JPS6089550A - 溶接性に優れた耐候性鋼 - Google Patents

溶接性に優れた耐候性鋼

Info

Publication number
JPS6089550A
JPS6089550A JP19721583A JP19721583A JPS6089550A JP S6089550 A JPS6089550 A JP S6089550A JP 19721583 A JP19721583 A JP 19721583A JP 19721583 A JP19721583 A JP 19721583A JP S6089550 A JPS6089550 A JP S6089550A
Authority
JP
Japan
Prior art keywords
steel
content
toughness
weather resistance
weldability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19721583A
Other languages
English (en)
Inventor
Ichiro Seta
一郎 瀬田
Mutsuo Nakanishi
中西 睦夫
Hiroshi Matsushita
宏 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19721583A priority Critical patent/JPS6089550A/ja
Publication of JPS6089550A publication Critical patent/JPS6089550A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 この発明は、溶接性、特に靭性の優れた溶接部が得られ
る耐候性鋼に関するものである。
近年、各種構造物の維持・管理費高騰を背景として、補
修や再塗装を必要としない鋼構造物に対する要望が強く
叫ばれるようにな9、酬候性卯(の無塗装使用傾向が次
第に高1ってきている。
一般に、鋼の耐候性向上のために、Cu 、 Cr 、
 P 。
Ni 、 Si或いはMo等を合金元素として添加する
ことが実施されているが、中でも最も効果のあるCuを
基本合金元素とし、更に比較的安価な割には耐候性向上
効果の大きいPを積極的に添加してその特性の一層の向
上を図った耐候性鋼の使用か目立ってきている。
しかしなから、このような従来の耐候性鋼は鋼の溶接性
に悪影響を及ばすCuを含んでいる上、P量が増えるに
従って、Pによる硬化作用のため溶接割れ感受性(PC
M)が一層高くなるという不都合がちり、特に厚手の溶
拙構造材としての使用に好ましいものではなかったので
ある。
このようなことから、最近、C含有郊を極力低くしてP
CM f:低下させるとともに、低C化による耐候性向
上効果をも同時に狙った低C−Cu−P系の良溶接性耐
候性鋼が提案されるに至った〔製鉄研究、第309号(
1982)、第98〜109頁〕。
確かに、新しく提案されたnjf記耐候性鋼は従来のも
のに比べて良好な溶接性を示すものではあったが、それ
でも溶接熱影響部の靭性は、大入熱溶接の場合、0℃で
のシャルピー衝撃吸収エネルギー餉: 5 kgf−m
程度でしかなく、このため、冬期の気温が0℃以下に下
がる地域では、その適用が太きく fljl限されるも
のであった。
本発明者等は、上述のような観廣がら、優れた耐候性・
耐食性を備えていることはもちろんのこと、溶接性にも
極めて優れており、0℃以下の環境下における構造物に
も十分に適用可能な耐候性鋼をコスト安く提供すべく、
特に、例えばN1等の熱影弘、部靭性改善のための高価
な合金元素の多沿添加を行うことなく、入熱量:8刀〜
10万J/cmの溶接を施した際、ボンド部乃至熱影響
部で一20℃におけるシャルピー衝撃吸収エネルギー(
i:10〜20 kgf−mを確保し得、しかも従来以
上に優れた耐候性を備えた鋼を月相して研究を行った結
果、以下(a)〜(d)に示される如き知見を得るに至
ったのである。即ち、 (a) 新しく提案された前記耐候性鋼をも含めて従来
の耐候性鋼はSi含肩量を高く設定しているが、Si量
が高くなると確かに耐候性や耐食性は若干向上するけれ
