JPS5952983B2 - Ultrasonic angle flaw detection device - Google Patents

Ultrasonic angle flaw detection device

Info

Publication number
JPS5952983B2
JPS5952983B2 JP53138035A JP13803578A JPS5952983B2 JP S5952983 B2 JPS5952983 B2 JP S5952983B2 JP 53138035 A JP53138035 A JP 53138035A JP 13803578 A JP13803578 A JP 13803578A JP S5952983 B2 JPS5952983 B2 JP S5952983B2
Authority
JP
Japan
Prior art keywords
flaw detection
angle
ultrasonic
steel pipes
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53138035A
Other languages
Japanese (ja)
Other versions
JPS5563759A (en
Inventor
廣章 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP53138035A priority Critical patent/JPS5952983B2/en
Publication of JPS5563759A publication Critical patent/JPS5563759A/en
Publication of JPS5952983B2 publication Critical patent/JPS5952983B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は、超音波斜角探傷装置、特に、厚肉鋼管の内外
面の欠陥を同時に探傷することのできる超音波斜角探傷
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultrasonic angle flaw detector, and particularly to an ultrasonic angle flaw detector that can simultaneously detect defects on the inner and outer surfaces of a thick-walled steel pipe.

一般に超音波斜角探傷装置は、鋼管の内外面おょび肉厚
内に存在する欠陥を高感度に検出できるために、高度な
品質を要求される鋼管の非破壊検査に利用されている。
Generally, ultrasonic angle flaw detection equipment is used for nondestructive inspection of steel pipes that require high quality because they can detect defects on the inner and outer surfaces and within the wall thickness of steel pipes with high sensitivity.

しかしこのような鋼管の斜角探傷においては管の肉厚が
大きくなることにより管内面へ超音波ビームが当たらな
くなり、内面欠陥の検出が不可能になる。管外径をD、
管厚ををとすれば、を/Dと超音波ビームの外面欠陥検
出用の屈折角θOおよび内面欠陥検出用の屈折角θiと
の間にはslnθi−slneo t/ D■ ・・・・・・・・・・・・・・・(1)2
sinθiの関係がある。
However, in such angle-angle flaw detection of steel pipes, as the wall thickness of the pipe increases, the ultrasonic beam does not hit the inner surface of the pipe, making it impossible to detect inner surface defects. The outer diameter of the tube is D,
If the tube thickness is , then the relationship between /D and the refraction angle θO for outer surface defect detection and the refraction angle θi for inner surface defect detection of the ultrasonic beam is slnθi−slneo t/D■...・・・・・・・・・・・・(1)2
There is a relationship of sin θi.

そして第1図に示すように、超音波ビームが管内面の接
線となつたときはθi二900であるからを /D=(
1−sinθo)/ 2 ・・・・・・・・・(2)と
なる。
As shown in Figure 1, when the ultrasonic beam becomes tangent to the inner surface of the tube, θi2900, so /D=(
1-sinθo)/2 (2).

