JPH0618485A - Ultrasonic angle beam flaw detecting method for steel pipe - Google Patents

Ultrasonic angle beam flaw detecting method for steel pipe

Info

Publication number
JPH0618485A
JPH0618485A JP4172786A JP17278692A JPH0618485A JP H0618485 A JPH0618485 A JP H0618485A JP 4172786 A JP4172786 A JP 4172786A JP 17278692 A JP17278692 A JP 17278692A JP H0618485 A JPH0618485 A JP H0618485A
Authority
JP
Japan
Prior art keywords
steel pipe
incident
ultrasonic
wave
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4172786A
Other languages
Japanese (ja)
Inventor
Kiyomi Tanaka
清美 田中
Minoru Yunoki
実 柚木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP4172786A priority Critical patent/JPH0618485A/en
Publication of JPH0618485A publication Critical patent/JPH0618485A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect internal defects in a steel pipe accurately by making longitudinal wave ultrasonic waves incident on a material to be detected with respect to flaws so that the waves make a specified refractive angle to the material and the internal defects if any expanding over a surface inclined by a specified angle to the direction of the thickness of the material is inspected. CONSTITUTION:Ultrasonic waves 4 are made incident from the outer peripheral surface 3a toward the inner peripheral surface 3b of a steel pipe 3 so that 0.7-2 deg. of incident angle alpha is given through water used as a content medium 1 by an ultrasonic wave probe 2. The ultrasonic wave 4 is refracted at the outer peripheral surface 3a of a longitudinal seamless steel pipe 3 by 0-35 deg. of the refractive angle thetaL so that the wave mode is converted from the transverse wave to the longitudinal one. The ultrasonic wave 4 incident on the longitudinal seamless steel pipe 3 has 0-35 deg. of refractive angle thetaL, so that it is incident on an internal defect 5 expanding on a surface inclined to the thickness direction by 55-90 deg. in the direction orthogonal to the defect and the defect can be satisfactorily detected without pseudo-signals caused by noises.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鋼管の超音波探傷方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detection method for steel pipes.

【0002】[0002]

【従来の技術】製造された鋼管の内部欠陥の有無を検査
するために、超音波探傷が行われる。この鋼管の超音波
探傷には、鋼管の表面に平行に伸展した欠陥には、鋼管
の表面と直角方向、すなわち肉厚方向に超音波を入射す
る垂直探傷法が用いられるが、鋼管の表面に対して傾い
た面に広がる欠陥には、斜角探傷法が用いられる。
2. Description of the Related Art Ultrasonic flaw detection is performed in order to inspect a manufactured steel pipe for internal defects. For ultrasonic flaw detection of this steel pipe, a vertical flaw detection method that injects ultrasonic waves in the direction perpendicular to the surface of the steel pipe, that is, the thickness direction is used for defects extending parallel to the surface of the steel pipe. The oblique angle flaw detection method is used for the defects that spread on the inclined surface.

【0003】上述した鋼管の斜角探傷法は、超音波を肉
厚方向からある程度傾けて円周方向および軸方向に入射
し、超音波を伝播させて鋼管の全面にわたって探傷する
ものである。この鋼管の斜角探傷法において用いられる
波動モードは、通常横波であり、円周方向に伝播させる
場合で、肉厚/外径(通常t/Dという)が26.3%
を超える鋼管を探傷するときには、縦波を斜角で入射
し、屈折させて横波に変換させる波動モード変換により
行われる。
The above-described oblique angle flaw detection method for a steel pipe is a method in which ultrasonic waves are inclined to a certain extent from the thickness direction and are incident in the circumferential direction and the axial direction, and the ultrasonic waves are propagated to perform flaw detection on the entire surface of the steel pipe. The wave mode used in the bevel flaw detection method for this steel pipe is usually a transverse wave, and when propagating in the circumferential direction, the wall thickness / outer diameter (usually t / D) is 26.3%.
When testing a steel pipe that exceeds the limit, a longitudinal wave is incident at an oblique angle, is refracted, and is converted into a transverse wave by wave mode conversion.