ども、それ以上に溶接性が害され、むしろ悪影管の方が
大きくなる。従って、Slの高い成分組成では低温用途
仕様の高級鋼の製造が困難であシ、このような鋼を製造
するには、Si含有量を下げ、他の手段によって耐候性
、耐食付を向上する必要があること。
第1図は、P含有量が0.07〜0.10%(以下、成
分組成割合を示すチは重量係とする)の高P−Cu系耐
候性鋼におけるSi含有量と溶接ボンド靭性との関係を
示すグラフであるが、第1図からも、Si含有量が低下
するにつれて一20℃における溶接ボンド部のシャルピ
ー衝撃吸収エネルギー値が急上昇し、特にSi含有量が
0.1%以下になるとその値が安定して高くなることが
わかる。
(b) 従来の耐候性鋼は、不純物としてであってもS
量が0.001%程度以上と高いものであったが、S量
が0.OU ]%を切ると鋼中の介在物創が極めて低く
なり、安定したサビから成る保獲膜の破壊起点が少なく
なって耐候性、耐食性が向上する上、浴接熱影脅部靭往
も改善されること。
第2図は、P含有量が0.tJ 7〜0.10%の高P
−Cu系耐候性鋼におけるS含有量と耐候性との関係を
示すグラフであり、」候性はJ I S Z2371に
基づいた試験によってめた腐食速度(随/年)で表わし
たものであるが、第2図からもS含有量が0.U O]
%を切ると耐候性が極めて良好な値を示すようになるこ
とがわかる。
(c)従って、従来の高P−Cu系耐候件鋼のSi含含
有分極力低減すると、その溶接部靭性が改@されて0℃
ゆ下の気温を呈する寒冷地においても十分に適用可能な
優れた溶接性を示すようになり、また、これに加えてS
含有量をも従来の常識を越えた低い値にまで低減すると
、悪性のサビの発生起点となるS系介在物が極端に少な
くなって耐候性が著しく向上するとともに、極低S化か
溶接部母相靭性を更に向上することとなり、十分な耐候
性と溶接性とを兼備した鋼が得られること。
(d) 更に、前記鋼のC含有量を(J、04 (J%
以下に抑えるとともに適近のTiを添加すると、溶接性
が一層改善される上、耐候性もよυ向上すること。
この発明は、上記知見に基づいてなされたものでるり、 耐候性鋼を、 C: 0.007〜0.040%。
St : 0.001〜fJ、100%。
Mn:1−1〜1.5%。
Ti :0.005〜0゜025%。
Cu: 0.20〜(J、50%。
At:0.01〜0.05%。
P : 0.07〜0.10%。
S : 0.0 0 0 05〜o、o o o s 
o % 。
N : 0.0 0 1 〜0.0 0 8 % 。
0 : 0.0 0 0 1 〜0.0 0 2 0 
%を含有し、更に必要により Nb:O:02〜0.04%。
v : (J、02〜0.04%。
Ni : 0.15〜0.35%。
Cr:0.3〜0.5%。
Mo : 0.1〜(J、2% のうちの] f、ili以上をも含み、Fe及びその他
の不可避不純物:残Q、から成る成分組成で構成するこ
とによジ、俊7シた溶接性とlit候1」とを兼備せし
めた点に特徴を有するものである。
次に、この発明の耐候性鋼の各成分含有割合を前記の如
くに限定した理由を説明する。
a) C Cは、鋼の溶接性及び耐候性を劣化するので、この点か
らみれは有害な元紫ではあるが、鋼の強度を確保するた
めには最も経済的で有用なものである。そして、鋼に所
望の強度を確保するためには0.007%以上含有させ
る必要があり、一方0.040 %を越えて含有させる
と、Pとの相互作用で靭性の著しい劣化を招くようにな
ることから、C含有量をO’、007〜0.040%と
定めた。
b) 5t Siは、鋼の耐候性向上に僅かに寄与する元素ではある
が、それ以上に大きな割合で溶接熱影響部の靭性劣化を
招くので、その含有量を出来得る限り抑える必要がある
。しかしながら、極端な低Si化は製鋼技術上大幅なコ
スト上昇要因となシ、経済的に不利となることから、S
i含有量の下限を0.001%と定めた。一方、第1図
からも明らかなように、0.100%を越えて5iff
i含有せしめると溶接部の靭性劣化が極めて著しく、−
20℃でのシャルピー衝撃吸収エネルギー値: 20 
kgf−m以上を達成できなくなることから、Si含有
量の上限を0.100%と定めた。但し、よシ優れた溶
