JP2006349486A - Ultrasonic probe - Google Patents

Ultrasonic probe Download PDF

Info

Publication number
JP2006349486A
JP2006349486A JP2005175576A JP2005175576A JP2006349486A JP 2006349486 A JP2006349486 A JP 2006349486A JP 2005175576 A JP2005175576 A JP 2005175576A JP 2005175576 A JP2005175576 A JP 2005175576A JP 2006349486 A JP2006349486 A JP 2006349486A
Authority
JP
Japan
Prior art keywords
curved surface
ultrasonic
flaw detection
contact
concave curved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005175576A
Other languages
Japanese (ja)
Inventor
Yasuhiro Wasa
泰宏 和佐
Akira Okamoto
陽 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005175576A priority Critical patent/JP2006349486A/en
Publication of JP2006349486A publication Critical patent/JP2006349486A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an ultrasonic probe, capable of performing ultrasonic flaw detection over the range from the region directly under the recessed curved surface of an inspection target to a deep position in the recessed curved surface of the inspection target, without detection failures of flaws, when the internal ultrasonic flaw detection of the recessed curved surface is performed, by making ultrasonic beam enter the recessed curved surface of the inspection target, from the recessed curved surface of the inspection target. <P>SOLUTION: The ultrasonic probe 1 is constituted so as to allow the ultrasonic beam 10 to enter the inside of the recessed curved surface 20a of the inspection target 20, from the recessed curved surface 20a of the inspection target 20, to perform ultrasonic flaw detection of the inside of the recessed curved surface 20a, and is equipped with vibrator parts 2 and 4 for transmitting and receiving an ultrasonic wave, the delay material parts 3 and 5, provided in contact with the vibrator parts and a flaw detection shoe 7 having an inspection target contact protruded curved surface 7a for comprising a material, having the same ultrasonic propagation speed as the inspection target 20 and having a radius of curvature almost the same to that of the recessed curved surface 20a and brought into contact with the recessed curved surface 20a at the time of flaw detection and the delay material contact plane 7b, brought into contact with the planar undersurfaces of the delay material parts. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被検査体の凹曲面から超音波ビームを凹曲面内部へ入射させて、凹曲面内部の超音波探傷を行うに際し、センサとして用いる超音波探触子に関するものである。   The present invention relates to an ultrasonic probe used as a sensor when performing ultrasonic flaw detection inside a concave curved surface by causing an ultrasonic beam to enter the concave curved surface of the object to be inspected.

船舶のクランク軸などの強度が重要となる構造体では、強度設計上許容される最大欠陥寸法が規定されており、検査において欠陥の有無確認及びその寸法確認が必要である。構造体内部の欠陥の検査には、超音波探傷が広く用いられている。この超音波探傷は、被検査体表面に超音波探触子を、水、油、グリセリン等の接触媒質を介して接触させ、被検査体表面から超音波ビームを被検査体内部に入射させて、欠陥からの反射波(エコー)を観測することにより、欠陥の有無及び寸法を評価するものである。   In structures such as a crankshaft of a ship in which strength is important, the maximum defect size allowed in the strength design is defined, and it is necessary to confirm the presence or absence of defects and to confirm the size in the inspection. Ultrasonic flaw detection is widely used for inspection of defects inside the structure. In this ultrasonic flaw detection, an ultrasonic probe is brought into contact with the surface of the object to be inspected through a contact medium such as water, oil, glycerin, and an ultrasonic beam is incident on the inside of the object to be inspected from the surface of the object to be inspected. By observing a reflected wave (echo) from the defect, the presence and size of the defect is evaluated.

超音波探傷に用いられる超音波探触子は、一般に、超音波の送信と受信を行う振動子部と、振動子部に接触して設けられた遅延材部(材質はアクリル樹脂が広く採用されている)とを備えている。遅延材部は、その形状によって、斜め前方に超音波を入射させる斜角探触子用、被検査体の表面を伝わる表面波探触子用、垂直方向に入射させる垂直探触子用などがある。そして、一般に、超音波探触子の遅延材部は、探傷時に被検査体に接触する接触部分が平面状をなしている。このため、凹曲面を持つ被検査体の該凹曲面に超音波探触子を接触させようとすると、超音波探触子と凹曲面との間に隙間(空気層)が生じ、超音波が空気層で反射されて被検査体の中へ入って行かないという不具合が発生する。   In general, an ultrasonic probe used for ultrasonic flaw detection is a transducer unit that transmits and receives ultrasonic waves, and a delay material unit that is provided in contact with the transducer unit (a material made of acrylic resin is widely used). And). Depending on the shape of the delay material part, the delay material part may be used for an oblique angle probe in which ultrasonic waves are incident obliquely forward, for a surface wave probe that is transmitted along the surface of the object to be inspected, for a vertical probe that is incident in the vertical direction, etc. is there. In general, the delay material portion of the ultrasonic probe has a flat contact portion that contacts the object to be inspected during flaw detection. For this reason, when the ultrasonic probe is brought into contact with the concave curved surface of the object having a concave curved surface, a gap (air layer) is generated between the ultrasonic probe and the concave curved surface, and the ultrasonic wave is generated. There is a problem that it is reflected by the air layer and does not enter the object to be inspected.