(2)式により求められるを/Dが理論的に管外面検出
用屈折角θoにおける探傷可能限界Jt/Dである。第
2図は屈折角θoと探傷可能限界を/Dとの関係を示し
たものであつて、同図の曲線aより下方の領域イが内面
欠陥検出可能領域であり、屈折角θOの場合に第1図に
おける管厚を、の鋼管1に対して超音波ビームが符号1
0で示・すように伝播する。また曲線aより上方の領域
口が内面欠陥検出不可領域であり、鎖線で示す管厚を2
の鋼管1’に対して超音波ビームが符号10′のように
伝播する。即ち、外面欠陥検出用屈折角θOが一定であ
つても、第1図、第2図に示すようフに超音波ビームの
外面側への入射角は、を/Dに関係なく、屈折角θoに
等しいが、内面側への入射角はを/Dにより変化し、を
/Dが大きくなるにしたがつて前記屈折角θOより大き
な値となり、その結果符号10′のように管内面へ超音
波□ビームが当たらな<なり内面欠陥の検出が困難とな
る。従来、超音波斜角探傷における屈折角は以下の理由
で35゜〜70゜を用いるのが一般的である。
/D obtained by equation (2) is theoretically the flaw detectable limit Jt/D at the refraction angle θo for detecting the tube outer surface. Figure 2 shows the relationship between the refraction angle θo and the flaw detection limit /D.The area A below the curve a in the figure is the area where internal defects can be detected, and when the refraction angle θO The ultrasonic beam is applied to the steel pipe 1 whose thickness is 1 in Fig. 1.
It propagates as shown by 0. Also, the area above curve a is the area where internal defects cannot be detected, and the pipe thickness shown by the chain line is 2
An ultrasonic beam propagates as indicated by reference numeral 10' through the steel pipe 1'. That is, even if the refraction angle θO for detecting defects on the outer surface is constant, the angle of incidence of the ultrasonic beam on the outer surface side as shown in FIGS. However, the angle of incidence on the inner surface changes with /D, and as /D increases, the value becomes larger than the refraction angle θO. □If the beam does not hit, it becomes difficult to detect internal defects. Conventionally, the refraction angle in ultrasonic angle flaw detection is generally 35° to 70° for the following reasons.

(イ)超音波ビームの往復通過率が水と鋼との間で第3
図に示すように横波屈折角35゜〜70゜で高い値を示
す。また、横波屈折角33゜以下では縦波T,と横波T
sの両者が共存するとともに往復通過率が低い。(ロ)
超音波ビームの直角な角における反射率が第4図に示す
ように横波屈折角35゜〜55゜で100%を示す。
(b) The round-trip passage rate of the ultrasonic beam is the third highest between water and steel.
As shown in the figure, it shows a high value at a transverse wave refraction angle of 35° to 70°. In addition, when the shear wave refraction angle is less than 33°, the longitudinal wave T and the shear wave T
s coexist and the round-trip passage rate is low. (B)
As shown in FIG. 4, the reflectance at a right angle to the ultrasonic beam is 100% at a transverse wave refraction angle of 35° to 55°.

このように、通常の鋼管の超音波斜角探傷においては横
波屈折角を約35゜以上にするため、鋼管の内外面まで
探傷可能な最大のt/Dは約0.2となり、t/Dが0
.2以上の厚肉鋼管に対しては管の内面欠陥検出に超音
波斜角探傷を適用することは困難である。
In this way, in normal ultrasonic angle flaw detection of steel pipes, the transverse wave refraction angle is set to approximately 35° or more, so the maximum t/D that allows flaw detection to the inner and outer surfaces of the steel pipe is approximately 0.2, and the t/D is 0
.. It is difficult to apply ultrasonic angle angle flaw detection to detect defects on the inner surface of a pipe with two or more thick walled steel pipes.

このほか従来は鋼管の内外面の探傷を別々に行なつてい
るために処理能力が低いという欠点がある。本発明は、
従来不可能であつた厚肉鋼管の内面斜角探傷が可能でし
かも内面および外面の同時探傷が可能な超音波斜角探傷
装置を提供することを目白勺とする。
In addition, conventional methods have the disadvantage of low throughput because flaws are detected on the inner and outer surfaces of steel pipes separately. The present invention
The object of the present invention is to provide an ultrasonic angle angle flaw detection device capable of performing angle angle flaw detection on the inner surface of thick-walled steel pipes, which was previously impossible, and capable of simultaneously detecting flaws on the inner and outer surfaces.

本発明に係る超音波斜角探傷装置は、鋼管外面探傷用屈
折角が35゜〜55゜の超音波ビームを発する探触子と
、鋼管内面探傷用屈折角が反射率100%となるような
屈折角の超音波ビームを発する探触子とを鋼管の外面に
配置したことを特徴とする\(のである。
The ultrasonic angle flaw detection device according to the present invention includes a probe that emits an ultrasonic beam with a refraction angle of 35° to 55° for flaw detection on the outer surface of steel pipes, and a probe that emits an ultrasonic beam with a refraction angle of 35° to 55° for flaw detection on the inner surface of steel pipes. It is characterized in that a probe that emits an ultrasonic beam at a refraction angle is placed on the outer surface of the steel pipe.