接性を実現するためにも、Si含有量を0.050%以
下に制限することが好ましい。
C) Mn 胤成分は、鋼の耐候性に対し、ては有効でも有害でもな
い中立に近い合金元素であるが1、浴接t!+をそれほ
ど損うことなく強肌を確保する作用を有しており、また
母材靭性を改善する作用をも備えていることから、必須
成分として含有せしめられるものである。
しかしながら、1yln含有量が1.1%未満では前記
作用に所望の効果を得ることができず、一方1.5%を
越えて含有せしめると溶接熱形’17ii部の靭性劣化
が著しくなることから、Mn含有量を1.1〜1.5係
と定めた。
d) Ti Ti成分には、耐候性を損うことなく溶接性を改善する
作用がめり、微量添加で溶接熱影響部靭性が改善される
ので経済性の面でも有利な合金元素である。
しかしながら、その含有量が(J、OO5%未満では前
記作用に所望の効果を得ることができず、一方0.02
5%を越えて含有させると溶接熱影響部靭性がかえって
劣化するようになることから、Ti含有量を0.005
〜0.025%と定めた。
e) Cu Cu成分は、鋼に耐候性を確保するのに極めて有効な元
素であシ、かつ必須とも言える元素であるが、その含有
量が0.20%未満では所望の耐候性全確保できず、一
方0.50%を越えて含有させると溶接性が損なわれる
ようになるとともに、鋼の製造時に高温での表面割れを
発生しやすくなって製造困難を引き起すため、Cu含有
量を0.20〜0.50%と定めた。
f)At At成分は、鋼中のNと結合して倣細なAtNを形成し
、熱処理等による母相の靭性向上効果を一層確実なもの
とする作用を有しているが、その含有量が0.01%未
満では前記作用に/Fr望の効果が得られず、一方0.
05%を越える多量の添加は連続鋳造時の表面割れを引
き起すことから、At含有拐を0.0]〜0.t) 5
%と定めた。
g) P P成分は、鋼の耐候性向上に極めて有効な元素であり、
しかも経済的にはCと同様非常に安価なものではあるが
、f6接性には有店・な元素である。
そして、所望の耐候性を確保するためには0.07%以
上のPを含有量せる必要がるり、一方0.10%を越え
てPを含有させると溶接性が著しく損われると同時に高
温割れ発生の要因にもなることから、P含有相−を0.
07〜0.10%と定めた。
h)S Sは、鋼の耐候性に対して有害であるはかりでなく、溶
接熱影響部靭性に対しても有害な元素である。このため
、S含有量は極力低減することが望1しく、特にo、0
0080%以下、好ましくは0.00050%以下に低
減することによりサビ発生の起点となるS糸介在物が著
しく減少することとなり、耐候性の極めて高い鋼が得ら
れる。−万、製鋼技術的には、微量Sになればなるほど
精銖が困難となり、製造コスト上昇による経済的不才1
」を招くことから、S含有量の下限を0.00005%
と定めた。
i) N N成分には、前述のように鋼中のTiやAtと結合して
微細な析出物を形成し、熱処理等による母材の靭性向上
効果を増進する作用があるが、その含有量が0.U t
) 1%未渦では前記作用に所望の効果が得られず、一
方o、o o s%を越えて含有させると溶接性に悪影
響を及ばずようになるので、N含有量を0.001〜0
.008%と定めた。
 0 0は、鋼中に介在物を生成する原因物質であり、介在物
生成によって鋼の耐候性や耐食性を劣化させることから
、O@有邪−の上限を0.(J O20%として介在物
の生成を極力防止することきした。そして、0含有量は
少なければ少ないほど好ましいが、現在の製銅技術レベ
ルから考えて、その下限を0.0001%と定めた。
k)Nb、V、及びNi これらの成分には、それぞれ、耐候性に悪影響を及はす
ことなく鋼の強度及び靭性を改善する作用があるので、
母相の強度及び靭性を更に向上する必要へかある場合に
lfi以上添加會有せしめられるものであるが、それぞ
れの成分についてその添加針を前述のように限定した理
由を9下に詳述する。
イ)■、及びNb ■及びNb成分には、耐候性にそれほど悪影響を与える
ことなく、制御圧延等の条件の下で鋼の強度並びに靭性
を向上する作用があるが、その含有量がそれぞれ0.0
2%未満では前記作用に75丁望の効果が得られず、−
万0.04%を越えて含有させると鋼の溶接性が劣化し
