JPS63234157A - Ultrasonic oblique flaw detecting method for thick steel tube - Google Patents

Ultrasonic oblique flaw detecting method for thick steel tube

Info

Publication number
JPS63234157A
JPS63234157A JP62065825A JP6582587A JPS63234157A JP S63234157 A JPS63234157 A JP S63234157A JP 62065825 A JP62065825 A JP 62065825A JP 6582587 A JP6582587 A JP 6582587A JP S63234157 A JPS63234157 A JP S63234157A
Authority
JP
Japan
Prior art keywords
probe
flaw
wave
flaw detection
thick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62065825A
Other languages
Japanese (ja)
Inventor
Shigenobu Tsutsumi
堤 重信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62065825A priority Critical patent/JPS63234157A/en
Publication of JPS63234157A publication Critical patent/JPS63234157A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To reduce the number of flaw detectors in use to half by detecting defective flaws in both internal and external surfaces of a thick steel pipe by one flaw detector which has a sending probe and a receiving probe arranged nearly at 180 deg.. CONSTITUTION:The sensing probe 2 and receiving probe 3 are arranged at an interval of nearly 180 deg. at the periphery of the thick steel tube 1 which has a >=0.2 thickness/external diameter rate. Further, the probe 2 is connected to the transmitting circuit 5 of the flaw detector 4, the probe 3 is connected to the receiving circuit 6 of the flaw detector 4, and the circuit 6 is connected to a signal processing circuit 7. Then an ultrasonic wave sent by the probe 2 is entered into the steel tube 1 to receives a reflected wave from the external surface defective flaw by the probe 3, and the longitudinal wave of the ultrasonic wave from the probe 2 is converted into a traversal wave to receive a reflected wave from the internal surface defective flaw by the probe 3. Consequently, the number of flaw detectors 4 in use is reduced to half.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、特に肉厚/外径の比(以下これをt/Dと
言う)が0.2以上の鋼管の探傷に有効な超音波斜角探
傷方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention uses ultrasonic waves which are particularly effective for flaw detection of steel pipes with a wall thickness/outer diameter ratio (hereinafter referred to as t/D) of 0.2 or more. This relates to an oblique angle flaw detection method.

〔従来技術〕[Prior art]

従来、超音波斜角探傷方法によシ鋼管の探傷を行なう場
合、t/Dが0.2未満のものについては、鋼管中に補
液(以下これをS波と言う〕のみを伝搬させて、管内外
面欠陥傷の探傷を行なっている。
Conventionally, when testing steel pipes using the ultrasonic angle angle flaw detection method, for those with t/D less than 0.2, only a replacement liquid (hereinafter referred to as S wave) is propagated into the steel pipe. Detecting flaws on the inner and outer surfaces of tubes.

しかし、t/Dが肌2以上になると超音波が鋼管内面に
達しなくなシ、内面欠陥傷の探傷ができなくなる。
However, when t/D exceeds 2, the ultrasonic waves no longer reach the inner surface of the steel pipe, making it impossible to detect internal defects.

そこで、t/Dが0.2以上の鋼管の探傷の場合は、縦
波(以下これをL波と言う)→SS上モード変換法開発
され一般に適用されている。この場合、内面欠陥信号と
外面欠陥信号の感度差が著ししことから、実際の探傷に
際しては、第5図に示すように、内面欠陥探傷について
は、内面用探傷器4Aとこれに接続された発信、受信用
の探触子aとを使用して、L波→S波モード変換法を用
いた探傷法を採用し、外面欠陥探傷については、外面用
探傷器4Bとこれに接続された発信1.受信用の探触子
すとを使用して、t/Dが0.2未満のとき使用されて
いるS波のみを鋼管中に伝搬させる探傷法を採用する組
合せ方式の超音波斜角探傷を行なっている(特公昭56
−17624号公報参照)。そしてこの超音波斜角探傷
方法においては、外面欠陥用探触子+外面用探傷器、内
面欠陥用探触子+内面欠陥用探傷器が必要となることが
わかる。
Therefore, in the case of flaw detection of steel pipes with t/D of 0.2 or more, a longitudinal wave (hereinafter referred to as L wave) → SS mode conversion method has been developed and generally applied. In this case, since the difference in sensitivity between the inner surface defect signal and the outer surface defect signal is significant, in actual flaw detection, as shown in FIG. A flaw detection method using the L-wave → S-wave mode conversion method was adopted using the transmitting and receiving probe a, and for external flaw detection, the external flaw detector 4B and the Transmission 1. A combination method of ultrasonic angle flaw detection that uses a receiving probe to propagate only the S wave into the steel pipe, which is used when t/D is less than 0.2. (Tokuko 1984)
(Refer to Publication No.-17624). It can be seen that this ultrasonic angle flaw detection method requires a probe for external defects + a flaw detector for external surfaces, and a probe for internal defects + a flaw detector for internal defects.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