゛]ZDt7.fラメ←夕にと1転屈折角θと内面入射
角θiとの関係を示すと、第5図のようになる。
゛]ZDt7. The relationship between the angle of refraction θ and the inner surface incidence angle θi is shown in FIG. 5.

この図からも明らかなように、例えばt/Dが30〜1
5(%)の場合に、屈折角θが15゜〜30゜のときは
内面入射角θiがほぼ45゜となり、角からの反射率が
100%となる。同図において、逆に、内面入射角θi
があ゜〜55゜で反射率が100%となるような屈折角
θは15゜〜30゜あることがわかる。したがつて本発
明において鋼管内面探傷用の超音波ビームについては、
その屈折角が15゜〜30゜となるような探触子を鋼管
外面に配置するのがよい。以下、本発明を、図面を参照
しながら、実施例について説明する。
As is clear from this figure, for example, t/D is 30 to 1.
5 (%), when the refraction angle θ is 15° to 30°, the inner surface incident angle θi is approximately 45°, and the reflectance from the corner is 100%. In the same figure, conversely, the inner surface incidence angle θi
It can be seen that the refraction angle θ at which the reflectance is 100% when the angle is 15° to 30° is 15° to 30°. Therefore, in the present invention, regarding the ultrasonic beam for flaw detection on the inner surface of steel pipes,
It is preferable to arrange a probe on the outer surface of the steel pipe so that its refraction angle is 15° to 30°. Embodiments of the present invention will be described below with reference to the drawings.

第6図および第7図はそれぞれ本発明の実施例に係る超
音波斜角探傷装置の横断面図および縦断面図である。
6 and 7 are a cross-sectional view and a longitudinal cross-sectional view, respectively, of an ultrasonic angle flaw detection apparatus according to an embodiment of the present invention.

軸線方向に移動する被検査鋼管1の外周に探触子ホルダ
ー2がわずかのすきまSをもつて配置される。この探触
子ホルダー2には4個の探触子6a,6b,6c,6d
が取付けられる。このうち探触子6aと6Cとはホルダ
ー2の軸線に垂直な同一平面上に存し、探触子6bと6
dとは前記の平面に対して平行でかつ軸線方向に若干ず
れた別の同一平面上に存する。つまり探触子6aと6C
と探触子6bと6dとは互に軸線方向にずれている。こ
のずれL(第7図)は例えば715mm程度とするのが
よい。これによつて超音波ビームの干渉を防ぐことがで
きる。探触子6aと6bは鋼管1の外面欠陥検出用、探
触子6Cと6dは内面欠陥検出用である。
A probe holder 2 is placed with a slight gap S around the outer periphery of a steel pipe 1 to be inspected that moves in the axial direction. This probe holder 2 has four probes 6a, 6b, 6c, 6d.
is installed. Of these, the probes 6a and 6C exist on the same plane perpendicular to the axis of the holder 2, and the probes 6b and 6C exist on the same plane perpendicular to the axis of the holder 2.
d exists on another same plane parallel to the above-mentioned plane and slightly shifted in the axial direction. In other words, probes 6a and 6C
The probes 6b and 6d are offset from each other in the axial direction. This deviation L (FIG. 7) is preferably about 715 mm, for example. This can prevent interference of ultrasound beams. The probes 6a and 6b are for detecting defects on the outer surface of the steel pipe 1, and the probes 6C and 6d are for detecting defects on the inner surface.