、熱影響部の靭性が低下することから、V及びNbの含
有量をそれぞれ0.02〜0.(J 4%と定めた。
口)Ni Ni成分は、耐候性や溶接性にそれほど悪影響を及はす
ことなく、鋼の靭性を改善し、強度を向上す゛る作用を
有しているか、非常に高価な元素でもある。そこで、そ
の含有量の上限を0.35係と定めて極端な価格上昇を
抑えることとした。
−力、その含有量が0,15%未満では、Ni自身の持
つ前記作用に所望の効果が得られないので、Ni含有量
の下限を0.15%と定めた。
L)Cr、及びMO これらの成分には、それぞれ、不発ツ」によって提供さ
れる低C−P−Cu−極低S糸耐候性鋼の耐候性を一層
向上させる作用があるので、耐候性のより優れた鋼を必
要とする場合に1種以上添加含有せしめられるものであ
るが、それぞれの成分についてその添加量を前述の如く
限定した理由を以下に詳述する。
イ) Cr Cr含有量が0.3%未満では鋼の耐候性向上効果が極
めて小さく、一方0.5%を越えて含有させると溶接性
を損うようになることから、Cr含有夕をtJ、3〜(
1,5%と定めた。
日) M。
Mo成分には、鋼の耐候性を一層向上させる作用がある
上、母材強度上昇効果も著しいものであるが、その含有
量が0.1%未満では十分な効果が発揮されず、一方0
.2%を越えて含有させると溶接性を損い、熱影響部の
靭性が著しく劣化するようになることから、No含有f
i−全0.1〜0.2%と定めた。
この発明の耐候性鋼は、上述のように、従来の耐候性鋼
に見られる以外の高価な合金元素を新たに添加すること
なく、溶接性、耐候性ともに優れた特性を具備するもの
であるか、以下に述べるように、更に帆0005〜0.
0 (J 30%の範囲での微量のCaを添加含有せし
めることが推奨婆れる。
ff1Jち、Caは、鋼中に微量に残るS系介在物を球
状化し、特に圧延に起因する鋼材の異方性を小はくする
ので、圧延)i自動性及び圧延直角方向靭性向上効果を
有しておρ、更に、溶接熱影徘部に対してもシャルピー
街撃吸収エネルギー値を改善する効果をも持っている7
+−らである。
ただ、Ca自身は比較的活性な元素であり、鋼の耐候性
・耐食性を害する場合もあるので、その添加量を注意深
く制限する必要があるが、特定の成分組成範囲では、S
を低減し、安定したサビから成る保拗膜を破壊する起点
を減少させて耐候性や耐食性を向上させることとなる。
そして、S含有量が0.0 (J 005〜0.000
50%の範囲であると、0.0005%未満のCa量で
は前記効果が十分に発揮されず、−万0.0030%を
越えてCai添加含有せしめてもそれ以上の向上効果が
得られないはかりか、Ca系介在物をいたずらに増やす
ことになり、前述のように耐候件・耐食性を低下するよ
うになるので、Cai添加する場合にはその含有量を(
1,(J 005〜o、o C13o%に調整すること
が肝要である。なお、Ca添加量は、上記のS及びCa
の組成範囲の中でも、](Ca(%)/S(%)り3 を満足するように調整すれば、Ca添加効果が一層顕著
となるので好ましい。
との発明の耐候性鋼の製造にあたっては、まず周知の炉
外精錬等を適用して鋼片を得、次いで、1280〜90
0℃に加熱されている該鋼片に、780〜690℃の温
度域での圧下率が10%以上で、かつ仕上げ温度が75
0〜670 ℃の圧延を施した後、圧延終了温度から5
00℃以下までの温度域を5〜50 ℃/ seeの冷
却速度で冷却する処理を施すのが良い。
このように、本発明の耐候性鋼の製造にあたって前記条
件を選ぶのが好ましい理由を以下に説明する。
■ 圧延の際の鋼片加熱温度 圧延に際して1280 ’Cを越える加熱温度は実質的
に不要であフ、しがもI 280 ’Cを越える温度で
圧延を開始すると、圧延後の組織が粗くなって鋼材靭性
の劣化を招くので、前記鋼片加熱温度は1280℃に抑
えるのが良い。
そして、NbやV添加鋼のように、炭化物の析出作用に
よる強度及び靭性の向上効果が期待できるものの場合に
は、NbやVの炭化物を完全に溶体化するために125
0 ’G程度の高温を必要とするが、このような効果を
期待できないものの場合にはA c 3変態点直上の加
熱で十分である。但し、埃実には、N+)やV添加鋼以
