JPS6088804A - Warm-up device for steam turbine - Google Patents

Warm-up device for steam turbine

Info

Publication number
JPS6088804A
JPS6088804A JP19703983A JP19703983A JPS6088804A JP S6088804 A JPS6088804 A JP S6088804A JP 19703983 A JP19703983 A JP 19703983A JP 19703983 A JP19703983 A JP 19703983A JP S6088804 A JPS6088804 A JP S6088804A
Authority
JP
Japan
Prior art keywords
steam
turbine
temperature
pipe
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19703983A
Other languages
Japanese (ja)
Inventor
Sakae Kawasaki
榮 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19703983A priority Critical patent/JPS6088804A/en
Publication of JPS6088804A publication Critical patent/JPS6088804A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D19/00Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
    • F01D19/02Starting of machines or engines; Regulating, controlling, or safety means in connection therewith dependent on temperature of component parts, e.g. of turbine-casing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To check an internal thermal stress in time of steam turbine starting and thereby prolong service life in a turbine, by extracting low temperature steam in the middle course of heating from a heating part of a steam generator, while making it mixable in high temperature steam in a main steam pipe. CONSTITUTION:Low temperature steam in the middle course of heating is so constituted as to make it mixable in a main steam pipe 7 leading steam into a high pressure turbine 17 from an evaporator 4 of a steam generator 3 through a low temperature steam pipe 25. In time of turbine starting, a mixed amount of the low temperature steam is controlled by a low temperature main steam control valve 27 whereby main steam is made to drop its temperature to some extent and fed to the turbine 17, thus an internal thermal stress is relieved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、蒸気タービンの暖機装置に係り、特に、蒸気
発生器の加熱部途中から低温蒸気を蒸気タービンに導く
低温蒸気管を設けて蒸気タービンのケーシンダ内部を好
適に暖機することができるようにした蒸気タービンの暖
機装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a warm-up device for a steam turbine, and in particular, the present invention relates to a warm-up device for a steam turbine, and in particular, a low-temperature steam pipe is provided to guide low-temperature steam to a steam turbine from the middle of a heating section of a steam generator. The present invention relates to a warm-up device for a steam turbine that can suitably warm up the inside of a casing of a turbine.

〔発明の技術的背景〕[Technical background of the invention]

一般に、蒸気タービンの冷機起動においては、ロータの
温度を材料の遷移温度以上にあげて延性領域に入れ、脆
性破壊の危険性を皆無にしておくことが安全運転の上か
ら重要である。このため、たとえば火力発電プラントの
蒸気タービンは、従来、第7図に示す運転手順によって
起動を行っている。まず、タービン起動前に、蒸気ター
ビンに設けられたプリウオーミング装置によって蒸気タ
ービンを暖機しなからロータの温度を遷移温度以上に上
げ、その後、蒸気発生器からの主蒸気を蒸気タービン内
に多流量にて流入させ、線図Iで示すように、無負荷の
状態でロータ回転数を定格回転数以下のある回転数まで
上昇させる(la)。
Generally, when starting a steam turbine cold, it is important from the viewpoint of safe operation to raise the temperature of the rotor to a temperature higher than the transition temperature of the material to enter the ductile region and to eliminate any risk of brittle fracture. For this reason, for example, a steam turbine in a thermal power plant has conventionally been started according to the operating procedure shown in FIG. First, before starting the turbine, a prewarming device installed in the steam turbine warms up the steam turbine and raises the rotor temperature above the transition temperature. After that, main steam from the steam generator is pumped into the steam turbine. The rotor is caused to flow in at a flow rate, and as shown in diagram I, the rotor rotational speed is increased to a certain rotational speed below the rated rotational speed in a no-load state (la).

