JPS59510A - Combined cycle electric generation plant - Google Patents

Combined cycle electric generation plant

Info

Publication number
JPS59510A
JPS59510A JP10992482A JP10992482A JPS59510A JP S59510 A JPS59510 A JP S59510A JP 10992482 A JP10992482 A JP 10992482A JP 10992482 A JP10992482 A JP 10992482A JP S59510 A JPS59510 A JP S59510A
Authority
JP
Japan
Prior art keywords
gas
flow rate
extracted
heat recovery
recovery boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10992482A
Other languages
Japanese (ja)
Inventor
Naotake Mochida
尚毅 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP10992482A priority Critical patent/JPS59510A/en
Publication of JPS59510A publication Critical patent/JPS59510A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To reduce the time required for the starting or the load rising operation of the titled plant by a method wherein the combustion gas extracted from the intermediate stage of a gas turbine is introduced to a waste heat recovery boiler by a waste gas bypass device, the waste heat recovery boiler is rapidly warmed up at the starting or the load rising operation. CONSTITUTION:At the warming up operation, the combustion gas is extracted from the intermediate stage of a gas turbine 11 by opening a flow rate regulating valve 29, said extracted gas is mixed into the waste gas inside of a duct 19. Thereby, the output power of the gas turbine 11 is decreased, and number of axis revolutions is also decreased, the amount of fuel supplying can be increased in proportional to the amount of decreased output power by opening a fuel control valve 18. Because of the extracted waste gas containes more energy than the waste gas flowing through inside of the duct 19, the waste gas mixed with the combustion gas containes more enthalpy than before mixing, accordingly, the warming up time can be shortened by increasing the quantity of heat of the waste gas.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はガスタービンと排熱回収ボイラとの間に排ガス
バイパス装置を設けたコンバインドサイクル発電プラン
トに関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a combined cycle power plant in which an exhaust gas bypass device is provided between a gas turbine and an exhaust heat recovery boiler.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ガスタービン、発電機および蒸気タービンを一軸上に配
列し、これに排熱回収ボイラな組み合せてコンバインド
サイクル発電プラントを構成し、電力系統のピーク負荷
時、ミドル負荷時を受は持つプラントとに運用されてい
る。したがってこの発゛峨プラントには、ベースロード
用の大形火力プラントに比較し、停止起動回数が多く、
起動時間の短縮が強く要求される。コンバインドサイク
ル発電プラントの起動(二おいては、特にコールドスタ
ートの場合;1排熱回収ボイラの暖機;二多くの時間が
かかる。例えば14万KW級の1軸形コンバインドサイ
クル発電プラントの場合、コールドスタートで起動から
定格負荷状態まで約140分を必要であシ、そのうち(
1排熱回収ボイラの暖機に要するには約70分必要であ
p、全起動時間の半分の時間を要している。
A gas turbine, generator, and steam turbine are arranged on a single shaft, and this is combined with an exhaust heat recovery boiler to form a combined cycle power generation plant, which is operated as a plant that can handle power system peak loads and middle loads. has been done. Therefore, compared to large thermal power plants for base load, this expanding plant requires more stops and starts.
There is a strong demand for shortening startup time. Startup of a combined cycle power plant (2) Especially in the case of a cold start; 1. Warming up of the exhaust heat recovery boiler; 2. It takes a lot of time. For example, in the case of a 140,000 KW class single-shaft combined cycle power plant , it takes about 140 minutes from startup to rated load state with a cold start, and within that time (
1 It takes about 70 minutes to warm up the exhaust heat recovery boiler, which is half of the total startup time.