外面欠陥検出用探触子6a,6bは、その送信する超音
波ビーム7A,7bの鋼管外面における屈折角θOが3
5゜〜55゜となるような位置に取付けられ、かつ欠陥
の方向性による検出能低下を防ぐために、互に逆方向に
超音波ビームが進行するように配置される。即ち、図示
のように、探触子6aの超音波ビーム7aが反時計方向
に進行するとすれば、探触子6bの超音波ビーム7bが
時計方向に進行するようにそれぞれのノズル3a,3b
の位置および方向が定められる。各探触子は、探触子取
付具4内に収納され、取付具4はボルト8でホルダー2
に固定される。符号5は取付具4の押えナツトである。
外面欠陥探傷用屈折角θOを35゜〜55゜とすること
により、前述したごとく、超音波ビームの外面欠陥への
入射角が屈折角と等しいために、超音波ビームの往復通
過率が高く (第3図参照)、しかも直角な角における
反射率が100%(第4図)となる。
The outer surface defect detection probes 6a and 6b transmit ultrasonic beams 7A and 7b whose refraction angle θO on the outer surface of the steel pipe is 3.
The ultrasonic beams are mounted at an angle of 5° to 55°, and are arranged so that the ultrasonic beams travel in opposite directions to prevent deterioration in detection ability due to directionality of defects. That is, if the ultrasonic beam 7a of the probe 6a travels counterclockwise as shown in the figure, the respective nozzles 3a, 3b are arranged so that the ultrasonic beam 7b of the probe 6b travels clockwise.
The position and direction of Each probe is housed in a probe fixture 4, and the fixture 4 is connected to the holder 2 with bolts 8.
Fixed. Reference numeral 5 indicates a holding nut for the fixture 4.
By setting the refraction angle θO for external surface defect detection to 35° to 55°, as mentioned above, the incident angle of the ultrasonic beam to the external surface defect is equal to the refraction angle, so the round-trip passage rate of the ultrasonic beam is high ( (see FIG. 3), and the reflectance at right angles is 100% (see FIG. 4).

これによつて高感度で外面欠陥の検出が可能である。内
面欠陥検出用探触子6C,6dも、探触子6a,6bの
場合と同様に、その超音波ビーム7C,7dの進行方向
が互に逆方向になるように配置される。
This makes it possible to detect external defects with high sensitivity. Similarly to the probes 6a and 6b, the inner surface defect detection probes 6C and 6d are arranged so that the traveling directions of their ultrasonic beams 7C and 7d are opposite to each other.

そしてその位置は内面探傷用屈折角θiが15゜〜33
゜となるように定められる。この範囲内では、管厚と管
外径との比t/Dに応じて超音波ビームの内面欠陥への
入射角が35゜〜55゜とすることができ、したがつて
角からの反射率を100%となるようにすることができ
る。これによつて厚肉鋼管の内面欠陥が高感度で検出可
能である。またこのような2種類の探触子を有する超音
波斜角探傷装置により、鋼管の内外面を同時に探傷する
ことができる。
At that position, the refraction angle θi for inner surface flaw detection is 15° to 33°.
It is determined that ゜. Within this range, depending on the ratio t/D of tube thickness to tube outer diameter, the angle of incidence of the ultrasonic beam on the inner surface defect can be between 35° and 55°, thus reducing the reflectance from the corner. can be set to 100%. As a result, defects on the inner surface of thick-walled steel pipes can be detected with high sensitivity. Further, by using such an ultrasonic angle flaw detector having two types of probes, it is possible to simultaneously detect flaws on the inner and outer surfaces of a steel pipe.