そして、その回転数において一定時間回転数な保持した
後(I’fi)、線図■で表すように、タービン内部温
度がある程度上昇したら、ロータ回転数を定格回転数ま
で上昇させる(Ic)。さらに、定格回転数にて一定時
間保持した後(Id)、線図1で表すように、負荷上昇
を段階的に行うようにしている。
After the rotation speed is maintained at that rotation speed for a certain period of time (I'fi), when the turbine internal temperature rises to a certain extent as shown by the diagram (■), the rotor rotation speed is increased to the rated rotation speed (Ic). Further, after maintaining the rated rotational speed for a certain period of time (Id), the load is increased in stages as shown in diagram 1.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、このような運転では、タービン起動前に
おいてプリウオーミング装置で暖機されたタービン内部
温度(線図1)と主蒸気温度(線図IV)との間には大
きな温度差を生じており、さらにその温度差のままター
ビンを起動することとなっていた。このため、タービン
ロータ、タービンローシンダ等に大きな熱応力が生じて
しまい、この熱応力によってタービンの寿命は着るしく
短くされてしまっていた。なお、第2図は、タービン内
部に生ずる熱応力(横軸)とタービン寿命(縦軸)との
関係を表しており、熱応力の増大によってタービン寿命
は急激に減少することが本図から判る。
However, in this type of operation, a large temperature difference occurs between the turbine internal temperature (diagram 1), which is warmed up by the prewarming device before the turbine is started, and the main steam temperature (diagram IV). Furthermore, the turbine was to be started with that temperature difference maintained. As a result, large thermal stress is generated in the turbine rotor, turbine row cinder, etc., and the life of the turbine is severely shortened by this thermal stress. Furthermore, Figure 2 shows the relationship between the thermal stress generated inside the turbine (horizontal axis) and the turbine life (vertical axis), and it can be seen from this figure that the turbine life rapidly decreases as the thermal stress increases. .

さらに、このような運転では蒸気タービンの回転数(線
図I)を内部応力との関係から急激に上昇させることは
できず、上述のように回転上昇途中に所定の保持期間(
1b)が必要であるため、回転上昇に時間を要し、それ
に伴って負荷を加え始める時期も遅らさざるを得なかっ
た。
Furthermore, in this type of operation, the rotation speed (diagram I) of the steam turbine cannot be suddenly increased due to the relationship with internal stress, and as mentioned above, during the increase in rotation, a predetermined holding period (
1b), it takes time for the rotation to increase, and accordingly, the time to start applying a load has to be delayed.

〔発明の目的〕[Purpose of the invention]

本発明は、このような従来の蒸気タービン暖機装置の欠
点を解消し、蒸気タービン冷機起動時に発生ずる高い熱
応力を軽減して蒸気タービンの寿命を大きく延ばし、か
つ、初負荷開始時期を短縮することができるようKした
蒸気タービンの暖機装置を提供することを目的とする。
The present invention eliminates the drawbacks of the conventional steam turbine warm-up device, reduces the high thermal stress that occurs when starting the steam turbine cold, greatly extends the life of the steam turbine, and shortens the initial load start time. It is an object of the present invention to provide a warm-up device for a steam turbine that can perform the following steps.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため本発明による蒸気タービンの暖
機装置は、蒸気発生器の加熱部から加熱途中の低温蒸気
を器外へ導出する低温蒸気管を分岐させるとともに、蒸
気発生器の出口部から蒸気タービンに高温主蒸気を導く
主蒸気管を連結して高温主蒸気に低温蒸気を混入しうる
ようにしたことを特徴とし、蒸気タービンの起動時に内
部熱応力が所定値以下になるように蒸気タービン流入蒸
気の温度を低下調節するようにしている。
In order to achieve the above object, the steam turbine warm-up device according to the present invention branches a low-temperature steam pipe that leads out the low-temperature steam that is being heated from the heating section of the steam generator to the outside, and The steam turbine is characterized by connecting a main steam pipe that leads high-temperature main steam to the steam turbine so that low-temperature steam can be mixed into the high-temperature main steam, and the steam turbine is connected to a main steam pipe that leads high-temperature main steam to the steam turbine so that low-temperature steam can be mixed into the high-temperature main steam. The temperature of the steam flowing into the turbine is adjusted to decrease.

〔発明の実施例〕[Embodiments of the invention]

以)、本発明の実施例を図面に基いて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第3図は、本発明を火力発電プラントに適用した例を示
しているが、基本サイクルは従来のものと同様であって
、給水ポンプlにより給水管コな通して蒸気発生器3に
送給される給水は、前記蒸気発生器3の蒸発器ダにより
蒸気化され、その後、7次加熱器5およびλ次加熱器乙
により過熱されて主蒸気管りにより主蒸気止め弁gおよ
び主蒸気加減弁ヂを通って高圧タービン/7内に導かれ
る。
Fig. 3 shows an example in which the present invention is applied to a thermal power plant, but the basic cycle is the same as that of the conventional one, and the water is supplied to the steam generator 3 through the water supply pipes by the water supply pump l. The water to be supplied is vaporized by the evaporator D of the steam generator 3, then superheated by the seventh heater 5 and the λ heater B, and then passed through the main steam pipe to the main steam stop valve g and the main steam control valve. It is guided through the valve into the high pressure turbine/7.