そこで、超音波探触子と被検査体の凹曲面との間に生じる隙間の問題を解消すべく、特開平11−337537号公報には、図7に示す超音波探触子が提案されている(従来技術1)。表面波法に用いられるこの超音波探触子61は、超音波発振子64から発振された超音波が、探傷シュー63を介して検査面が凹曲面62a(曲率半径が250〜750mmという大きなもの)である被検査体62に入射される際に、その屈折角が90°になるように超音波発振子64が探傷シュー63に取り付けられたものであって、探傷シュー63の被検査体凹曲面62aと接触する面の形状を凸曲面とし、かつ、該凸曲面の曲率半径を被検査体凹曲面62aの曲率半径より小としたものである。   Accordingly, in order to solve the problem of the gap generated between the ultrasonic probe and the concave curved surface of the object to be inspected, Japanese Patent Laid-Open No. 11-337537 proposes an ultrasonic probe shown in FIG. (Prior Art 1). The ultrasonic probe 61 used in the surface wave method has an ultrasonic wave oscillated from an ultrasonic oscillator 64 and has a concave curved surface 62a (a radius of curvature of 250 to 750 mm) through a flaw detection shoe 63. ), The ultrasonic oscillator 64 is attached to the flaw detection shoe 63 so that the refraction angle thereof becomes 90 °, and the inspection object concave portion of the flaw detection shoe 63 is recessed. The shape of the surface in contact with the curved surface 62a is a convex curved surface, and the curvature radius of the convex curved surface is smaller than the curvature radius of the inspected object concave curved surface 62a.

また、被検査体を水没させるか、被検査体の凹曲面部分を局所的に水浸させることで、超音波探触子と被検査体の間のギャップに接触媒質としての水を満たし、この接触媒質である水を介して超音波を被検査体へ入射させるようにした方法も知られている(従来技術2)。   In addition, by submerging the object to be inspected or locally immersing the concave curved surface portion of the object to be inspected, the gap between the ultrasonic probe and the object to be inspected is filled with water as a contact medium. There is also known a method in which an ultrasonic wave is incident on an object to be inspected through water as a contact medium (prior art 2).

さらに、特開平11−304774号公報には、図8に示すように、可撓性を有する振動子部72と、振動子部72を指先90に取り付けるための可撓性を有する指サック状の固定部73とによって構成された超音波探触子71が提案されている。この超音波探触子71によると、被検査体80の凹部形状に合わせて振動子部72を変形させて、被検査体80と超音波探触子71の間に隙間が生じないようにしている(従来技術3)。
特開平11−337537号公報(第2頁、図1) 特開平11−304774号公報(第2頁、図1)
Further, in Japanese Patent Application Laid-Open No. 11-304774, as shown in FIG. 8, a flexible vibrator portion 72 and a flexible finger sac shape for attaching the vibrator portion 72 to the fingertip 90 are provided. An ultrasonic probe 71 composed of a fixed portion 73 has been proposed. According to this ultrasonic probe 71, the transducer portion 72 is deformed in accordance with the concave shape of the inspection object 80 so that no gap is generated between the inspection object 80 and the ultrasonic probe 71. (Prior Art 3).
JP 11-337537 A (2nd page, FIG. 1) JP-A-11-304774 (second page, FIG. 1)

前述した従来技術1〜3では、被検査体の凹曲面と超音波探触子との間に隙間(空気層)が生じて、超音波が空気層で反射されるという問題を解消することができる。   In the above-described conventional techniques 1 to 3, the problem that a gap (air layer) is generated between the concave curved surface of the object to be inspected and the ultrasonic probe and the ultrasonic wave is reflected by the air layer can be solved. it can.

ところが、被検査体の凹曲面から超音波ビームを凹曲面内部へ入射させて、凹曲面内部の超音波探傷を行うに際し、被検査体の凹曲面の曲率半径が、前記従来技術1での250〜750mmなどに比べて、10mm程度と相当に小さい場合(曲率が大きく急峻な場合)には、凹曲面と超音波探触子との間に隙間が発生するという前記の問題の他にも重大な問題があることを、発明者らは、実験及び詳細な検討の結果から見出した。   However, when performing an ultrasonic flaw detection inside the concave curved surface by making an ultrasonic beam incident on the concave curved surface of the object to be inspected, the radius of curvature of the concave curved surface of the object to be inspected is 250 in the prior art 1. In addition to the above-mentioned problem that a gap is generated between the concave curved surface and the ultrasonic probe when the diameter is considerably small (about 10 mm) compared to 750 mm or the like (when the curvature is large and steep). The inventors have found that there is a serious problem from the results of experiments and detailed studies.

図5は本発明の課題を説明するための図であって、被検査体接触凸曲面を有するアクリル樹脂製遅延材部を備えた超音波探触子において、該超音波探触子からの被検査体の凹曲面内部への超音波ビームの入射の様子を模式的に示す図である。   FIG. 5 is a diagram for explaining the problem of the present invention. In an ultrasonic probe having an acrylic resin delay member having a convex contact curved surface, an object to be inspected from the ultrasonic probe is shown. It is a figure which shows typically the mode of incidence | injection of the ultrasonic beam into the concave curved surface of a test body.

図5において、20はフィレット(fillet)部として曲率半径12mmの凹曲面を有する一般炭素鋼製の被検査体、31は超音波探触子である。超音波探触子31は、二振動子垂直探触子(二分割垂直型探触子)であり、振動子部32と、振動子部32に接触して設けられたアクリル樹脂製遅延材部33とを備えている。また、アクリル樹脂製遅延材部33は、その先端側に、被検査体20の凹曲面と略同一の曲率半径を持ち、探傷時に被検査体20の凹曲面に接触する被検査体接触凸曲面33aを有している。   In FIG. 5, 20 is a general carbon steel inspection object having a concave curved surface with a curvature radius of 12 mm as a fillet part, and 31 is an ultrasonic probe. The ultrasonic probe 31 is a two-vibrator vertical probe (two-divided vertical probe), and includes a transducer unit 32 and an acrylic resin delay material unit provided in contact with the transducer unit 32. 33. Further, the acrylic resin delay member 33 has a curvature radius substantially the same as that of the concave curved surface of the object to be inspected on the tip side thereof, and contacts the concave curved surface of the object to be inspected 20 at the time of flaw detection. 33a.