t/Dが0.2以上の鋼管の超音波斜角探傷方法におい
ては、内面欠陥探傷にはL波→S波を用いて探傷する探
触子と探傷器とを使用し、外面欠陥探傷には従来から用
いられているS波のみを用いて探傷する探触子と探傷器
とを使用する組合せ方式の超音波探傷が行なわれている
ので、通常の2倍の数の探触子と探傷器が必要となり、
よシ多くの設備費及び設置場所が必要であった。
In the ultrasonic angle flaw detection method for steel pipes with t/D of 0.2 or more, a probe and a flaw detector that detect flaws using L waves → S waves are used to detect flaws on the inner surface, and flaw detectors are used to detect flaws on the outer surface. Since ultrasonic flaw detection is performed using a combination method that uses a conventional flaw detection probe that uses only S waves and a flaw detector, it requires twice the number of probes and flaw detection as usual. A device is needed,
This required a large amount of equipment cost and installation space.

〔発明の目的、構成〕[Purpose and structure of the invention]

この発明は前述の問題を有利に解決できる厚肉鋼管の超
音波斜角探傷方法を提供することを目的とするものであ
って、この発明の要旨とするところは、肉厚/外径の比
が0.2以上の厚肉鋼管1の超音波斜角探傷方法におい
て、発信探触子2と受信探触子6をほぼ180度の位置
に配置し、厚肉鋼管の内外天面の欠陥傷を探傷すること
を特徴とする厚肉鋼管の超音波斜角探傷方法にある。
The purpose of this invention is to provide an ultrasonic angle flaw detection method for thick-walled steel pipes that can advantageously solve the above-mentioned problems. In the ultrasonic angle flaw detection method for thick-walled steel pipes 1 with a diameter of 0.2 or more, the transmitter probe 2 and the receiver probe 6 are placed at approximately 180 degrees, and defects and scratches on the inner and outer top surfaces of the thick-walled steel pipe are detected. An ultrasonic angle flaw detection method for thick-walled steel pipes, which is characterized by detecting flaws.

〔実施例〕〔Example〕

次にこの発明の実施例について詳細に説明する。 Next, embodiments of the present invention will be described in detail.

第1図はこの発明を実施して厚肉鋼管の探傷を行なって
いる状態を示すものであって、厚肉鋼管1の外面に対向
する発信探触子2と受信探触子6とが、厚肉鋼管1の周
囲にほぼα=180 の間隔で配置され、かつ発信探触
子2は探傷器4における発信回路5の出力部に接続され
、前記受信探触子6は探傷器4における受信回路6の入
力部に接続され、その受信回路乙の出力部は探傷器4に
おける信号処理回路7の入力部に接続されている。
FIG. 1 shows a state in which the present invention is being carried out to perform flaw detection on a thick-walled steel pipe, in which a transmitting probe 2 and a receiving probe 6 facing the outer surface of a thick-walled steel pipe 1 are The transmitting probes 2 are arranged around the thick-walled steel pipe 1 at intervals of approximately α=180, and the transmitting probes 2 are connected to the output part of the transmitting circuit 5 in the flaw detector 4. It is connected to the input part of the circuit 6, and the output part of the receiving circuit B is connected to the input part of the signal processing circuit 7 in the flaw detector 4.