外のものでは、圧延能率をも考應、に入れて、900 
’C以上の温度、特に900〜1000℃の加熱を行う
のが良い。
なお、加熱の後、圧延開始前の鋼片温度が870℃未満
になった場合には、 Ac3変態点を切ってしまい変態
が始甘ってしまう恐れがあるとともに、炭化物や窒化物
が粗大に析出してしまう可能性がある。即ち、γ中に固
溶された炭化物や窒化物が析出する場合には、通常は圧
延によシ導入逼れた転位の部分や変態によって生ずるα
−γ界面に微細忙析出するものであるが、圧延を受けて
いない段階で、しかも比較的高温で析出を生ずる場合に
は、析出サイトが少なく、かつ成長が速いため、小数の
析出物が大きく成長してしまうことになる。
従ってこの場合、靭性改善や強度上昇に有効な炭化物や
窒化物の微細析出に必要な元素が失なわれてしまうこと
や、粗大に成長した析出物のために、鋼の靭性劣化を招
いてしまう恐れが出てくる。
また、変態によって鋼中に生成したα相はその後の圧延
で強加工を受ける上、γ中に固溶L7た炭化物・窒化物
生成元素の析出効果を受けることができないから、この
点からも、靭性が悪く、かつ強度も低い鋼しか侑られな
くなる恐れがある。
即ち、製品鋼材中の一部に、靭性が悪く、かつ強度も低
い部分を生じてしまうことになる。
このような事態を避けるためにも、圧延開始前の鋼片温
度’i 870 ’C以上に保っておくことが賢明であ
る。
■ 圧延仕上は温度 圧延仕上は温度が670 ’Cを下回ると、変態を終了
したフェライトに加工を加えることになり、しかも低温
加工のために加工歪が残ったままの状態となって鋼材の
靭性を損う恐れがある。一方、750℃以上の仕上げ温
度では高温すさ゛るために鋼材の靭性が劣化してしまう
■ 低温域での圧下率 鋼材に特に高靭性を要求される場合には、低温域での圧
下を多ぐすることが有効であフ、780〜670℃の温
度域にて10%以上の圧下を加えることか望ましい。そ
して、更に高靭性を得るためには20%以上の圧下を加
えるのが良−8■ 圧延終了後の冷却 鋼材強度を高検、高靭性をも得るためには、圧延終了温
度から500℃以下までの温度域を加速冷却するのが良
い。この場合、冷却速度が5℃/sec以下では強度上
昇度合が小さく、一方50℃/ seeを越える冷却速
度では、鋼材の強度は上昇するものの靭性劣化を招くこ
ととなる、 モして、500“Cより低い温度域の冷却については、
放冷でも加速冷却でもいずれを採用しても良いが、要求
される鋼材強度と靭性とのバランスに応じて選択すれは
艮い。即ち、強度をそれほど必要とせずに高靭性を要求
畑れる場合には、450℃からの放冷を実施するのが望
ましく、逆に靭性はそれほど必要とせずに高強度を要求
される場合には、加速冷却を更に低温まで持続するのが
良い。
なお、圧延に供する鋼片は、鋼塊より適当な分塊圧延を
行って製造したものでも、連続鋳造法等により直接製造
されたものでも良いが、TiN微細分散やCaS微細分
散の面からは、連続鋳造法により製造されたものの方が
好ましい。そして、連続鋳造法を採用する場合には、鋼
片を作る素材f 一旦900℃以下に冷却してから再加
熱して圧延し2ても良いし、また鋳込みの後900℃以
下に冷却することなくそのまま直接圧延に供しても良い
また、鋼片製造に当っては、鋼中に生成する介在物を極
力微細にし、鋼表面のザビ発生の起点になる粗大な介在
物を作らないために、凝固開始から2〜3分程度で鋼表
面の温度が1000℃以下になるような、例えば連続鋳
造等の如き急冷方式の製造法を採用するのが好ましい。
次いで、この発明を実施例によジ比較例と対比しながら
説明する。
実施例 まず、炉外精錬をも取シ入れた常法によって第1表に示
される如き成分組成の鋼A〜Vを溶製した。
次に、これらの鋼に第2表に示される如き条件の熱間圧
延を施して、厚さが25mmの熱延鋼板を製造した。
このようにして得られた熱延鋼板について、母材の機械
的性質、溶接部(熱影管都:HAZ)の靭性、並ひに耐
候性を調べ、その結果を第3表に示した。
なお、母材の機械的性質に関しては、最も一般的に採用
されているJIS 22241及びZ2242に準じた
引張試験及び衝撃試験によって測定した。
また、溶接部の特性(靭性)は、第3図に示笛れるよう
な開先形状で熱延鋼板]、】をサブマージアーク溶接し