高圧タービンl/の排気は、再び蒸気発生器3内に導か
れて再熱1次加熱器/コおよび再熱コ次加熱器/3を通
して再加熱された後、再熱主蒸気管/lにより再熱主蒸
気止め弁/Sおよび再熱主蒸気加減弁16を通って中圧
タービン17内に導かれる。さらに、中圧タービン17
の排気は、低圧タービンigに導かれて最終膨張仕事を
した後、復水器/9に流入されて凝縮化され、再び給水
として蒸気発生器3に送給されるようになっている。
The exhaust gas of the high-pressure turbine 1/1 is led into the steam generator 3 again and reheated through the reheat primary heater/co and the reheat co-secondary heater/3, and is then reheated by the reheat main steam pipe/1. It is guided into the intermediate pressure turbine 17 through the reheat main steam stop valve/S and the reheat main steam control valve 16. Furthermore, the intermediate pressure turbine 17
The exhaust gas is led to a low pressure turbine ig to perform final expansion work, then flows into a condenser/9 where it is condensed and is again sent to the steam generator 3 as feed water.

そして、前記蒸気発生器3の蒸発器ダにおいては、第7
図に示すように、給水管コが節炭器2/に直接連結され
、さらに加熱蒸発管二を通して最終蒸発器23に至り、
この最終蒸発器23の出口部は、ウォータセパレータ評
を介して過熱蒸気を生成する1次加熱器!およびa次加
熱器乙に連結されている。これにより高温過熱された蒸
気が主蒸気管7を通して高圧タービン//へ送給される
ようになっている。
In the evaporator da of the steam generator 3, the seventh
As shown in the figure, the water supply pipe is directly connected to the economizer 2/, and further reaches the final evaporator 23 through the heating evaporation pipe 2,
The outlet of this final evaporator 23 is a primary heater that generates superheated steam through a water separator. and connected to the a-th heater B. This allows the superheated steam to be fed to the high pressure turbine // through the main steam pipe 7.

また、上記最終蒸発器刃と1次加熱器Sとの間に介挿さ
れたウォータセパレータ評の出口部からは低温主蒸気管
コが分岐されており、過熱される前の低温蒸気がこの低
温主蒸気管おによって器外へ導出されるようになってい
る。さらに、この低温主蒸気管8は、前記主蒸気管7の
高圧タービン入口部分に連結され、主蒸気管り内の高温
蒸気に低温主蒸気管Jにより導かれた低温蒸気が混合し
うるようになっている。また、上記低温蒸気管、2&の
途中には、低温主蒸気止め弁コロおよび低温主蒸気加減
弁、27が設けられ、これらにより低温蒸気の送給、停
止および流量調整ができるようになっている。
In addition, a low-temperature main steam pipe is branched from the outlet of the water separator inserted between the final evaporator blade and the primary heater S, and the low-temperature steam before being superheated is transferred to this low-temperature steam pipe. It is designed to be led out of the vessel through the main steam pipe. Furthermore, this low-temperature main steam pipe 8 is connected to the high-pressure turbine inlet portion of the main steam pipe 7, so that the low-temperature steam led by the low-temperature main steam pipe J can mix with the high-temperature steam in the main steam pipe. It has become. Further, a low temperature main steam stop valve roller and a low temperature main steam control valve 27 are provided in the middle of the low temperature steam pipe 2&, and these enable feeding, stopping, and flow rate adjustment of the low temperature steam. .

さらに、第3図および第S図に示すように、再熱/次加
熱器lコと再熱コ次加熱器13との間からも低温再熱主
蒸気管Xが分岐され、再熱2次加熱器13に入る前の低
温再熱蒸気が器外へ導出されるようになっている。そし
て、この低温再熱主蒸気管、2gは、前記再熱主蒸気管
/lIO中圧タービン入口部に連結されるとともに、そ
の途中には、低温再熱主蒸気止め弁コ9および低温再熱
主蒸気加減弁3/が設けられるようになっている。
Furthermore, as shown in Fig. 3 and Fig. S, the low-temperature reheat main steam pipe The low-temperature reheated steam before entering the heater 13 is led out of the vessel. This low-temperature reheat main steam pipe 2g is connected to the reheat main steam pipe/lIO intermediate pressure turbine inlet section, and a low-temperature reheat main steam stop valve 9 and a low-temperature reheat main steam stop valve 9 and a low-temperature reheat main steam stop valve A main steam control valve 3/ is provided.