=A2図ないし第4図はこの発明を実施して外径57.
1 &、厚さ14.67g(t/D=0.257)の厚
肉鋼管1の超音波探傷を行なったときの探傷図を示すも
のであって、Olは入射角、θa は受信角、OL は
L波屈折角、θ、はS波の屈折角、Gは外面欠陥傷、N
は内面欠陥傷である。
= Figures A2 to 4 show an outer diameter of 57.
1 &, shows a flaw detection diagram when ultrasonic flaw detection was performed on a thick-walled steel pipe 1 with a thickness of 14.67 g (t/D = 0.257), where Ol is the incident angle, θa is the reception angle, OL is the L-wave refraction angle, θ is the S-wave refraction angle, G is the external defect, N
is an internal defect scratch.

第2図は外面欠陥傷の探傷状況を示すものであって、発
信探触子2から発信された超音波は、9点で厚肉鋼管1
中に入射され、次いでX−+Y−+ZΩ順序で伝搬され
、続いて2点で外面欠陥傷Gに達する。この外面欠陥傷
Gによシ、反射波が発生し、この反射波は、2点からY
点に戻シ、次いで受信探触+6に受信される。これが外
面欠陥信号である。
Figure 2 shows the status of flaw detection for external surface flaws.
It is then propagated in the order of X-+Y-+ZΩ, and then reaches the external defect G at two points. A reflected wave is generated by this external defect G, and this reflected wave is transmitted from two points to Y.
The signal returns to the point and is then received by the receiving probe +6. This is the outer surface defect signal.

第6図および第4図は内面欠陥傷の探傷状況を示すもの
であって、発信探触子2から発信された超音波は、Q−
X(モード変換)→X′→Y(モード変換)→Z(モー
ド変換)→2′の順序で伝搬されたのち内面欠陥傷Nに
達する。この内面欠陥傷NKより反射波が発生し、この
反射波はZ′→2(モード変換)→Y→受信探触子6の
順序で伝搬され、この受信探触子6によシ受信された信
号が内面欠陥信号である。
FIG. 6 and FIG. 4 show the inspection status of internal defects, and the ultrasonic waves emitted from the transmitting probe 2 are
After being propagated in the order of X (mode conversion) → X' → Y (mode conversion) → Z (mode conversion) → 2', it reaches the inner surface defect N. A reflected wave is generated from this inner surface defect NK, and this reflected wave propagates in the order of Z' → 2 (mode conversion) → Y → receiving probe 6, and is received by this receiving probe 6. The signal is an internal defect signal.

また内面欠陥信号については、第4図に示すように、発
信探触子2から発信された信号は、Q→P−+X(モー
ド変換)→Y−+z(モード変換)→2′の順序で内面
欠陥傷Nに到達し、その反射波がZ′→2(モード変換
)→Yを経て受信探触子6によシ受信されるので、受信
探触子6によシ前記2つの反射波が受信される。つまり
、内面欠陥信号については、第6図および第4図が同一
ビーム路程であシ、受信探触子3によって第6図および
第4図に示した反射波を合成した信号が受信される。
Regarding the internal defect signal, as shown in Figure 4, the signal transmitted from the transmitting probe 2 is in the order of Q→P-+X (mode conversion)→Y-+z (mode conversion)→2'. The reflected wave reaches the inner surface defect N and is received by the receiving probe 6 via Z' → 2 (mode conversion) → Y, so the above two reflected waves are received by the receiving probe 6. is received. That is, regarding the inner surface defect signal, FIGS. 6 and 4 have the same beam path, and the reception probe 3 receives a signal obtained by combining the reflected waves shown in FIGS. 6 and 4.

第2図ないし第4図において、θL=45度になるよう
に発信探触子2をセットすると、θ8は22.8度とな
シ、θi は10.2度となる。ここで第2図ないし第
4図における発信探触子2は同一のものであり、かつ受
信探触子3も同一のものである。
In FIGS. 2 to 4, when the transmitting probe 2 is set so that θL=45 degrees, θ8 becomes 22.8 degrees and θi becomes 10.2 degrees. Here, the transmitting probe 2 in FIGS. 2 to 4 is the same, and the receiving probe 3 is also the same.

発信探触子2の直前での音圧を100%としてQ。Q with the sound pressure just before the transmitting probe 2 as 100%.