一般に起動時において、排熱回収ボイ2を敏速に暖機す
るには、ガスタービンの排気ガスの有スる熱賦な太きぐ
ずればよく、とのためにはガスタービン(=供給する燃
料を多く投入すればよい。しかしながら燃料を多量に投
入すると軸回転数が増加するという結果になってしまう
。したがって起動時において、燃料流量を抑えて長時間
をがけて排熱回収ボイラを暖機しなければならなくなっ
てしまう。また負荷上昇時において、ガスタービンは急
速(二負荷を上昇できるが、蒸気タービンは負荷を急速
に上昇できない。これはガスタービンは燃料投入量す増
加させると急速に出力が増加して負荷が上昇するが、蒸
気タービンはガスタービンの排ガス温度が上昇しても、
排熱回収ボイラで発生する蒸気量が急激に増加しないた
め、負荷上昇が遅れてし1うためである。このためコン
バインドサイクル全体の負荷上昇が遅れてしまうと言え
る。
Generally, at startup, in order to quickly warm up the exhaust heat recovery boiler 2, it is sufficient to warm up the exhaust heat recovery boiler 2 by heating the exhaust gas of the gas turbine. The more fuel you put in, the better. However, if you put in a lot of fuel, the shaft rotation speed will increase. Therefore, at startup, it is necessary to reduce the fuel flow rate and warm up the exhaust heat recovery boiler over a long period of time. Also, when the load increases, gas turbines can increase the load rapidly, but steam turbines cannot increase the load rapidly.This is because gas turbines rapidly increase output as the amount of fuel input increases. Although the load on the steam turbine increases, even if the exhaust gas temperature of the gas turbine increases,
This is because the amount of steam generated in the exhaust heat recovery boiler does not increase rapidly, so the load increase is delayed. Therefore, it can be said that the load increase of the entire combined cycle is delayed.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、起動時および負荷の上昇時に排熱回収
ボイラを敏速に暖機して起動に要する時間および負荷上
昇に要する時間を短縮できるコンバインドサイクル発電
プラントを提供する(=ある。
An object of the present invention is to provide a combined cycle power generation plant that can quickly warm up an exhaust heat recovery boiler at startup and when the load increases to shorten the time required for startup and the time required for load increase.

〔発明の概要〕[Summary of the invention]

本発明はガスタービンの途中段から抽気した燃焼ガスを
排熱回収ボイラに導く排ガスバイパス装置を設けて、起
動時および負荷上昇時に排熱回収ボイラな敏速に暖機す
るよう(二構成したコンバインドサイクル発゛覗プラン
トに関するものである。
The present invention provides an exhaust gas bypass device that guides the combustion gas extracted from the middle stage of the gas turbine to the exhaust heat recovery boiler, so that the exhaust heat recovery boiler can be quickly warmed up at startup and when the load increases. This is related to the Exploration Plant.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を第1図に示す実施例(二ついて説明する。 The present invention will be described below using two embodiments shown in FIG.

第1図において、本発明によるコンバインドサイクル発
電プラント10は、ガスタービン11゜発電機]2およ
び然気タービン13を一軸上に配置し、これに排熱回収
ボイラ14を組み合せて構成されている。ガスタービン
11は空気圧縮機15、および燃焼器17を備え、配管
16から燃料制御弁18を介して燃焼器17に導びかれ
た燃料は、こ\で燃焼ガスとなってガスタービン11(
=導かれて仕事する。ガスタービン11よシ排出される
排ガスは、ダクト19を介して排熱回収ボイラ14に導
かれ、その内部の加熱器加、蒸−発器21および節炭器
22と熱交換したのち、大気に放出される。
In FIG. 1, a combined cycle power plant 10 according to the present invention is constructed by arranging a gas turbine 11[deg.] 2 and a natural gas turbine 13 on one axis, and combining them with an exhaust heat recovery boiler 14. The gas turbine 11 is equipped with an air compressor 15 and a combustor 17, and the fuel led from the pipe 16 to the combustor 17 via the fuel control valve 18 becomes combustion gas, and the gas turbine 11 (
= Work while being guided. Exhaust gas discharged from the gas turbine 11 is led to the exhaust heat recovery boiler 14 via the duct 19, and after exchanging heat with the heater, evaporator 21, and economizer 22 inside the boiler, it is released into the atmosphere. released.

排熱回収ボイラ144二は、ドラムるを備えておシ、こ
のドラム囚を含むボイラ機能によって加熱器かで発生し
た加熱蒸気は、蒸気管冴を通って蒸気タービン13に導
かれてこれを駆動する。蒸気タービン13から吐出され
た蒸気は、俵水容254二導かれて水になシ、排熱回収
ボイラ14の節炭器22(二導かれる。さらに本発明に
おいては、ガスタービン11の途中段から燃焼ガスを抽
気してこれをダクト19をバイパスして排熱回収ボイラ
14に導く排ガスバイパス装置27を設けている。この
排ガスバイパス装!27はガスタービン11の途中段か
ら燃焼ガスを抽気する抽気管路を有し、この抽気管路を
流量調整弁29を介してダクト19に対するバイパス路
を形成するように排熱回収ボイラ140入口に連通して
いる。
The exhaust heat recovery boiler 1442 is equipped with a drum, and the heated steam generated in the heater by the boiler function including the drum is guided to the steam turbine 13 through the steam pipe to drive it. do. The steam discharged from the steam turbine 13 is led to a bale water tank 254 (254) to be converted into water, and is then led to the economizer 22 (2) of the exhaust heat recovery boiler 14 (254). An exhaust gas bypass device 27 is provided to extract combustion gas from the gas turbine 11 and guide it to the exhaust heat recovery boiler 14 by bypassing the duct 19.This exhaust gas bypass device !27 extracts combustion gas from an intermediate stage of the gas turbine 11. It has an air bleed line, and this air bleed line is communicated with the exhaust heat recovery boiler 140 inlet via a flow rate regulating valve 29 so as to form a bypass path for the duct 19.