【0004】超音波を鋼管内に入射する際には、超音波
を効率よく入射させるために、鋼管と超音波探触子との
間に水やグリセリン等の接触媒質を介在させて行うよう
にしている。そして、接触媒質が水の場合、横波の通過
しやすさを示す音圧往復通過率をみると、図2のグラフ
に示すように、屈折角が37〜38°でもっとも高く、
37°より小さい角度では急激に低下し、33°付近で
0になった後ふたたび高くなり、28〜29°でピーク
(37〜38°のピークよりも1/3以下の値)とな
り、それよりも小さい角度では0°で0となるように次
第に低下していく。
When the ultrasonic waves are made to enter the steel pipe, a contact medium such as water or glycerin is interposed between the steel pipe and the ultrasonic probe in order to make the ultrasonic waves incident efficiently. ing. When the contact medium is water, the sound pressure round-trip passage rate, which indicates the ease of passage of transverse waves, is highest at a refraction angle of 37 to 38 °, as shown in the graph of FIG.
It sharply decreases at angles smaller than 37 °, becomes 0 at around 33 °, then rises again, and reaches a peak at 28 to 29 ° (a value less than 1/3 of the peak at 37 to 38 °). Also becomes smaller at 0 ° at a small angle.

【0005】一方、屈折角が38°以上では徐々に低下
した後、ほぼ75°から急激に低下し、90°では全く
通過しなくなるというように、横波は屈折角によって探
傷の感度が変化するという性質をもっており、一般的に
は横波を使用して斜角探傷を行う場合には、屈折角が3
5°以上で行うことが望ましい。
On the other hand, when the refraction angle is 38 ° or more, it gradually decreases, then sharply decreases from about 75 ° and does not pass at 90 ° at all, so that the sensitivity of flaw detection changes depending on the refraction angle. In general, when performing oblique angle flaw detection using transverse waves, the refraction angle is 3
It is desirable to perform it at 5 ° or more.

【0006】そこで、肉厚方向から少なくとも55°以
上傾いた面に拡がる欠陥を探傷しようとすると、超音波
がこの面に対してほぼ直角に当たる必要があるので、屈
折角は35°以下である必要があるが、上述したように
この屈折角では超音波の入射効率が悪くなるので、欠陥
から反射する超音波のエコー高さは低下する。
Therefore, when an attempt is made to detect a defect that spreads on a surface inclined by at least 55 ° or more from the thickness direction, it is necessary for the ultrasonic waves to strike the surface at a right angle, so the refraction angle must be 35 ° or less. However, as described above, since the incidence efficiency of ultrasonic waves is deteriorated at this refraction angle, the echo height of the ultrasonic waves reflected from the defect is lowered.

【0007】図3は、超音波振動子21から超音波を屈
折角35°で鋼板22に入射し、鋼板22の裏面に傾き
角度βになるように設けたバットレス状欠陥23から反
射する超音波のエコー高さが、どの程度の大きさになる
かを把握する試験方法を示す模式図である。この試験方
法で傾き角度βを大きく変えていった場合、エコー高さ
がどのように変化するかをまとめたのが図4のグラフで
ある。このグラフから、肉厚方向から少なくとも55°
以上傾いた面に拡がる欠陥を探傷する場合には、エコー
高さが極端に低下するので、探傷器の感度をかなり高め
なければならないことが分かる。
FIG. 3 shows that ultrasonic waves are incident on the steel plate 22 from the ultrasonic transducer 21 at a refraction angle of 35 ° and reflected from a buttress-like defect 23 provided on the back surface of the steel plate 22 at an inclination angle β. FIG. 6 is a schematic diagram showing a test method for grasping how large the echo height is. The graph in FIG. 4 summarizes how the echo height changes when the tilt angle β is greatly changed by this test method. From this graph, at least 55 ° from the thickness direction
It can be seen that the sensitivity of the flaw detector must be considerably increased because the echo height is extremely reduced when flaw detection is performed on a defect extending to the inclined surface.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
横波を用いた従来の超音波斜角探傷において、探傷器の
感度を高める方法は、次のような問題点があった。すな
わち、図4から分かるように、疵の拡がる面が肉厚方向
を向いている場合のエコー高さと、疵の拡がる面が肉厚
方向に対して60度傾いている場合のエコー高さとで
は、ほぼ20dB(やく10倍)の差があるので、同一
深さにある同じ大きさの欠陥でも、傾き角度によって疵
の評価が大きく変わるという問題点があった。
However, in the conventional ultrasonic oblique-angle flaw detection using the conventional transverse wave, the method of increasing the sensitivity of the flaw detector has the following problems. That is, as can be seen from FIG. 4, the echo height when the surface where the flaw spreads faces the thickness direction and the echo height when the surface where the flaw spreads is inclined 60 degrees with respect to the thickness direction, Since there is a difference of about 20 dB (10 times faster), there is a problem in that even with defects of the same size at the same depth, the flaw evaluation greatly changes depending on the tilt angle.