そして、一般炭素鋼製の被検査体20の曲率半径12mmの凹曲面に、この超音波探触子31の被検査体接触凸曲面33aをグリセリン等の接触媒質を介して接触させて、凹曲面内部の超音波探傷を行うと、その探傷性能は、被検査体接触平面を有する超音波探触子による表面形状が平坦な被検査体での超音波探傷に比較して、極端に低下してしまう。   Then, the test object contact convex curved surface 33a of the ultrasonic probe 31 is brought into contact with the concave curved surface of the test object 20 made of general carbon steel with a radius of curvature of 12 mm through a contact medium such as glycerin to form a concave curved surface. When ultrasonic inspection is performed inside, the inspection performance is extremely low compared to ultrasonic inspection using an ultrasonic probe having a flat surface shape with an ultrasonic probe having an inspection object contact plane. End up.

その理由は、図5に示すように、超音波探触子31と被検査体20の凹曲面との界面(曲率半径が小さい曲面をなす界面)での超音波ビームの屈折によるものである。材質が一般炭素鋼である被検査体20での縦波音速は、約5900m/sであるのに対し、材質がアクリル樹脂であるアクリル樹脂製遅延材部33での縦波音速は、2700m/sである。スネルの法則から、例えば入射角10度で斜めから入射した超音波ビームは、22度方向に約12度曲げられて伝搬し、また、例えば入射角20度で入射した超音波ビームは、47.7度方向に約27度曲げられて伝搬する。その結果を模式的に示したものが、図5における超音波ビームTである。図5に示すように、超音波ビームTは、例えば入射角10度の場合、被検査体20の凹曲面直下9.8mm付近に収束するものの、それよりも深い部分では広く分散してしまっている。このため、深い位置にある欠陥には十分な音圧の超音波ビームが到達せず、S/N比が良好な探傷は困難となり、欠陥検出もれが発生する。このことは実験的にも確認されており、人工欠陥として直径1mmの平底穴を凹曲面から深さ10〜50mmまでの位置に5mmピッチで施した試験片をそれぞれ製作し、超音波探触子31による探傷を行ったところ、凹曲面から深さ10mmの位置にある前記人工欠陥を検出できたものの、それより深い位置にある人工欠陥については、明確なエコーを観測することができなかった。   The reason is that, as shown in FIG. 5, the ultrasonic beam is refracted at the interface between the ultrasonic probe 31 and the concave curved surface of the inspection object 20 (the curved interface having a small radius of curvature). The longitudinal wave sound speed in the object 20 to be inspected made of general carbon steel is about 5900 m / s, whereas the longitudinal wave sound speed in the acrylic resin delay member 33 made of acrylic resin is 2700 m / s. s. From Snell's law, for example, an ultrasonic beam incident from an oblique angle with an incident angle of 10 degrees is bent and propagated by about 12 degrees in the 22-degree direction, and an ultrasonic beam incident at an incident angle of 20 degrees is 47. Propagate by bending about 27 degrees in the 7 degree direction. The result schematically is an ultrasonic beam T in FIG. As shown in FIG. 5, for example, when the incident angle is 10 degrees, the ultrasonic beam T converges in the vicinity of 9.8 mm immediately below the concave curved surface of the object 20 to be inspected, but is widely dispersed in a portion deeper than that. Yes. For this reason, an ultrasonic beam having a sufficient sound pressure does not reach a defect at a deep position, so that it is difficult to perform flaw detection with a good S / N ratio, and defect detection leaks. This has been confirmed experimentally, and as an artificial defect, specimens each having a flat bottom hole with a diameter of 1 mm and a depth of 10 to 50 mm from the concave surface to a depth of 10 to 50 mm are manufactured at an ultrasonic probe. As a result of flaw detection by 31, it was possible to detect the artificial defect located at a depth of 10 mm from the concave curved surface, but no clear echo could be observed for the artificial defect located deeper than that.

図6は本発明の課題を説明するための図であって、局部水浸法での超音波探触子からの被検査体の凹曲面内部への超音波ビームの入射の様子を模式的に示す図である。   FIG. 6 is a diagram for explaining the problem of the present invention, and schematically shows an incident state of an ultrasonic beam from the ultrasonic probe into the concave curved surface of the object to be inspected by the local water immersion method. FIG.

図6において、20はフィレット部として曲率半径12mmの凹曲面を有する一般炭素鋼製の被検査体、41は超音波探触子である。超音波探触子41は、二振動子垂直探触子(二分割垂直型探触子)であり、振動子部42と、振動子部42に接触して設けられたアクリル樹脂製遅延材部43とを備えている。また、アクリル樹脂製遅延材部43は、その先端側に平面43aを有している。すなわち、超音波探触子41は、超音波探触子として一般的な形状のものである。50は被検査体20の凹曲面と超音波探触子41との間を水で満たすようにした局部水浸である。   In FIG. 6, 20 is a general carbon steel inspection object having a concave curved surface with a curvature radius of 12 mm as a fillet portion, and 41 is an ultrasonic probe. The ultrasonic probe 41 is a dual transducer vertical probe (two-divided vertical probe), and includes a transducer section 42 and an acrylic resin delay material section provided in contact with the transducer section 42. 43. In addition, the acrylic resin delay member 43 has a flat surface 43a on the tip side. That is, the ultrasonic probe 41 has a general shape as an ultrasonic probe. Reference numeral 50 denotes a local water immersion in which the space between the concave curved surface of the inspection object 20 and the ultrasonic probe 41 is filled with water.