、第4図に示される位置から試験片を採取してJIS 
Z2242に準じた衝撃試験を実施することにより測定
した。なお、第3図における符号2はフラックスバッキ
ングを示スモのであり、第4図罠おける符号3は溶接金
編を、符号Aは採取する試験片のノツチ位置を、そして
仮想線(2点鎖線)は試験片採取位置を示すものである
。なお、その他のサブマージアーク溶接条件は次の通り
でおった。即ち、 フラックス: J I 5=YSF53相当市販材、ワ
イヤ:JIS−W4](ワイヤ径40喘)相当の市販相
、 入熱艙:10万J 7cm 。
溶接電流:先行電極・・・800A、後行電極・・7(
JOA。
溶接電圧:先行電極・・・35V、後行電極・・・35
V、溶接速度: 3 (J an/min。
そして、第3表中の溶接部特性の評価は、■・・・衝撃
破面遷移温度[vTs ]が−30’C以下で、かつ−
20℃における衝撃吸収エネルギー値[vE−2o )
が15 kgf−m JJ、上のもの、 △=・・−30℃(v’I’s (−20°C1又は1
5kgf−m > VE−20:> ] Okgf−m
のいずれかに該尚し、かつX印とならないもの、 X ・= −20°C<vTs 、又は10 kgf−
m>vE−2゜のいずれかに該当するもの、 として表わした。
更に、耐候性ハ、JIS Z2371ice、定されて
いる塩水噴霧試験による腐食速度で示し、その評価は、 ○・・・腐食速度か帆5闘/年以下のもの、×・・・腐
食速度が0.5m/年を越えるもの、として表わした。
総合評価線、母材特性が、 降伏強さ: 32 kgf/−以上、 引張強さ: 48 kgf/−以上、 vTs : −20℃以下、 vE−20: 10 kgf−m以上 という目標性能を満たし、かつ溶接部特性及び耐候性試
験結果の評価が共に○印のものを○で、その他のものを
×で表わした。
第3表に示きれる結果からも、本発明になる鋼は、耐候
性、溶接性、並びに母材の機械的告質がともに優れてお
り、0℃以下の@皮下で使用される構造物に適用する耐
候性鋼として十分に満足できるものであることが明白で
ある。
なお、鋼板の製造に際して、圧延後の冷却速度の著しく
速かったものには若干の母ね靭性の低下が見られるが、
このような場合には、600℃で1時間程度の焼もどし
処理を施して強度・靭性バランスの回復を図ることがで
きる。但し、この場合、熱処理を施すためのコストアッ
プを避けるこまた、第4表は、第1表に示される本発明
Aを連続鋳造法(急冷法)とインゴット鋳造法(緩冷法
)とで作シ分けた際の、鋼表面の粗大介在物数と耐候性
葡比較したものであるが(粗大介在物数亜ひにl1i(
候性の測定は、各々に第2表の鋼板製造法■の圧延を施
した鋼板について行った)、この第4表からは、連続鋳
造法によるとサビ発生の起点となる粗大介在物が表面に
無く、耐候性(耐海水I1g)に著しく優れた銅相の得
られることがわかる。
第4表 上述のように、この発明によれば、優れた耐候性・耐食
性を備え、かつ溶接性にも極めて優れており、しかも十
分な強度と靭性とを兼ね備えた耐候性鋼をコスト安く得
ることができ、寒冷地等における鋼構造物に適用して十
分に満足できる効果が期待できるなど、産業上有用な効
果がもたらされるのである。
【図面の簡単な説明】
第1図は高P−Cu系耐候性鋼におけるSi含有量と溶
接ボンド靭性との関係を示すグラフ、第2図は高P−C
u糸耐候性鋼におけるS含有量と耐候性との関係を示す
グラフ、第3図は実施例中の溶接にて採用した開先形状
の軟部概略模式図、第4図は衝撃試験片採取位眞゛を示
す要部概略模式図である。 図面において、 ]・・・m板、 2・・・フシックスパッキング、3・
・・溶接金机、 A・・・ノツチ位置。 第1層 Sr’&;fJ (if:o/6) S 含有f (t−1%) 第3図 第4図

Claims (1)

  1. 【特許請求の範囲】 tll 重相割合で、 C: 0.007〜0゜040%。 Si : 0.001〜0.100%。 Mn:1.1〜1.5%。 Ti : (1,005〜0.02.5%。 Cu : 0.20〜(J、50%。 A7: 0.01〜0.05%。 P : 0.07〜0.10%。 S : 0.00005〜0.00080%。 N : 0.OU ]〜0.008%。 0 : 0.000 ]〜0.0020%。 Fe及びその他の不可避不純物:残り、から成ることを