【0009】この発明は、従来技術の上述のような問題
点を解消するためになされたものであり、鋼管の超音波
斜角探傷において、疵の拡がる面が肉厚方向に対して6
0度以上傾いている場合でも、欠陥からのエコー高さが
低下しない超音波斜角探傷方法を提供することを目的と
している。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and in ultrasonic oblique angle flaw detection of a steel pipe, the surface where the flaw spreads is 6 in the thickness direction.
It is an object of the present invention to provide an ultrasonic oblique angle flaw detection method in which the echo height from a defect does not decrease even when it is inclined by 0 degree or more.

【0010】[0010]

【課題を解決するための手段】この発明に係る鋼管の超
音波斜角探傷方法は、被探傷材に屈折角が0〜35度と
なるように縦波超音波を入射し、肉厚方向から55〜9
0度傾いた面に広がる内部欠陥を探傷するものである。
According to an ultrasonic oblique angle flaw detection method for a steel pipe according to the present invention, a longitudinal ultrasonic wave is incident on a material to be inspected so that a refraction angle is 0 to 35 degrees, and a thickness direction is applied. 55-9
This is to detect internal defects spread on a surface inclined by 0 degree.

【0011】[0011]

【作用】この発明に係る鋼管の超音波斜角探傷方法は、
被探傷材に屈折角が0〜35度となるように縦波超音波
を入射する。このようにしたのは、つぎの理由によるも
のである。すなわち、肉厚方向から55〜90度傾いた
面に広がる内部欠陥を探傷しようとすると、屈折角が0
〜35度となるように超音波を入射しなければならな
い。そして、横波超音波の場合、このような屈折角では
超音波が通過しにくくなり、探傷感度が著しく低下す
る。また、感度を上げようとすると雑音を拾いやすく、
欠陥と雑音を判別するのが困難となる。そこで、もう一
つの波動モードである縦波超音波の音圧往復通過率を調
べてみると、図5の屈折角と音圧往復通過率との関係を
示すグラフのように、屈折角が0〜35度では縦波超音
波の音圧往復通過率が横波超音波の音圧往復通過率より
もずっと高くなっている。したがって、屈折角が0〜3
5度では縦波超音波を使用した方が、高い感度が得られ
るということが分かったので、縦波超音波を使用するよ
うにしたのである。
The ultrasonic bevel flaw detection method for a steel pipe according to the present invention comprises:
Longitudinal ultrasonic waves are incident on the material to be inspected so that the refraction angle is 0 to 35 degrees. The reason for doing this is as follows. That is, when an internal defect spreading on a surface inclined by 55 to 90 degrees from the thickness direction is detected, the refraction angle is 0.
Ultrasonic waves must be incident so that the angle is ˜35 degrees. In the case of the transverse ultrasonic wave, the ultrasonic wave is difficult to pass at such a refraction angle, and the flaw detection sensitivity is significantly lowered. Also, if you try to increase the sensitivity, it is easy to pick up noise,
It becomes difficult to distinguish defects from noise. Therefore, when the sound pressure reciprocating passage rate of the longitudinal wave ultrasonic wave which is another wave mode is examined, as shown in the graph of the relationship between the refracting angle and the sound pressure reciprocating passage rate in FIG. At ˜35 degrees, the sound pressure reciprocating passage rate of longitudinal ultrasonic waves is much higher than the sound pressure reciprocating passing rate of transverse ultrasonic waves. Therefore, the refraction angle is 0 to 3
Since it was found that higher sensitivity can be obtained by using longitudinal ultrasonic waves at 5 degrees, the longitudinal ultrasonic waves were used.

