio in the flaw detection signal.

この考案はこの様な従来の欠点を大幅に改善
し、S/N比の良い超音波探触子を提供するもの
である。
This invention significantly improves these conventional drawbacks and provides an ultrasonic probe with a good S/N ratio.

以下この考案の一実施例について第2図を用い
て詳述する。
An embodiment of this invention will be described below in detail with reference to FIG.

第2図aはこの考案による超音波探触子の断面
図と超音波の伝播経路を示す図。第2図bはこの
考案による超音波探触子を用いた時の探傷波形図
である。
FIG. 2a is a cross-sectional view of the ultrasonic probe according to this invention and a diagram showing the propagation path of ultrasonic waves. FIG. 2b is a flaw detection waveform diagram when using the ultrasonic probe according to this invention.

第2図a,bにおいて1は振動子、2は楔、3
はケース、4はしきり板、5は水溜部、6は反射
板、7は縦波モードの超音波、8は横波モードの
超音波、9は接触媒体、10は被検材、11は欠
陥、12は送信パルス、13は表面エコー、15
は欠陥エコー、16はカツプリングエコー、Aは
被検材10に対向する楔2の面、Bはこの考案に
よる水だめ部5へ当接しA面と平行な楔2の面、
θ1は被検材10に対向する楔2の面に、温度補償
用に設けられた角度である。
In Figures 2a and b, 1 is a vibrator, 2 is a wedge, and 3
is a case, 4 is a partition plate, 5 is a water reservoir, 6 is a reflective plate, 7 is an ultrasonic wave in longitudinal wave mode, 8 is an ultrasonic wave in transverse wave mode, 9 is a contact medium, 10 is a test material, 11 is a defect, 12 is a transmission pulse, 13 is a surface echo, 15
is a defect echo, 16 is a coupling echo, A is the surface of the wedge 2 facing the test material 10, B is the surface of the wedge 2 that comes into contact with the water reservoir 5 of this invention and is parallel to the A surface,
θ 1 is an angle provided on the surface of the wedge 2 facing the test material 10 for temperature compensation.

この考案による超音波探触子においては楔2の
被検材10と対向するA面と水溜部5に当接する
B面とが平行であるため、楔2の中で縦波モード
の超音波7と横波モードの超音波8が発生しても
最初に接触媒体9から楔2のA面に入射した角度
のままで楔2のA面とB面の間を反射しながら楔
2の先端へ伝播する。従つて従来の探触子で問題
となつた反射回数の少ない横波モードの超音波8
による虚エコー14が発生せず、S/N比が大幅
に向上されることになる。
In the ultrasonic probe according to this invention, since surface A of the wedge 2 facing the specimen 10 and surface B contacting the water reservoir 5 are parallel, the ultrasonic wave 7 in the longitudinal wave mode inside the wedge 2 Even if a transverse wave mode ultrasonic wave 8 is generated, it propagates to the tip of the wedge 2 while reflecting between the A side and B side of the wedge 2 at the same angle at which it first entered the A side of the wedge 2 from the contact medium 9. do. Therefore, ultrasonic waves in transverse wave mode with a small number of reflections, which was a problem with conventional probes8
Therefore, the imaginary echo 14 caused by this phenomenon is not generated, and the S/N ratio is greatly improved.

又、この楔2のA面とB面にはさまれる寸法,
いわゆる楔2の厚みは薄い方が超音波の反射回数
が増えるためその効果はさらに向上する。実験に
よると楔2の厚みは2〜3mmがカツプリングエコ
ー16のレベルも高く、かつ虚エコー14がほと
んど発生せず良い結果が得られた。
Also, the dimensions sandwiched between the A side and B side of this wedge 2,
The thinner the so-called wedge 2 is, the more the number of reflections of the ultrasonic waves increases, thereby further improving the effect. Experiments have shown that when the thickness of the wedge 2 is 2 to 3 mm, the level of the coupling echo 16 is high, and the imaginary echo 14 is hardly generated, resulting in good results.