即ち、まず内外面人工欠陥加工を施したテストパイプを
用いて内面探傷用チヤンネルにて内面人工欠陥を、外面
探傷用チヤンネルにて外面人工欠陥を検出するよう、ゲ
ート、感度等を調整したのち、内外面同時に探傷する。
これによつて設備数の減少、工程の簡素化およびハンド
リング回数の減少等がもたらされ全体の処理能力が大幅
に向上する。なお、本発明は、探触子ホルダーを交換し
超音波ビームの屈折角を変えることにより厚肉鋼管のみ
ならず、従来の斜角探傷の対象であつた鋼管の探傷も可
能であることはいうまでもない。
That is, first, using a test pipe with artificial defects processed on the inner and outer surfaces, the gate, sensitivity, etc. are adjusted so that the inner surface artificial defects are detected by the inner surface flaw detection channel, and the outer surface artificial defects are detected by the outer surface flaw detection channel. Detects flaws on the inside and outside at the same time.
This reduces the number of equipment, simplifies processes, and reduces the number of handling operations, resulting in a significant improvement in overall processing capacity. It should be noted that the present invention enables flaw detection of not only thick-walled steel pipes but also steel pipes that are subject to conventional angle angle flaw detection by replacing the probe holder and changing the refraction angle of the ultrasonic beam. Not even.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鋼管の斜角探傷における超音波ビームの伝播状
態を示した図、第2図は屈折角に対する管厚と管外径と
の探傷可能限界比t/Dを示した図、第3図は超音波ビ
ームの屈折角と往復通過率との関係を示す図、第4図は
直角な角における超音彼ビームの反射率を示す図、第5
図はt/Dをパラメータにとり屈折角と内面入射角との
関係を示した図、第6図は本発明の実施例に係る超音波
斜角探傷装置の横断面図であつて第7図のI−VI線に
沿つて裁断した図、第7図は第6図の縦断面図である。 1・・・・・・被検査鋼管、2・・・・・・探触子ホル
ダー 3a,3b・・・・・・ノズル、4・・・・・・
探触子取付具、6a,6b,6c,6d・・・・・・探
触子、7a,7b,7C,7d・・・・・・超音波ビー
ム。
Figure 1 is a diagram showing the propagation state of an ultrasonic beam in oblique angle flaw detection of steel pipes, Figure 2 is a diagram showing the detection limit ratio t/D of pipe thickness and pipe outer diameter with respect to the angle of refraction, and Figure 3 Figure 4 shows the relationship between the refraction angle of the ultrasonic beam and the round trip pass rate, Figure 4 shows the reflectance of the ultrasonic beam at right angles, and Figure 5
The figure shows the relationship between the refraction angle and the inner surface incidence angle using t/D as a parameter, and FIG. 6 is a cross-sectional view of the ultrasonic angle flaw detection apparatus according to the embodiment of the present invention, and FIG. 7 is a longitudinal sectional view of FIG. 6, taken along the line I-VI. 1... Steel pipe to be inspected, 2... Probe holder 3a, 3b... Nozzle, 4...
Probe fixture, 6a, 6b, 6c, 6d... Probe, 7a, 7b, 7C, 7d... Ultrasonic beam.

Claims (1)

【特許請求の範囲】 1 鋼管外面探傷用屈折角が35°〜55°の超音波ビ
ームを発する探触子と、鋼管内面探傷用屈折角が反射率
100%となるような屈折角の超音波ビームを発する探
触子とを鋼管の外面に配置したことを特徴とする超音波
斜角探傷装置。 2 鋼管外面探傷用屈折角が35°〜55°の超音波ビ
ームを発する探触子と、鋼管内面探傷用屈折角が15°
〜30°の超音波ビームを発する探触子とをそれぞれ2
個づつ鋼管の外面に配置したことを特徴とする特許請求
の範囲第1項の超音波斜角探傷装置。 3 鋼管外面探傷用屈折角が35°〜55°で互に逆向
きに伝播する超音波ビームをもつ2個の探触子と、鋼管
内面探傷用屈折角が15°〜30°で互に逆向きに伝播
する超音波ビームをもつ2個の探触子とを鋼管の軸線方
向にずらせて鋼管外面に配置したことを特徴とする特許
請求の範囲第1項または第2項の超音波斜角探傷装置。
[Scope of Claims] 1. A probe that emits an ultrasonic beam with a refraction angle of 35° to 55° for flaw detection on the outer surface of steel pipes, and an ultrasonic wave beam with a refraction angle such that the reflectance is 100% for flaw detection on the inner surface of steel pipes. An ultrasonic angle flaw detection device characterized by having a beam-emitting probe arranged on the outer surface of a steel pipe. 2. A probe that emits an ultrasonic beam with a refraction angle of 35° to 55° for flaw detection on the outer surface of steel pipes, and a probe that emits an ultrasonic beam with a refraction angle of 15° for flaw detection on the inner surface of steel pipes.
2 probes each emitting an ultrasonic beam of ~30°.
The ultrasonic angle flaw detection device according to claim 1, wherein the ultrasonic angle flaw detection device is individually arranged on the outer surface of a steel pipe. 3 Two probes with ultrasonic beams propagating in opposite directions with refraction angles of 35° to 55° for the outer surface flaw detection of steel pipes, and two probes with refraction angles of 15° to 30° and opposite directions for the inner surface flaw detection of the steel pipes. The ultrasonic bevel according to claim 1 or 2, characterized in that two probes having ultrasonic beams propagating in the same direction are arranged on the outer surface of the steel pipe so as to be shifted in the axial direction of the steel pipe. Flaw detection equipment.
JP53138035A 1978-11-09 1978-11-09 Ultrasonic angle flaw detection device Expired JPS5952983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53138035A JPS5952983B2 (en) 1978-11-09 1978-11-09 Ultrasonic angle flaw detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53138035A JPS5952983B2 (en) 1978-11-09 1978-11-09 Ultrasonic angle flaw detection device