界面での超音波ビームの屈折は、図6に示すような局部水浸法、あるいは全没水浸法での超音波探触子41による超音波探傷においても発生する。水での縦波音速は1480m/sであり、前記図5におけるアクリル樹脂製遅延材部33での縦波音速(2700m/s)と比較してもさらに屈折角が大きく、図6に示すように、超音波ビームTは、例えば入射角10度の場合、被検査体20の凹曲面直下3.8mm付近に収束するものの、その発散度合いが激しい。   The refraction of the ultrasonic beam at the interface also occurs in the ultrasonic flaw detection by the ultrasonic probe 41 in the local water immersion method as shown in FIG. The longitudinal wave sound velocity in water is 1480 m / s, and the refraction angle is larger than the longitudinal wave sound velocity (2700 m / s) in the acrylic resin delay member 33 in FIG. 5, as shown in FIG. In addition, for example, when the incident angle is 10 degrees, the ultrasonic beam T converges in the vicinity of 3.8 mm immediately below the concave curved surface of the inspection target 20, but the degree of divergence is intense.

このように、被検査体の凹曲面から超音波ビームを凹曲面内部へ入射させて、凹曲面内部の超音波探傷を行うに際し、被検査体の凹曲面の曲率半径が10mm程度と相当に小さい場合、曲面をなす界面でスネルの法則による超音波ビームの屈折が発生する。なお、前述した従来技術3の図8に示す可撓性の振動子部を被検査体になじませる場合にも、同様に被検査体表面の法線方向に超音波ビームが伝搬して広がってしまう。さらに、振動子部が被検査体の形状に応じて変化してしまうこと自体、欠陥寸法の定量化の観点からあまり望ましいとはいえない。一般に、超音波探傷では、テストピースとして既知寸法の人工欠陥からのエコーレベルと実際の欠陥からのエコーレベルを比較して、その欠陥寸法と特定することが行われる。その前提となるのは、超音波振動子が送受信において特性が不変で再現性があることである。ところが、従来技術3では、被検査体の形状に応じて振動子部の形状が変化することは、再現性を損なう大きな要因となりうるので不都合となる。   In this way, when performing ultrasonic flaw detection inside a concave curved surface by making an ultrasonic beam incident from the concave curved surface of the specimen to be inspected, the radius of curvature of the concave curved surface of the specimen to be inspected is as small as about 10 mm. In this case, the ultrasonic beam is refracted by Snell's law at the curved interface. In addition, when the flexible vibrator shown in FIG. 8 of the prior art 3 described above is adapted to the object to be inspected, the ultrasonic beam propagates and spreads in the normal direction of the surface of the object to be inspected in the same manner. End up. Furthermore, it cannot be said that the vibrator part itself changes according to the shape of the inspection object from the viewpoint of quantifying the defect size. In general, in ultrasonic flaw detection, an echo level from an artificial defect having a known dimension as a test piece is compared with an echo level from an actual defect, and the defect size is specified. The premise is that the ultrasonic transducer has invariable characteristics in transmission and reception and has reproducibility. However, in the prior art 3, the change in the shape of the vibrator portion according to the shape of the object to be inspected is inconvenient because it can be a major factor that impairs reproducibility.

本発明の課題は、被検査体の凹曲面から超音波ビームを凹曲面内部へ入射させて凹曲面内部の超音波探傷を行うに際し、凹曲面直下から凹曲面内部の深い位置にわたって欠陥検出もれなく超音波探傷を行うことができる超音波探触子を提供することにある。   An object of the present invention is to perform ultrasonic flaw detection inside a concave curved surface by making an ultrasonic beam incident on the concave curved surface of the object to be inspected and to detect defects from a position immediately below the concave curved surface to a deep position inside the concave curved surface. An object of the present invention is to provide an ultrasonic probe capable of performing ultrasonic flaw detection.

前記の課題を解決するため、本願発明では、次の技術的手段を講じている。   In order to solve the above problems, the present invention takes the following technical means.

請求項1の発明は、被検査体の凹曲面から超音波ビームを凹曲面内部へ入射させて凹曲面内部の超音波探傷を行う超音波探触子において、超音波の送信と受信を行う振動子部と、前記振動子部に接触して設けられた遅延材部と、前記被検査体と同一の超音波伝播速度を有する材質よりなり、前記凹曲面と略同一の曲率半径を持ち、探傷時に前記凹曲面に接触させる被検査体接触凸曲面、及び、前記遅延材部の平面状の下面に面接触している遅延材接触平面を有する探傷シューとを備えたことを特徴とする超音波探触子である。   According to the first aspect of the present invention, in an ultrasonic probe that performs ultrasonic flaw detection inside a concave curved surface by causing an ultrasonic beam to enter the concave curved surface of the object to be inspected, vibration for transmitting and receiving ultrasonic waves. A sub-part, a delay member provided in contact with the transducer part, and a material having the same ultrasonic propagation velocity as the object to be inspected, having a curvature radius substantially the same as the concave curved surface, and flaw detection An ultrasonic wave comprising: a test object contact convex curved surface that is sometimes brought into contact with the concave curved surface; and a flaw detection shoe having a delay material contact plane that is in surface contact with the planar lower surface of the delay material portion. It is a probe.

請求項2の発明は、請求項1記載の超音波探触子において、前記探傷シューは、前記遅延材接触平面から前記被検査体接触凸曲面までの長さが被検査体の前記凹曲面からの探傷領域長さ以上であることを特徴とするものである。   According to a second aspect of the present invention, in the ultrasonic probe according to the first aspect, the flaw detection shoe has a length from the delay material contact plane to the inspected object contact convex curved surface from the concave curved surface of the inspected object. It is characterized in that it is longer than the flaw detection area length.