Y点の音圧通過率、X、Y、Z、X’、Y’、Z’点で
の音圧反射率の関係よシ受信探触子6で受信する音圧を
算出すると、外面欠陥傷からの音圧は6.84係、内面
欠陥傷からの音圧は6.87 %となシ、はぼ同等の信
号が得られることが判明した。
Based on the relationship between the sound pressure transmission rate at point Y and the sound pressure reflection rate at points X, Y, Z, It was found that the sound pressure from the inner surface defect was 6.84%, and the sound pressure from the inner surface defect was 6.87%, which was approximately equivalent to that obtained.

この発明の超音波斜角探傷方法を用いて第1表に示すよ
うな厚肉鋼管を探傷した結果、第1表の(1)〜aυの
厚肉鋼管については、内外面欠陥傷の深さ0.3鵡程度
の欠陥傷を良好な信号/ノイズ比(以下これをS/N比
と言う)で検出することができた。また第1表のQ21
− (151については、管厚さの6%〜管厚さの5%
の深さの内外面欠陥傷を良好なS/N比で検出すること
ができた。
As a result of flaw detection of thick-walled steel pipes as shown in Table 1 using the ultrasonic angle flaw detection method of this invention, it was found that for thick-walled steel pipes of (1) to aυ in Table 1, the depth of internal and external surface defects was It was possible to detect a defect of about 0.3 parrot with a good signal/noise ratio (hereinafter referred to as S/N ratio). Also, Q21 in Table 1
- (For 151, 6% of pipe thickness - 5% of pipe thickness
It was possible to detect defects on the inner and outer surfaces with a good S/N ratio.

第1表 〔発明の効果〕 この発明によれば、肉厚/外径の比が0.2以上の厚肉
鋼管1の超音波斜角探傷方法において、発信探触子2と
受信探触子6をほぼ180度の位置に配置し、厚肉鋼管
の内外表面の欠陥傷を探傷するので、内外面共通の発信
探触子2および受信探触子6を有する1台の探傷器4に
より、厚肉鋼管1の内外両面の欠陥傷を有効に探傷する
ことができ、したがって、前記従来の場合に比べて、探
傷子および探傷器の使用数を半減することができるので
、設備費が安くなると共に設備の占有スペースが狭くて
済む等の効果が得られる。
Table 1 [Effects of the Invention] According to the present invention, in the ultrasonic angle flaw detection method for thick-walled steel pipes 1 having a wall thickness/outer diameter ratio of 0.2 or more, the transmitting probe 2 and the receiving probe 6 are placed at approximately 180 degree positions to detect defects on the inner and outer surfaces of thick-walled steel pipes. Therefore, one flaw detector 4 having a transmitting probe 2 and a receiving probe 6 common to the inner and outer surfaces can It is possible to effectively detect defects on both the inner and outer surfaces of the thick-walled steel pipe 1, and therefore, the number of flaw detectors and flaw detectors used can be halved compared to the conventional case, resulting in lower equipment costs. At the same time, the space occupied by the equipment can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の厚肉鋼管の超音波斜角探傷方法の説
明図、第2図ないし第4図はこの発明による内外面欠陥
探傷の説明図であって、第2図は外面欠陥を探傷してい
る状態の説明図、第6図および第4図は内面欠陥を探傷
している状態の説明図である。第5図は従来の鋼管の超
音波斜角探傷方法の説明図である。 図において、1は厚肉鋼管、2は発信探触子、6は受信
探触子、4は探傷器、5は発信回路、〈は受信回路、7
は信号処理回路である。
Fig. 1 is an explanatory diagram of the ultrasonic angle flaw detection method for thick-walled steel pipes according to the present invention, and Figs. 2 to 4 are explanatory diagrams of the flaw detection of internal and external defects according to the present invention. FIGS. 6 and 4 are explanatory diagrams showing a state in which defects are detected on the inner surface. FIGS. FIG. 5 is an explanatory diagram of a conventional ultrasonic angle flaw detection method for steel pipes. In the figure, 1 is a thick-walled steel pipe, 2 is a transmitting probe, 6 is a receiving probe, 4 is a flaw detector, 5 is a transmitting circuit, < is a receiving circuit, and 7
is a signal processing circuit.