以上述べた様に、この考案は楔の被検材に対向
する面と水溜部に当接する面を平行にする事によ
りS/N比の良い超音波探触子を提供するもので
ある。
As described above, this invention provides an ultrasonic probe with a good S/N ratio by making the surface of the wedge that faces the specimen and the surface that abuts the water reservoir parallel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは従来の超音波探触子の断面図、およ
び超音波伝播経路を示す図、第1図bはその探傷
波形図、第2図aはこの考案による超音波探触子
の断面図と超音波伝播経路を示す図、第2図bは
その探傷波形図である。 図において、1は振動子、2は楔、3はケー
ス、4はしきり板、5は水溜部、6は反射板、7
は縦波モードの超音波、8は横波モードの超音
波、9は接触媒体、10は被検材、11は欠陥、
12は送信パルス、13は表面エコー、14は虚
エコー、15は欠陥エコー、16はカツプリング
エコー、A,Bは楔の面である。尚、図中同一あ
るいは相当部分には同一符号を付して示してあ
る。
Figure 1a is a cross-sectional view of a conventional ultrasonic probe and a diagram showing the ultrasonic propagation path, Figure 1b is a diagram of its flaw detection waveform, and Figure 2a is a cross-section of the ultrasonic probe according to this invention. Fig. 2B is a diagram showing the ultrasonic propagation path, and Fig. 2b is a waveform diagram of the flaw detection. In the figure, 1 is a vibrator, 2 is a wedge, 3 is a case, 4 is a partition plate, 5 is a water reservoir, 6 is a reflector, and 7
is a longitudinal wave mode ultrasonic wave, 8 is a transverse wave mode ultrasonic wave, 9 is a contact medium, 10 is a test material, 11 is a defect,
12 is a transmitted pulse, 13 is a surface echo, 14 is an imaginary echo, 15 is a defect echo, 16 is a coupling echo, and A and B are wedge surfaces. In the drawings, the same or corresponding parts are designated by the same reference numerals.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被検材と超音波探触子との間にギヤツプを設
け、上記ギヤツプを水,油等の液体の接触媒体で
満たして超音波斜角探傷を行う超音波探触子にお
いて、超音波の送受信を行う振動子と、上記振動
子を被検材の表面に対して所定の角度で固定する
楔と、上記振動子の保護と楔を固定するケース
と、上記振動子への水の侵入を防ぐしきり板と、
上記楔とケースとしきり板とに囲まれた水溜部
と、上記水溜部の中に設けられた反射板とを備
え、上記反射板と被検材表面との間の超音波ビー
ム伝播経路上の楔の被検材と対向する面と、水溜
部に当接する面とが平行である事を特徴とする超
音波探触子。
In an ultrasonic probe that performs ultrasonic angle flaw detection by providing a gap between the test material and the ultrasonic probe and filling the gap with a liquid contact medium such as water or oil, the transmission and reception of ultrasonic waves is performed. a wedge for fixing the transducer at a predetermined angle to the surface of the material being tested; a case for protecting the transducer and fixing the wedge; and preventing water from entering the transducer. Shikiri board and
A water reservoir surrounded by the wedge, a case, and a partition plate, and a reflective plate provided in the water reservoir, and the ultrasonic beam propagation path between the reflective plate and the surface of the material to be inspected. An ultrasonic probe characterized in that the surface of the wedge that faces the test material and the surface that abuts the water reservoir are parallel.
JP13098282U 1982-08-30 1982-08-30 ultrasonic probe Granted JPS5934356U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13098282U JPS5934356U (en) 1982-08-30 1982-08-30 ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13098282U JPS5934356U (en) 1982-08-30 1982-08-30 ultrasonic probe

Publications (2)

Publication Number Publication Date
JPS5934356U JPS5934356U (en) 1984-03-03
JPH0129568Y2 true JPH0129568Y2 (en) 1989-09-08

Family

ID=30296273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13098282U Granted JPS5934356U (en) 1982-08-30 1982-08-30 ultrasonic probe

Country Status (1)

Country Link
JP (1) JPS5934356U (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631243Y2 (en) * 1980-02-06 1988-01-13

Also Published As

Publication number Publication date
JPS5934356U (en) 1984-03-03

Similar Documents

Publication Publication Date Title
KR100248589B1 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
US6070466A (en) Device for ultrasonic inspection of a multi-layer metal workpiece
KR870000590A (en) Defect detection method and apparatus of metal
US20210278373A1 (en) Ultrasonic probe
JPH0129568Y2 (en)
JP2006349486A (en) Ultrasonic probe
JPH11118770A (en) Ultrasonic flaw-detecting method and device
JPH1194806A (en) Ultrasonic flaw detection method end surface or side face of steel material
JPH0116043Y2 (en)
JP2002071332A (en) Probe for measurement thickness of clad steel ply material
JPH0587781A (en) Method for ultrasonic flaw detection of laminate material
JPH04157360A (en) Supersonic probe
JP3493941B2 (en) Ultrasonic probe
JPS631243Y2 (en)
JPH1164300A (en) Ultrasonic probe and ultrasonic flaw detecting apparatus
JPH02686Y2 (en)
JPH08201352A (en) Ultrasonic probe for oblique flaw detection
JPH0521011Y2 (en)
JP2978708B2 (en) Composite angle beam probe
JP2011203199A (en) Precise flaw detection method by utilization of sound absorbing material
JPH0136130Y2 (en)
JPH0375557A (en) Ultrasonic probe
JPH04122854A (en) Divided type ultrasonic probe
JPH0810793Y2 (en) Attenuator Material Probe
JPS6182159A (en) Ultrasonic wave reflector