【0012】[0012]

【実施例】本発明の1実施例の鋼管の超音波斜角探傷方
法を、図1に基づいて説明する。本発明の1実施例の鋼
管の超音波斜角探傷方法においては、接触媒質1に水を
用い、この接触媒質1を介して超音波探触子2により、
を入射角αが0〜7.2°になるようにして、鋼管3の
外周面3aから内周面3bに向かうようにして超音波4
を入射する。接触媒質1を介して入射した超音波4は、
熱間押出法によって製造した継目無鋼管3の外周面3a
で屈折角θLが0〜35°になるようにして屈折し、横
波から縦波に波動モードが変換される。継目無鋼管3に
入射された超音波4は、屈折角θLが0〜35°となっ
ているので、継目無鋼管3の肉厚方向から55〜90°
傾いた面に拡がる内部欠陥5(欠陥の伸展長さ1mmの
放電加工疵)に対して、直交する方向方向から当たる状
態となり、雑音による疑似信号もなく良好に疵を検出す
ることができた。
EXAMPLE An ultrasonic bevel flaw detection method for a steel pipe according to an example of the present invention will be described with reference to FIG. In the ultrasonic bevel flaw detection method for steel pipes according to one embodiment of the present invention, water is used as the contact medium 1, and the ultrasonic probe 2 is used through the contact medium 1.
By setting the incident angle α to be 0 to 7.2 ° and moving from the outer peripheral surface 3a of the steel pipe 3 toward the inner peripheral surface 3b.
Incident. The ultrasonic wave 4 incident through the couplant 1 is
Outer peripheral surface 3a of seamless steel pipe 3 manufactured by the hot extrusion method
And refraction is performed so that the refraction angle θ L becomes 0 to 35 °, and the wave mode is converted from the transverse wave to the longitudinal wave. The ultrasonic wave 4 incident on the seamless steel pipe 3 has a refraction angle θ L of 0 to 35 °, and thus 55 to 90 ° from the thickness direction of the seamless steel pipe 3.
The internal defect 5 (an electric discharge flaw having an extension length of 1 mm) that spreads on the inclined surface is in a state of being hit from a direction orthogonal to the flaw, and the flaw can be satisfactorily detected without a pseudo signal due to noise.

【0013】[0013]

【発明の効果】この発明により、肉厚方向から傾いた鋼
管の欠陥を精度良く検出することができる。
According to the present invention, it is possible to accurately detect defects in a steel pipe tilted from the wall thickness direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例の鋼管の超音波斜角探傷方法
を示す説明図である。
FIG. 1 is an explanatory view showing an ultrasonic oblique-angle flaw detection method for a steel pipe according to one embodiment of the present invention.

【図2】横波超音波の屈折率と音圧往復通過率との関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the refractive index of transverse ultrasonic waves and the sound pressure round-trip passage rate.

【図3】肉厚方向から傾いた欠陥の傾き角度と反射する
超音波のエコー高さとの関係を把握するための試験方法
を示す模式図である。
FIG. 3 is a schematic diagram showing a test method for grasping the relationship between the inclination angle of a defect inclined from the thickness direction and the echo height of reflected ultrasonic waves.

【図4】欠陥の傾き角度と反射する超音波のエコー高さ
との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the inclination angle of a defect and the echo height of reflected ultrasonic waves.

【図5】縦波超音波の屈折率と音圧往復通過率との関係
を示すグラフである。
FIG. 5 is a graph showing the relationship between the refractive index of longitudinal ultrasonic waves and the sound pressure round-trip passage rate.