さらに、前記低温主蒸気加減弁27および低温再熱主蒸
気加減弁3/は、弁制御装置3コおよび33により弁開
度が調節されている。この弁制御装置3コおよび33は
、高圧タービン//および中圧タービン/7からの各内
部温度信号S、および8.ならびに主蒸気管りおよび再
熱主蒸気管/ダ内の各温度信号8゜およびS4をそれぞ
れ受けてタービン起動時に高温蒸気と低温蒸気とを適切
に混合するように主蒸気加減弁9および低温主蒸気加減
弁、27ならびに再熱主蒸気加減弁/6および低温再熱
主蒸気加減弁31にそれぞれ弁開信号S、およびs6な
らびに8フおよびSsを発する機能を備えている。そし
てこれによって各弁9.コ? 、 /A 、 3/を適
当開度まで開いて高温蒸気と低温蒸気とを混合させ、タ
ービン流入温度を適当温度に低下させることができるよ
うになっている。
Further, the opening degrees of the low temperature main steam control valve 27 and the low temperature reheat main steam control valve 3/ are adjusted by the valve control devices 3 and 33. The valve control devices 3 and 33 receive internal temperature signals S from the high pressure turbine// and the intermediate pressure turbine/7, and 8. In response to the temperature signals 8° and S4 in the main steam pipe and reheat main steam pipe, respectively, the main steam control valve 9 and the low temperature main It has a function of issuing valve open signals S, s6, 8f and Ss to the steam control valve 27, the reheat main steam control valve/6 and the low temperature reheat main steam control valve 31, respectively. With this, each valve 9. Ko? , /A, 3/ are opened to an appropriate opening degree, high temperature steam and low temperature steam are mixed, and the turbine inflow temperature can be lowered to an appropriate temperature.

このような蒸気タービン暖機装置はたとえば餌6図に示
すように運転される。第6図は高圧タービンを例にとっ
て説明したものであるが、中圧タービンも全く同様であ
る。まず、線図イで表したタービン流入蒸気温度は、破
線図口で表した主蒸気温度と線図ハで表したタービン内
部温度との#1は中間温度になるように主蒸気加減弁?
および低温蒸気加減弁27は弁開度調整される。この中
間温度は、タービンロータン〆およびタービンロータに
生ずる熱応力が所定値以下になるように設定される。な
お、プリウオーミング時にはタービン内に主蒸気は流入
しないが、上記各弁?および27はあらかじめ適当開度
になるよう準備されている。
Such a steam turbine warm-up device is operated as shown in Figure 6, for example. Although FIG. 6 is explained using a high-pressure turbine as an example, the same applies to an intermediate-pressure turbine. First, the turbine inflow steam temperature represented by diagram A is determined by the main steam control valve so that #1 is an intermediate temperature between the main steam temperature represented by the broken line and the turbine internal temperature represented by diagram C.
The opening degree of the low temperature steam control valve 27 is adjusted. This intermediate temperature is set so that the thermal stress generated in the turbine rotor and the turbine rotor is equal to or less than a predetermined value. Note that during prewarming, main steam does not flow into the turbine, but each valve mentioned above does not flow into the turbine. and 27 are prepared in advance to have appropriate opening degrees.

そして、タービンの起動とともに上記各温度イ、口、ハ
は徐々に上昇していき、定格負荷後において同一温度に
収束する。この場合、従来においては、タービン流入温
度は主蒸気温度イそのものであって、このタービン流入
温度イと破線図工で表される従来のタービン内部温度と
の温度差は非常に大きく、タービン内部に生ずる熱応力
も大きいま゛ま推移していくのに対して、本発明による
装置においては、タービン流入温度イは、主蒸気温度口
より常に低く維持され、両温度イ1口の差は小さいまま
推移する。このため、タービン内部に生ずる熱応力も小
さく抑えられる。
As the turbine is started, the temperatures A, C, and C gradually rise, and converge to the same temperature after the rated load. In this case, conventionally, the turbine inlet temperature is the main steam temperature A itself, and the temperature difference between this turbine inlet temperature A and the conventional turbine internal temperature represented by the broken line diagram is very large, and the temperature difference that occurs inside the turbine is very large. The thermal stress also remains large, whereas in the device according to the present invention, the turbine inlet temperature A is always maintained lower than the main steam temperature port, and the difference between the two temperatures remains small. do. Therefore, thermal stress generated inside the turbine can also be suppressed.