    特徴上する溶接性に優れた耐候性鋼。 (2)重9割合で、 C: 0.0 0 7〜0.0 4 0 % 。 St : 0.OU 1 〜0.1 (J O% 。 Mn:Ll 〜1.5 % 。 Ti:U、(JO5〜(7,025% 。 Cu : 0.2 0〜0.5 0 % 。 At: 0.01〜0.05%。 P : (1,07〜0.10 % 。 S : 0.0 0 0 0 5〜C1,00080%
     。 N : (1,001〜U、(] 0 8 % 。 0 : 0.0 0 0 1 〜0.Oo 2 0 %
    を含有するとともに、更に Nb:0.02〜0.04%。 V : 0.(J 2〜0.04%。 Ni : 0.15〜0.35%。 のうちの1種以上をも含み、 Fe及びその他の不可避不純物;残シ、から成ることを
    特徴とする溶接性に優れた耐候性鍋。 (3)重量割合で、 c : o、o 07〜C1,040%。 St : 0.001〜0,100%。 Mn:]、11〜1.5% Ti:U、005〜0.025%。 Cu : 0.20〜0.50%。 At:0.01〜(J、IJ 5%。 P : 0.07〜0.10%。 s : u、o o o 05〜o、o o o g 
    o%。 N : (J、lJ O]〜(1,008%。 0 : 0.OU 01〜0.0020%を含有すると
    ともに、更に Cr : (J、3〜0.5%。 Mo : 0.1〜(J、2% のうちの1種以上をも含み、 Fe及びその仙の不可避不純物:残り、から成ることを
    特徴とする浴接性に優れたIt1候性銅。 (4)N景割合で、 C: 0.007〜0.040%。 Si : 0.001.〜(J、100%。 Mn : 1.1〜1.5 % 。 Ti −0,005〜 0.0 2 5 % 。 Cu : 0.20〜0.5 0 % 。 At: 0.0 1〜0.0 5 % 。 P : 0.0 7〜0.10 % 。 S : fJ、0 0 0 0 5〜(J、0 0 0
     80 % 。 N : 0.OU 1〜0.0 0 8 % 。 o : (J、0 υ O] 〜 0.0 0 2 υ
     係を含有するとともに、更に Nb:U、02〜0.04%。 v : 0.(12〜0.04%。 Ni : (J、15〜0.35% のうちの1@以上、及び Cr : 0.3〜0.5%。 Mo : 0.1〜0.2% のうちの1種以上をも含み、 Fe及びその他の不可避不純物:残り、から成ることを
    特徴とする溶接性に優れた耐候性鋼。
JP19721583A 1983-10-21 1983-10-21 溶接性に優れた耐候性鋼 Pending JPS6089550A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19721583A JPS6089550A (ja) 1983-10-21 1983-10-21 溶接性に優れた耐候性鋼

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19721583A JPS6089550A (ja) 1983-10-21 1983-10-21 溶接性に優れた耐候性鋼

Publications (1)

Publication Number Publication Date
JPS6089550A true JPS6089550A (ja) 1985-05-20

Family

ID=16370742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19721583A Pending JPS6089550A (ja) 1983-10-21 1983-10-21 溶接性に優れた耐候性鋼

Country Status (1)

Country Link
JP (1) JPS6089550A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996110A (en) * 1985-09-20 1991-02-26 Bridgestone Corporation White board