Claims (1)

【特許請求の範囲】[Claims] 肉厚/外径の比が0.2以上の厚肉鋼管1の超音波斜角
探傷方法において、発信探触子2と受信探触子3をほぼ
180度の位置に配置し、厚肉鋼管の内外表面の欠陥傷
を探傷することを特徴とする厚肉鋼管の超音波斜角探傷
方法。
In an ultrasonic angle angle flaw detection method for thick-walled steel pipes 1 with a wall thickness/outside diameter ratio of 0.2 or more, the transmitting probe 2 and the receiving probe 3 are placed at approximately 180 degrees, and the thick-walled steel pipe An ultrasonic angle angle flaw detection method for thick-walled steel pipes, which is characterized by detecting flaws on the inner and outer surfaces of the pipe.
JP62065825A 1987-03-23 1987-03-23 Ultrasonic oblique flaw detecting method for thick steel tube Pending JPS63234157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62065825A JPS63234157A (en) 1987-03-23 1987-03-23 Ultrasonic oblique flaw detecting method for thick steel tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62065825A JPS63234157A (en) 1987-03-23 1987-03-23 Ultrasonic oblique flaw detecting method for thick steel tube

Publications (1)

Publication Number Publication Date
JPS63234157A true JPS63234157A (en) 1988-09-29

Family

ID=13298191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62065825A Pending JPS63234157A (en) 1987-03-23 1987-03-23 Ultrasonic oblique flaw detecting method for thick steel tube

Country Status (1)

Country Link
JP (1) JPS63234157A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103529124A (en) * 2013-10-08 2014-01-22 国电科学技术研究院 Method for monitoring intermittent interlayer expansion of steel plate through TOFD
EP3244202B1 (en) * 2016-05-12 2022-06-22 Hitachi, Ltd. Piping inspection apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563759A (en) * 1978-11-09 1980-05-14 Kawasaki Steel Corp Ultrasonic wave oblique flaw detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563759A (en) * 1978-11-09 1980-05-14 Kawasaki Steel Corp Ultrasonic wave oblique flaw detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103529124A (en) * 2013-10-08 2014-01-22 国电科学技术研究院 Method for monitoring intermittent interlayer expansion of steel plate through TOFD
EP3244202B1 (en) * 2016-05-12 2022-06-22 Hitachi, Ltd. Piping inspection apparatus

Similar Documents

Publication Publication Date Title
KR890000607B1 (en) Ultrasone method and device for detecting and measuring defects in metal media
EP2006675B1 (en) Ultrasonic flaw detection method for a tubular metal body
US6070466A (en) Device for ultrasonic inspection of a multi-layer metal workpiece
JPH0253746B2 (en)
US20130179098A1 (en) Processing signals acquired during guided wave testing
KR860001348A (en) Ultrasonic Scanning Methods and Devices
JP5193720B2 (en) Non-contact aerial ultrasonic tube ultrasonic inspection apparatus and method
JP2012141211A (en) Ultrasonic inspection method and ultrasonic inspection device
JPS63234157A (en) Ultrasonic oblique flaw detecting method for thick steel tube
JP2008070283A (en) Ultrasonic guide wave non-destructive inspection method and apparatus
JP5567472B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus
JPH01267454A (en) Air bubble detector
WO2018135242A1 (en) Inspection method
JPH06337263A (en) Ultrasonic flaw detection method
RU2117941C1 (en) Process of ultrasonic inspection od pipes and pipe-lines
JPS5831871B2 (en) Ultrasonic flaw detection method
JPH0344245B2 (en)
JPS61210947A (en) Ultrasonic defectscope
JPS5952983B2 (en) Ultrasonic angle flaw detection device
JPH0727551A (en) Tube inner shape inspecting device
JPS62188960A (en) Ultrasonic flaw detection for bevelled part of steel pipe
JP4389218B2 (en) Method and apparatus for measuring angle of refraction in oblique ultrasonic inspection of tube, and method and apparatus for oblique ultrasonic inspection of tube using the same
JPH0677001B2 (en) Internal defect determination method by ultrasonic flaw detection
JPS62188959A (en) Ultrasonic flaw detection for beveled part of steel pipe
JPH1144676A (en) Inspection method for piping material