Publications (2)

Publication Number Publication Date
JPS5563759A JPS5563759A (en) 1980-05-14
JPS5952983B2 true JPS5952983B2 (en) 1984-12-22

Family

ID=15212508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53138035A Expired JPS5952983B2 (en) 1978-11-09 1978-11-09 Ultrasonic angle flaw detection device

Country Status (1)

Country Link
JP (1) JPS5952983B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193952A (en) * 1984-10-04 1986-05-12 Mitsubishi Electric Corp Ultrasonic angle beam flaw detection of thick-walled pipe
JPS63234157A (en) * 1987-03-23 1988-09-29 Nippon Steel Corp Ultrasonic oblique flaw detecting method for thick steel tube
JPH0715456B2 (en) * 1987-11-27 1995-02-22 株式会社ジャパンエナジー Ultrasonic testing equipment for pipes
JP7318617B2 (en) * 2020-09-23 2023-08-01 Jfeスチール株式会社 Ultrasonic flaw detection method for tubular test object

Also Published As

Publication number Publication date
JPS5563759A (en) 1980-05-14

Similar Documents

Publication Publication Date Title
JPH0253746B2 (en)
US8104347B2 (en) Ultrasonic inspection method and device for plastics walls
JP4345734B2 (en) Quality inspection method for welded steel pipe welds
JPS5952983B2 (en) Ultrasonic angle flaw detection device
JP2008070283A (en) Ultrasonic guide wave non-destructive inspection method and apparatus
JPH07333201A (en) Ultrasonic flaw detection of piping
JPH07244028A (en) Apparatus and method for ultrasonically detecting flaw on spherical body to be detected
JP2000352563A (en) Ultrasonic flaw detector for cladding tube
US3543566A (en) Method of testing metallic article by means of ultrasonic beams
JP2000321041A (en) Method for detecting carburizing layer and method for its thickness
JP4359892B2 (en) Ultrasonic flaw detection method
JPH0336921Y2 (en)
JP2001330594A (en) Inspection method of metal pipe bonded body
JP6953953B2 (en) A method for evaluating the soundness of oblique ultrasonic flaw detection, and a method for oblique ultrasonic flaw detection using this method.
JPH0344245B2 (en)
JPS63298054A (en) Ultrasonic flaw detecting method for screw joint part of pipe
JPH05126803A (en) Automatic ultrasonic flaw detecting apparatus
JP7318617B2 (en) Ultrasonic flaw detection method for tubular test object
JPS60205356A (en) Ultrasonic flaw detecting method of steel tube weld zone
JP3752807B2 (en) Surface defect detector
JPH05203630A (en) Ultrasonic flaw detection for square steel
JPS5649955A (en) Flaw-detecting method by oblique supersonic wave for small-diameter welded pipe and the like
JPS5994063A (en) Ultrasonic flaw detection of steel specials
JPS62162958A (en) Ultrasonic flaw detecting method
KR910002657B1 (en) Method of tube search by ultra sonic