US5183633A (en) * 1990-10-18 1993-02-02 Sollac Steel having improved weldability and method thereof
US5817275A (en) * 1994-03-22 1998-10-06 Nippon Steel Corporation Steel plate having excellent corrosion resistance and sulfide stress cracking resistance
WO2021036078A1 (zh) * 2019-08-27 2021-03-04 南京钢铁股份有限公司 免热处理单轨道岔用耐候钢板及制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4996110A (en) * 1985-09-20 1991-02-26 Bridgestone Corporation White board
US5183633A (en) * 1990-10-18 1993-02-02 Sollac Steel having improved weldability and method thereof
US5817275A (en) * 1994-03-22 1998-10-06 Nippon Steel Corporation Steel plate having excellent corrosion resistance and sulfide stress cracking resistance
WO2021036078A1 (zh) * 2019-08-27 2021-03-04 南京钢铁股份有限公司 免热处理单轨道岔用耐候钢板及制备方法

Similar Documents

Publication Publication Date Title
CA1208106A (en) Method of making wrought high tension steel having superior low temperature toughness
JP4946092B2 (ja) 高張力鋼およびその製造方法
JPS601929B2 (ja) 強靭鋼の製造法
JPS6141968B2 (ja)
JPS5935619A (ja) 溶接部靭性のすぐれた高張力鋼材の製造方法
JPS6089550A (ja) 溶接性に優れた耐候性鋼
JP3445997B2 (ja) 高強度・高靱性熱間圧延鋼帯の製造方法
CN111349769B (zh) 一种抑制腐蚀的覆铝基板用钢及其制造方法
CN111349848B (zh) 一种抑制腐蚀的高强度覆铝基板用钢及其制造方法
JPH07207340A (ja) 高海塩粒子日陰環境で優れた耐食性及び低温靱性を示す鋼板の製造方法
JP2563021B2 (ja) 伸びフランジ性の優れた高強度熱延原板合金化溶融亜鉛めっき鋼板の製造方法
JP4066850B2 (ja) 溶接部のctod特性に優れる高張力鋼の製造方法
KR20010060759A (ko) 저항복비를 갖는 고강도 강 및 그 제조방법
JP3900018B2 (ja) 高パス間温度多層盛り溶接鋼材の製造方法及び高パス間温度多層盛り溶接方法
JP3245224B2 (ja) 冷間成形による建築用低降伏比鋼管の製造法
JP2585321B2 (ja) 溶接性の優れた高強度高靭性鋼板の製造方法
JP2743765B2 (ja) 圧力容器用Cr−Mo鋼板及びその製造法
CN115505842B (zh) 一种低温服役环境高止裂韧性船舶及海洋工程用结构钢及其生产方法
CN116043124B (zh) 一种具有可搪瓷性能的冷轧耐候钢板及其制备方法
JPS624450B2 (ja)
JPH06104861B2 (ja) V添加高靭性高張力鋼板の製造法
JP3397283B2 (ja) 高靱性極厚高張力鋼材及びその製造方法
KR101344556B1 (ko) 고강도 후물 강재 및 그 제조 방법
KR100530057B1 (ko) 가공성 및 내2차가공취성이 우수한 고강도 냉연강판의제조방법
JP2583654B2 (ja) 低温靭性に優れた高ヤング率構造用鋼板の製造方法