本発明の超音波探触子は、振動子部、遅延材部及び探傷シューを備えており、探傷シューが、被検査体と同一の超音波伝播速度を有する材質よりなり、かつ、被検査体の凹曲面と略同一の曲率半径を持ち、探傷時に前記凹曲面に接触させる被検査体接触凸曲面と、振動子部に接触して設けられた遅延材部の平面状の下面に面接触している遅延材接触平面とを有している。   The ultrasonic probe of the present invention includes a transducer part, a delay member part, and a flaw detection shoe, and the flaw detection shoe is made of a material having the same ultrasonic propagation velocity as that of the inspection object, and the inspection object. The curved surface of the object to be inspected is brought into contact with the concave curved surface at the time of flaw detection, and the flat bottom surface of the delay member provided in contact with the vibrator portion is in surface contact. And a retarder contact plane.

したがって、遅延材部の平面状の下面に探傷シューの遅延材接触平面を面接触させており、探傷シューが被検査体接触凸曲面を持つことで被検査体の凹曲面との間に隙間が発生することをなくすことができ、探傷シューが被検査体と同一の超音波伝播速度を有する材質よりなることで、探傷シューと被検査体の凹曲面との界面でスネルの法則による超音波ビームの屈折が発生することをなくすことができる。これにより遅延材部から出た超音波ビームは、探傷シュー内部から被検査体の凹曲面内部にわたって途中で屈折することなく直進する。   Therefore, the delay material contact plane of the flaw detection shoe is brought into surface contact with the flat bottom surface of the delay material portion, and the flaw detection shoe has a convex curved surface that is in contact with the test subject, so that there is a gap between the concave curved surface of the test subject. Since the flaw detection shoe is made of a material having the same ultrasonic propagation velocity as that of the object to be inspected, an ultrasonic beam according to Snell's law is formed at the interface between the flaw detection shoe and the concave curved surface of the object to be inspected. Can be prevented from occurring. As a result, the ultrasonic beam emitted from the delay material part advances straight without being refracted midway from the inside of the flaw detection shoe to the inside of the concave curved surface of the object to be inspected.

よって、本発明の超音波探触子は、探傷シューによって実質的に被検査体の凹曲面を平面化することにより、平坦な面での超音波探傷と同様の探傷性能が確保でき、被検査体の凹曲面直下から凹曲面内部の深い位置にわたって欠陥検出もれなく超音波探傷を行うことができる。また、超音波探触子の探傷シューの長さを被検査体の凹曲面からの探傷領域長さ以上にすることにより、探傷シューと被検査体との界面での多重エコーによる影響を受けることなく、欠陥からのエコーを観察することができる。   Therefore, the ultrasonic probe of the present invention can ensure the same flaw detection performance as that of ultrasonic flaw detection on a flat surface by substantially flattening the concave curved surface of the inspection object with the flaw detection shoe. Ultrasonic flaw detection can be performed without detecting any defect from directly under the concave curved surface of the body to a deep position inside the concave curved surface. In addition, by making the length of the flaw detection shoe of the ultrasonic probe longer than the flaw detection area length from the concave surface of the object to be inspected, it is affected by multiple echoes at the interface between the flaw detection shoe and the object to be inspected. And echoes from defects can be observed.

以下、図面を参照して、本発明の実施形態について説明する。図1は本発明の一実施形態による超音波探触子を概略的に示す構成図、図2は図1に示す超音波探触子の正面図、図3は図1に示す超音波探触子からの被検査体の凹曲面内部への超音波ビームの入射の様子を模式的に示す図である。   Embodiments of the present invention will be described below with reference to the drawings. 1 is a configuration diagram schematically showing an ultrasonic probe according to an embodiment of the present invention, FIG. 2 is a front view of the ultrasonic probe shown in FIG. 1, and FIG. 3 is an ultrasonic probe shown in FIG. It is a figure which shows typically the mode of incidence | injection of the ultrasonic beam from the child | child to the inside of the concave curved surface of the to-be-inspected object.

図1において、20は被検査体である。被検査体20は、この実施形態では、フィレット部として曲率半径12mmの凹曲面20aを有する一般炭素鋼製の被検査体である。機械部品(構造体)にフィレット部を施すのは、その部分の設計応力が大きい場合が多い。したがって、そのフィレット部での許容される欠陥の寸法も小さく、ワレや介在物欠陥などが存在しないか否かについて、超音波探傷が義務づけられる場合がある。超音波探触子1は、この実施形態では周波数10MHzの二振動子垂直探触子(二分割垂直型探触子)である。   In FIG. 1, 20 is a test object. In this embodiment, the inspection object 20 is a general carbon steel inspection object having a concave curved surface 20a having a curvature radius of 12 mm as a fillet portion. When a fillet portion is applied to a machine part (structure), the design stress at that portion is often large. Therefore, the allowable defect size at the fillet portion is also small, and ultrasonic flaw detection may be required as to whether there are cracks or inclusion defects. In this embodiment, the ultrasonic probe 1 is a dual transducer vertical probe (two-divided vertical probe) having a frequency of 10 MHz.