さらに、このようにタービン内部の熱応力が小 1さく
抑えられるため、本発明においては線図ホで j表すれ
るようにタービンロータの回転数をほぼ直線的に上昇さ
せることができ、破線図へで表す従(平旦部)に至る途
中で一旦回転数を保持する期間を設ける必要はない。
Furthermore, since the thermal stress inside the turbine is suppressed to a small level in this way, in the present invention, the rotation speed of the turbine rotor can be increased almost linearly as shown by j in the diagram, and There is no need to provide a period during which the rotational speed is maintained on the way to the secondary (flat part) represented by .

また、このようにタービンロータ回転数が短時間で定格
回転数まで上昇させることができることに伴って負荷も
線図トで表すように早期に加えることができ、従来(破
線図テ)のように初負荷開始時期を遅せる必要はない〇 〔発明の効果〕 以上述べたように、本発明による蒸気タービンD暖機装
置は、蒸気発生器の加熱部から加熱途中り低温蒸気を器
外へ導出する低温蒸気管を分岐さ亡るとともに、蒸気発
生器の出口部から蒸気タービンに高温主蒸気を導く主蒸
気管に低温蒸気管を車結し、蒸気タービンの起動時に高
温主蒸気に低諷蒸気を混入してタービン流入蒸気温度を
低下調Φしうるようにしたから、蒸気タービンの冷機起
訪時の熱応力を軽減することができ、蒸気タービ/のケ
ーシンダ、ロータ等の寿命を飛陸的に延ば釘ことができ
る。また、熱応力の軽減によって、ることかでき、それ
に伴って初負荷開始時期を早めることができるため、あ
る程度の部分負荷を目的として蒸気タービンを起動させ
る場合には、目的負荷までの到達時間を短縮することが
できる。
In addition, since the turbine rotor rotational speed can be increased to the rated rotational speed in a short time, the load can be applied earlier as shown in the diagram (T), unlike the conventional method (dotted line (T)). There is no need to delay the initial load start time. [Effects of the Invention] As described above, the steam turbine D warm-up device according to the present invention leads out the low-temperature steam during heating from the heating section of the steam generator. At the same time, the low-temperature steam pipe is connected to the main steam pipe that leads the high-temperature main steam from the outlet of the steam generator to the steam turbine. Since it is possible to lower and adjust the temperature of the steam entering the turbine by mixing Φ, it is possible to reduce the thermal stress when the steam turbine's cold engine starts, and to extend the life of the steam turbine's casing, rotor, etc. Can be extended to nails. In addition, by reducing thermal stress, it is possible to accelerate the initial load start time. Can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の蒸気タービンの暖機装置による起動運転
状態を示す線図、第2図は蒸気タービンの内部熱応力と
寿命との関係を示す線図、第3図は本発明による蒸気タ
ービンの暖機装置を示す系統説明図、第1図および第S
図は蒸気発生器の内部を拡大した系統説明図、第6図は
本発明の蒸気タービンの暖機装置による起動運転状態を
示す線図である。 3・・・蒸気発生器、ダ・・・蒸発器、S・・・7次加
熱器、6・・・2次加熱器、7・・・主蒸気管、I/・
・・高圧タービン、/コ・・・再熱1次加熱器、13・
・・再熱コ次加熱器、17・・・中圧タービン、23・
・・最終蒸発器、J・・・低温主蒸気管、2g・・・低
温主蒸気再熱管、32 、3.3・・・弁制御装置。 第4図 65目
Fig. 1 is a diagram showing the start-up operation state of a conventional steam turbine using a warm-up device, Fig. 2 is a diagram showing the relationship between the internal thermal stress of the steam turbine and its service life, and Fig. 3 is a diagram showing the steam turbine according to the present invention. System explanatory diagram showing the warm-up device, Figure 1 and Figure S
The figure is an enlarged system explanatory diagram of the inside of the steam generator, and FIG. 6 is a diagram showing the starting operation state by the steam turbine warm-up device of the present invention. 3...Steam generator, D...Evaporator, S...7th heater, 6...Secondary heater, 7...Main steam pipe, I/...
...High pressure turbine, /co...Reheat primary heater, 13.
... Reheat co-heater, 17... Medium pressure turbine, 23.
...Final evaporator, J...Low temperature main steam pipe, 2g...Low temperature main steam reheat pipe, 32, 3.3...Valve control device. Figure 4, item 65