【符号の説明】[Explanation of symbols]

1 接触媒質 2 超音波探触子 3 鋼管 4 超音波 5 内部欠陥 1 Contact medium 2 Ultrasonic probe 3 Steel tube 4 Ultrasonic wave 5 Internal defect

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被探傷材に屈折角が0〜35度となるよ
うに縦波超音波を入射し、肉厚方向から55〜90度傾
いた面に広がる内部欠陥を探傷することを特徴とする鋼
管の超音波探傷法。
1. A longitudinal ultrasonic wave is incident on a material to be inspected so that a refraction angle is 0 to 35 degrees, and an internal defect spreading on a surface inclined by 55 to 90 degrees from a thickness direction is inspected. Ultrasonic inspection method for steel pipes.
JP4172786A 1992-06-30 1992-06-30 Ultrasonic angle beam flaw detecting method for steel pipe Pending JPH0618485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4172786A JPH0618485A (en) 1992-06-30 1992-06-30 Ultrasonic angle beam flaw detecting method for steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4172786A JPH0618485A (en) 1992-06-30 1992-06-30 Ultrasonic angle beam flaw detecting method for steel pipe

Publications (1)

Publication Number Publication Date
JPH0618485A true JPH0618485A (en) 1994-01-25

Family

ID=15948332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4172786A Pending JPH0618485A (en) 1992-06-30 1992-06-30 Ultrasonic angle beam flaw detecting method for steel pipe

Country Status (1)

Country Link
JP (1) JPH0618485A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856489A (en) * 1994-08-26 1996-03-05 Green Maintenance:Kk Method for improving soil and device therefor
CN103808800A (en) * 2014-03-07 2014-05-21 北京理工大学 Ultrasonic combined detection method for large-diameter and thick-wall pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0856489A (en) * 1994-08-26 1996-03-05 Green Maintenance:Kk Method for improving soil and device therefor
CN103808800A (en) * 2014-03-07 2014-05-21 北京理工大学 Ultrasonic combined detection method for large-diameter and thick-wall pipe

Similar Documents

Publication Publication Date Title
US7874212B2 (en) Ultrasonic probe, ultrasonic flaw detection method, and ultrasonic flaw detection apparatus
CN108562647B (en) PA-TOFD combined ultrasonic detection device and method for polyethylene pipeline hot-melt butt joint
JPH0253746B2 (en)
CN103512953A (en) Ultrasonic testing method adopting multiple probes
JPH0618485A (en) Ultrasonic angle beam flaw detecting method for steel pipe
CN205015313U (en) Small -bore pipe rolling defect ultrasonic transducer and supporting test block of using
JPH09304358A (en) Defect detecting method for lead sheath pipe for electric wire
JP2000352563A (en) Ultrasonic flaw detector for cladding tube
JP2002243703A (en) Ultrasonic flaw detector
CN105116057A (en) Ultrasonic probe for detecting rolling defects of small-bore pipes and test block used with ultrasonic probe
Gauthier et al. EMAT generation of horizontally polarized guided shear waves for ultrasonic pipe inspection
卜阳光 et al. Research on ultrasonic phased array multi-mode total focusing inspection technology for nozzle fillet welds
JP2007263956A (en) Ultrasonic flaw detection method and apparatus
JPH0989851A (en) Ultrasonic probe
US3218845A (en) Ultrasonic inspection method for inaccessible pipe and tubing
JP4415313B2 (en) Ultrasonic probe, ultrasonic flaw detection method and ultrasonic flaw detection apparatus
Muhammad et al. ANALYSIS OF GUIDED WAVE PROPAGATION BY VISUALIZING IN‐PLANE AND OUT‐OF‐PLANE MODES
Si et al. CIVA Simulation and Experiment Verification for Thin-Walled Small-Diameter Pipes by Using Phased Array Ultrasonic Testing
JPH1090239A (en) Slanted probe
JP2005221371A (en) Ultrasonic probe
Liu et al. Research on the Measurement Accuracy of Ultrasonic Phased Array Time-of-Flight Method
JP7318617B2 (en) Ultrasonic flaw detection method for tubular test object
CN205353020U (en) Small -bore pipe rolling defect ultrasonic wave detecting device
JP6953953B2 (en) A method for evaluating the soundness of oblique ultrasonic flaw detection, and a method for oblique ultrasonic flaw detection using this method.
JPS5649955A (en) Flaw-detecting method by oblique supersonic wave for small-diameter welded pipe and the like