図1、図2において、2は送信振動子であり、3はブロック状をなし、送信振動子2に接触して設けられたアクリル樹脂製の送信用遅延材である。4は受信振動子であり、5はブロック状をなし、受信振動子4に接触して設けられたアクリル樹脂製の受信用遅延材である。6は音響的隔離板であり、送信振動子2及び送信用遅延材3と受信振動子4及び受信用遅延材5とが分離するように、送信用遅延材3と受信用遅延材5との間に挟まれて設けられたものである。送信振動子2と受信振動子4とは、超音波の送信と受信を行う振動子部を構成している。また、送信用遅延材3と受信用遅延材5とは、前記振動子部に接触して設けられた遅延材部を構成している。なお、振動子部及び遅延材部を収容するケース等については図示省略している。   1 and 2, reference numeral 2 denotes a transmission vibrator, and reference numeral 3 denotes a block-shaped transmission delay material made of acrylic resin that is in contact with the transmission vibrator 2. Reference numeral 4 denotes a reception vibrator, and reference numeral 5 denotes a block-shaped reception delay material made of acrylic resin that is provided in contact with the reception vibrator 4. 6 is an acoustic separator, and the transmission delay material 3 and the reception delay material 5 are separated from each other so that the transmission vibrator 2 and the transmission delay material 3 are separated from the reception vibrator 4 and the reception delay material 5. It is provided between them. The transmission transducer 2 and the reception transducer 4 constitute a transducer unit that transmits and receives ultrasonic waves. Further, the transmission delay material 3 and the reception delay material 5 constitute a delay material portion provided in contact with the vibrator portion. Note that a case for housing the vibrator portion and the delay member portion is not shown.

7は探傷シューである。探傷シュー7は、被検査体20と同一の超音波伝播速度を有する材質よりなり、凹曲面20aと略同一の曲率半径を持ち、探傷時に被検査体20の凹曲面20aに接触させる被検査体接触凸曲面7aと、送信用遅延材3及び受信用遅延材5の平面状の下面に面接触している遅延材接触平面7bとを有しており、接着剤等によって送信用遅延材3及び受信用遅延材5の下面に固定されている。探傷シュー7は、この実施形態では被検査体20と同一の材質である一般炭素鋼よりなり、探傷シュー7の被検査体接触凸曲面7aは、被検査体20の曲率半径12mmの凹曲面20aに合わせて、この凹曲面20aと略同一の曲率半径にて凸曲面に形成されている。この場合、被検査体接触凸曲面7aの曲率半径は、被検査体20の凹曲面20aの曲率半径と全く同一でなくてもよく、その許容範囲として±10%程度を満たすものである。なお、超音波探触子1は、その探傷シュー7の被検査体接触凸曲面7aを被検査体20の凹曲面20aにグリセリン等の接触媒質を介して接触させることがよい。   7 is a flaw detection shoe. The flaw detection shoe 7 is made of a material having the same ultrasonic propagation velocity as that of the inspected object 20, has a curvature radius substantially the same as the concave curved surface 20a, and is inspected to be in contact with the concave curved surface 20a of the inspected object 20 during flaw detection. It has a contact convex curved surface 7a and a delay material contact plane 7b that is in surface contact with the planar lower surfaces of the transmission delay material 3 and the reception delay material 5, and the transmission delay material 3 and It is fixed to the lower surface of the receiving delay material 5. In this embodiment, the flaw detection shoe 7 is made of general carbon steel, which is the same material as the inspection object 20, and the inspection object contact convex curved surface 7a of the inspection flaw 7 is a concave curved surface 20a having a curvature radius of 12 mm. Accordingly, a convex curved surface having substantially the same radius of curvature as the concave curved surface 20a is formed. In this case, the radius of curvature of the inspected object contact convex curved surface 7a does not have to be exactly the same as the radius of curvature of the concave curved surface 20a of the inspected object 20, and satisfies an allowable range of about ± 10%. In the ultrasonic probe 1, it is preferable that the inspection object contact convex curved surface 7a of the flaw detection shoe 7 is brought into contact with the concave curved surface 20a of the inspection object 20 via a contact medium such as glycerin.

このように構成される超音波探触子1によると、送信用遅延材3及び受信用遅延材5の平面状の下面に探傷シュー7の遅延材接触平面7bを面接触させており、探傷シュー7が被検査体接触凸曲面7aを持つことで被検査体20の凹曲面20aとの間に隙間が発生することをなくすことができ、探傷シュー7が被検査体20と同一の超音波伝播速度を有する材質よりなることで、探傷シュー7と被検査体20の凹曲面20aとの界面でスネルの法則による超音波ビームの屈折が発生することをなくすことができる。これにより送信用遅延材3から出た超音波ビーム10は、図3に示すように、探傷シュー7内部から被検査体20の凹曲面20a内部にわたって途中で屈折することなく直進する。   According to the ultrasonic probe 1 configured as described above, the delay material contact plane 7b of the flaw detection shoe 7 is brought into surface contact with the planar lower surfaces of the transmission delay material 3 and the reception delay material 5, and the flaw detection shoe. Since the test object 7 has the convex contact surface 7a to be inspected, it is possible to eliminate a gap between the test object 20 and the concave curved surface 20a, and the flaw detection shoe 7 has the same ultrasonic wave propagation as the test object 20. By being made of a material having speed, it is possible to eliminate the occurrence of refraction of the ultrasonic beam by Snell's law at the interface between the flaw detection shoe 7 and the concave curved surface 20a of the inspection object 20. As a result, the ultrasonic beam 10 emitted from the transmission delay material 3 advances straight without being refracted midway from the inside of the flaw detection shoe 7 to the inside of the concave curved surface 20a of the object 20 as shown in FIG.

よって、この超音波探触子1によると、探傷シュー7によって実質的に被検査体20の凹曲面20aを平面化することにより、平坦な面での超音波探傷と同様の探傷性能が確保でき、被検査体20の凹曲面20a直下から凹曲面20a内部の深い位置にわたって欠陥検出もれなく超音波探傷を行うことができる。   Therefore, according to the ultrasonic probe 1, by substantially flattening the concave curved surface 20a of the object 20 to be inspected by the flaw detection shoe 7, flaw detection performance similar to that of ultrasonic flaw detection on a flat surface can be ensured. In addition, ultrasonic flaw detection can be performed without any defect detection over a deep position inside the concave curved surface 20a from directly under the concave curved surface 20a of the object 20 to be inspected.