Claims (1)

【特許請求の範囲】 /)蒸気発生器の加熱部から加熱途中の低温蒸気を器外
へ導出する低温蒸気管を分岐させるとともに、蒸気発生
器の出口部から蒸気タービンに高温主蒸気を導く主蒸気
管に上記低温蒸気管を連結して高温主蒸気に低温蒸気を
混入しうるようにしたことを特徴とする蒸気タービンの
暖機装置。 2)低温蒸気管は、給水を蒸気化する蒸発器と過熱蒸気
を生成する加熱器とを結ぶ管路および再熱部の途中管路
から分岐されていることを特徴とする特許請求の範囲第
1項記載の蒸気タービンの暖機装置。
[Scope of Claims] /) A main pipe that branches a low-temperature steam pipe that leads out the low-temperature steam that is being heated from the heating section of the steam generator to the outside of the steam generator, and that leads high-temperature main steam from the outlet of the steam generator to the steam turbine. A warm-up device for a steam turbine, characterized in that the low-temperature steam pipe is connected to a steam pipe so that low-temperature steam can be mixed with high-temperature main steam. 2) The low-temperature steam pipe is branched from a pipe line connecting an evaporator that vaporizes feed water and a heater that generates superheated steam, and a pipe line midway through the reheating section. The steam turbine warm-up device according to item 1.
JP19703983A 1983-10-21 1983-10-21 Warm-up device for steam turbine Pending JPS6088804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19703983A JPS6088804A (en) 1983-10-21 1983-10-21 Warm-up device for steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19703983A JPS6088804A (en) 1983-10-21 1983-10-21 Warm-up device for steam turbine

Publications (1)

Publication Number Publication Date
JPS6088804A true JPS6088804A (en) 1985-05-18

Family

ID=16367705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19703983A Pending JPS6088804A (en) 1983-10-21 1983-10-21 Warm-up device for steam turbine

Country Status (1)

Country Link
JP (1) JPS6088804A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642983A (en) * 1985-05-06 1987-02-17 The United States Of America As Represented By The Secretary Of The Army Chemical releasing flash suppressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4642983A (en) * 1985-05-06 1987-02-17 The United States Of America As Represented By The Secretary Of The Army Chemical releasing flash suppressor

Similar Documents

Publication Publication Date Title
JP3481983B2 (en) How to start a steam turbine
US9353650B2 (en) Steam turbine plant and driving method thereof, including superheater, reheater, high-pressure turbine, intermediate-pressure turbine, low-pressure turbine, condenser, high-pressure turbine bypass pipe, low-pressure turbine bypass pipe, and branch pipe
US4873827A (en) Steam turbine plant
US8387388B2 (en) Turbine blade
JP4818353B2 (en) Start-up method of gas / steam combined turbine equipment
JP2005163628A (en) Reheat steam turbine plant and method for operating the same
US11879365B2 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JPS5925853B2 (en) Power plant operation control method and device for implementing this method
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JPS6088804A (en) Warm-up device for steam turbine
JPS62101809A (en) Single-shaft combined plant having reheating system
JP2004169625A (en) Co-generation plant and its starting method
JPH02259301A (en) Waste heat recovery boiler
JP2870759B2 (en) Combined power generator
JPS5926765B2 (en) Control method and device for a turbine plant having a turbine bypass line
JPS60159311A (en) Starting method for steam turbine
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant
JPH10331608A (en) Closed steam cooling gas turbine combined plant
JPH08121117A (en) Starting method for multi-shaft type compound power generation plant
JPS5912105A (en) Starting system of reheat condensing steam turbine
JPS60252109A (en) Compound generation plant
JPS6213482B2 (en)
JPS63194110A (en) Once-through boiler
JPS6214685B2 (en)
JPS59510A (en) Combined cycle electric generation plant