図4は図1に示す超音波探触子によるエコーを模式的に示す図である。   FIG. 4 is a diagram schematically showing an echo by the ultrasonic probe shown in FIG.

この超音波探触子1によると、図4に示すように、欠陥21からのエコーが観測される。なお、図4の探傷図形はいわゆるAスコープと呼ばれている表示であり、横軸は時間、すなわち超音波伝播位置(深さ)を表し、縦軸は超音波エコーレベルを表している。図4において、被検査体表面からのエコーが観測されているが、これは、探傷シュー7と被検査体20との界面での超音波ビームの反射によるエコーであり、これが多重回反射を繰り返して等間隔の位置に現れる。   According to the ultrasonic probe 1, echoes from the defect 21 are observed as shown in FIG. 4 is a display called a so-called A scope, the horizontal axis represents time, that is, the ultrasonic wave propagation position (depth), and the vertical axis represents the ultrasonic echo level. In FIG. 4, an echo from the surface of the inspection object is observed. This is an echo caused by the reflection of the ultrasonic beam at the interface between the flaw detection shoe 7 and the inspection object 20, and this repeats multiple reflections. Appear at equally spaced positions.

この場合、被検査体20内の探傷すべき領域に合わせて探傷シュー7の長さを適切な長さにすることにより、探傷シュー7と被検査体20との界面での前記多重エコーの位置を制御することが可能で、欠陥エコーとの弁別が可能となる。探傷シュー7は、その遅延材接触平面7bから被検査体接触凸曲面7aまでの長さが被検査体20の凹曲面20aからの探傷領域長さ以上であるようにすることがよい。超音波探触子1によると、凹曲面20aから深さ10〜50mmの位置にある人工欠陥の直径0.5mmの平底穴を高精度に検出することが可能であった。   In this case, the position of the multiple echoes at the interface between the flaw detection shoe 7 and the inspection object 20 is set by making the length of the flaw detection shoe 7 appropriate to the area to be flaw detection in the inspection object 20. Can be controlled, and can be discriminated from defect echoes. It is preferable that the flaw detection shoe 7 has a length from the delay material contact flat surface 7b to the inspection object contact convex curved surface 7a that is equal to or greater than a flaw detection region length from the concave curved surface 20a of the inspection object 20. According to the ultrasonic probe 1, a flat bottom hole having a diameter of 0.5 mm of an artificial defect located at a depth of 10 to 50 mm from the concave curved surface 20a can be detected with high accuracy.

本発明の一実施形態による超音波探触子を概略的に示す構成図である。1 is a configuration diagram schematically showing an ultrasonic probe according to an embodiment of the present invention. FIG. 図1に示す超音波探触子の正面図である。FIG. 2 is a front view of the ultrasonic probe shown in FIG. 1. 図1に示す超音波探触子からの被検査体の凹曲面内部への超音波ビームの入射の様子を模式的に示す図である。It is a figure which shows typically the mode of incidence | injection of the ultrasonic beam from the ultrasonic probe shown in FIG. 1 in the inside of the concave curved surface of the to-be-inspected object. 図1に示す超音波探触子によるエコーを模式的に示す図である。It is a figure which shows typically the echo by the ultrasonic probe shown in FIG. 本発明の課題を説明するための図であって、被検査体接触凸曲面を有するアクリル樹脂製遅延材部を備えた超音波探触子において、該超音波探触子からの被検査体の凹曲面内部への超音波ビームの入射の様子を模式的に示す図である。It is a figure for explaining the subject of the present invention, Comprising: In the ultrasonic probe provided with the delay material part made from acrylic resin which has a to-be-inspected object contact convex curve, of the to-be-inspected object from this ultrasonic probe It is a figure which shows typically the mode of incidence | injection of the ultrasonic beam into a concave curved surface inside. 本発明の課題を説明するための図であって、局部水浸法での超音波探触子からの被検査体の凹曲面内部への超音波ビームの入射の様子を模式的に示す図である。It is a figure for demonstrating the subject of this invention, Comprising: It is a figure which shows typically the mode of incidence | injection of the ultrasonic beam from the ultrasonic probe in the concave curved surface of the to-be-inspected object by a local water immersion method. is there. 従来の超音波探触子を示す構成図である。It is a block diagram which shows the conventional ultrasonic probe. 従来の別の超音波探触子を示す構成図である。It is a block diagram which shows another conventional ultrasonic probe.

符号の説明Explanation of symbols

1…超音波探触子
2…送信振動子
3…送信用遅延材(アクリル樹脂製)
4…受信振動子
5…受信用遅延材(アクリル樹脂製)
6…音響的隔離板
7…探傷シュー(一般炭素鋼製)
7a…被検査体接触凸曲面
7b…遅延材接触平面
10…超音波ビーム
20…被検査体(一般炭素鋼製)
20a…凹曲面
DESCRIPTION OF SYMBOLS 1 ... Ultrasonic probe 2 ... Transmission vibrator 3 ... Transmission delay material (made of acrylic resin)
4 ... Receiving vibrator 5 ... Receiving delay material (made of acrylic resin)
6 ... Acoustic separator 7 ... Flaw detection shoe (general carbon steel)
7a: Convex curved surface of object to be inspected 7b: Contact surface of delay material 10 ... Ultrasonic beam 20 ... Object to be inspected (general carbon steel)
20a ... concave curved surface

Claims (2)

被検査体の凹曲面から超音波ビームを凹曲面内部へ入射させて凹曲面内部の超音波探傷を行う超音波探触子において、超音波の送信と受信を行う振動子部と、前記振動子部に接触して設けられた遅延材部と、前記被検査体と同一の超音波伝播速度を有する材質よりなり、前記凹曲面と略同一の曲率半径を持ち、探傷時に前記凹曲面に接触させる被検査体接触凸曲面、及び、前記遅延材部の平面状の下面に面接触している遅延材接触平面を有する探傷シューとを備えたことを特徴とする超音波探触子。   In an ultrasonic probe for performing ultrasonic flaw detection inside a concave curved surface by causing an ultrasonic beam to enter the concave curved surface of the object to be inspected, a transducer unit for transmitting and receiving ultrasonic waves, and the transducer A delay member provided in contact with the part, and a material having the same ultrasonic propagation velocity as that of the object to be inspected, having a curvature radius substantially the same as the concave curved surface, and contacting the concave curved surface during flaw detection An ultrasonic probe comprising: a test object contact convex curved surface; and a flaw detection shoe having a delay material contact plane in surface contact with the planar lower surface of the delay material portion. 前記探傷シューは、前記遅延材接触平面から前記被検査体接触凸曲面までの長さが被検査体の前記凹曲面からの探傷領域長さ以上であることを特徴とする請求項1記載の超音波探触子。   2. The super-flaw according to claim 1, wherein the flaw detection shoe has a length from the delay material contact plane to the inspected object contact convex curved surface that is equal to or greater than a flaw detection area length from the concave curved surface of the inspected object. Sonic probe.
JP2005175576A 2005-06-15 2005-06-15 Ultrasonic probe Pending JP2006349486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005175576A JP2006349486A (en) 2005-06-15 2005-06-15 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005175576A JP2006349486A (en) 2005-06-15 2005-06-15 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JP2006349486A true JP2006349486A (en) 2006-12-28

Family

ID=37645505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005175576A Pending JP2006349486A (en) 2005-06-15 2005-06-15 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JP2006349486A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009014771U1 (en) * 2009-11-02 2011-03-24 Seuthe, Ulrich Coupling element for the acoustic coupling of a sound transducer to a body and sound transducer
CN102818851A (en) * 2011-06-10 2012-12-12 中国商用飞机有限责任公司 Detection method for ultrasonic detection of arc-shaped corner of L-shaped workpeice
JP2012255776A (en) * 2011-06-08 2012-12-27 Boeing Co:The Geometry compensating transducer attachments for ultrasonic inspection of chamfers or countersunk surfaces
WO2014126023A1 (en) * 2013-02-14 2014-08-21 株式会社神戸製鋼所 Ultrasonic probe
JP2019152598A (en) * 2018-03-06 2019-09-12 株式会社神戸製鋼所 Probe for ultrasonic flaw detection

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009014771U1 (en) * 2009-11-02 2011-03-24 Seuthe, Ulrich Coupling element for the acoustic coupling of a sound transducer to a body and sound transducer
WO2011050991A1 (en) 2009-11-02 2011-05-05 Ulrich Seuthe Coupling element for acoustically coupling a sound transducer to a body, and sound transducer comprising said coupling element
US10288586B2 (en) 2009-11-02 2019-05-14 Ulrich Seuthe Coupling element for acoustically coupling a sound transducer to a body, and sound transducer comprising said coupling element
JP2012255776A (en) * 2011-06-08 2012-12-27 Boeing Co:The Geometry compensating transducer attachments for ultrasonic inspection of chamfers or countersunk surfaces
CN102818851A (en) * 2011-06-10 2012-12-12 中国商用飞机有限责任公司 Detection method for ultrasonic detection of arc-shaped corner of L-shaped workpeice
WO2014126023A1 (en) * 2013-02-14 2014-08-21 株式会社神戸製鋼所 Ultrasonic probe
JP2014178302A (en) * 2013-02-14 2014-09-25 Kobe Steel Ltd Ultrasonic probe
KR20150103290A (en) * 2013-02-14 2015-09-09 가부시키가이샤 고베 세이코쇼 Ultrasonic probe
KR101716997B1 (en) * 2013-02-14 2017-03-15 가부시키가이샤 고베 세이코쇼 Ultrasonic probe
JP2019152598A (en) * 2018-03-06 2019-09-12 株式会社神戸製鋼所 Probe for ultrasonic flaw detection

Similar Documents

Publication Publication Date Title
JP4544240B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
JPWO2007113907A1 (en) Ultrasonic probe, ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP2008209364A (en) Apparatus and method for ultrasonically detecting flaw of tube
JP5420525B2 (en) Apparatus and method for ultrasonic inspection of small diameter tube
JP2006349486A (en) Ultrasonic probe
EP1271097A2 (en) Method for inspecting clad pipe
JP6797788B2 (en) Ultrasonic probe
JP5642248B2 (en) Ultrasonic probe
JP2002062281A (en) Flaw depth measuring method and its device
JP2009092471A (en) Flaw detection method and apparatus
CN110554088A (en) Air coupling ultrasonic detection method for defects
KR101139592B1 (en) longitudinal wave transducer wedge to maintain couplant layer and longitudinal wave transducer using the same
JP7480020B2 (en) Design method for ultrasonic inspection probe arrangement, inspection method for turbine blade, and probe holder
WO2017219469A1 (en) Ultrasonic detector for crack propagation of unmanned vessel body
JPH08136512A (en) Ultrasonic flaw detection method at seam welded part of steel pipe
WO2017219468A1 (en) Ultrasonic detection method for crack propagation in ship body of unmanned ship
WO2018135242A1 (en) Inspection method
JP2002243703A (en) Ultrasonic flaw detector
JP2012163517A (en) Ultrasonic test method for fillet part and ultrasonic test equipment for fillet part
WO2019150953A1 (en) Ultrasonic probe
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
WO2018147036A1 (en) Ultrasound probe
JP2001083123A (en) Local immersion type ultrasonic probe and ultrasonic inspection device equipped with it
JP6016759B2 (en) Ultrasonic flaw detector
JP2001124746A (en) Ultrasonic inspection method