次に第2図を用いて本発明のコンバインドサイクル発電
プラントの起動方法を説明する。第2図において、実線
り、は燃料流量、一点さ線L2は回転数および二点さ線
Llは燃焼ガス抽気流量を示している。起動後に時間A
が経過して回転数り、がbまで上昇すると燃料6二点火
する。その後直ちに燃料制御弁18の開度を一定に開ら
き、燃料流量L1がaで一定とし、流量調整弁290開
度を制御して回転数L2をCに押えるように燃焼ガスの
抽気流11 Lsも一定値eに設定して暖機運転に入る
。時間がBまで経過して暖気が十分性なわれたら、流量
調整弁29を閉じ、軸回転数L2を上昇させ、その後加
速運転(二人って軸回転数(二応動する燃料制御弁18
が開らき、回転数を定格回転数dにまで加速上昇させる
Next, a method for starting the combined cycle power plant of the present invention will be explained using FIG. In FIG. 2, the solid line L2 indicates the fuel flow rate, the dotted line L2 indicates the rotational speed, and the dotted line L1 indicates the combustion gas bleed flow rate. Time A after startup
As time passes, the rotational speed increases, and when it increases to b, fuel 62 is ignited. Immediately thereafter, the opening degree of the fuel control valve 18 is kept constant, the fuel flow rate L1 is kept constant at a, and the opening degree of the flow rate adjustment valve 290 is controlled to suppress the rotation speed L2 to C. is set to a constant value e and the warm-up operation begins. When time B has elapsed and the warm-up is sufficient, the flow rate adjustment valve 29 is closed, the shaft rotation speed L2 is increased, and then accelerated operation (two means shaft rotation speed (two responsive fuel control valve 18
opens and accelerates the rotational speed to the rated rotational speed d.

この起動過程(二おいて、暖機時にガスタービン11の
途中段よシ燃焼ガスを抽気流量eだけ抽気している。こ
れはこの燃焼ガスを抽気しなかった場合(二比較し、ガ
スタービン11の出力が減夕し、軸回転数が低下してし
まう。これを補償するために抽気される燃焼ガスを補足
するだけの多量の燃料a′を投入して軸回転15cを維
持している。この燃料流i a’は燃焼ガス抽気流量e
と設定軸回転数Cによシ決定することができる。また暖
機時間A〜Bは、燃料投入量aが多ければそれだけ短縮
することができる。
During this start-up process (2), combustion gas is extracted from the middle stage of the gas turbine 11 by the extraction flow rate e during warm-up. The output of the engine decreases, and the shaft rotational speed decreases.To compensate for this, a large amount of fuel a' is injected to supplement the extracted combustion gas to maintain the shaft rotation 15c. This fuel flow i a' is the combustion gas extraction flow rate e
and the set shaft rotation speed C. Further, the warm-up times A to B can be shortened accordingly if the amount of fuel input a is large.

また本発明の発電プラントの作動を第1図のシステム(
−もとすいて説明すると、起動時において、燃料点火後
の排熱回収ボイラ14の暖機運転時において、発電機1
2は系統と接続されておらず、燃料制御弁18を開らき
、燃料投入量を増加させると、ガスタービン11の出力
が増大して軸回転数が増加してしまう。起動時において
軸回転数が増加すると、蒸気タービン13の内部が加熱
してしまうなどの不都合なことが生じるので、軸回転数
は低く押さえる必要がある。しかし、起動時間を短縮す
るためには、排熱回収ボイラ141=供給する排ガスの
熱量を多くして暖機時間を短縮しなければならない。そ
のためには、燃料制御弁18の開度を大きくして燃料投
入量を増加し、ガスタービン11の排ガガスの有する熱
量を増大させなければならない。
In addition, the operation of the power generation plant of the present invention is explained by the system shown in Fig. 1 (
- To begin with, at startup, during warm-up operation of the exhaust heat recovery boiler 14 after fuel ignition, the generator 1
2 is not connected to the system, and when the fuel control valve 18 is opened to increase the amount of fuel input, the output of the gas turbine 11 increases and the shaft rotation speed increases. If the shaft rotation speed increases during startup, disadvantages such as heating the inside of the steam turbine 13 will occur, so the shaft rotation speed must be kept low. However, in order to shorten the startup time, it is necessary to shorten the warm-up time by increasing the amount of heat of the exhaust gas supplied to the exhaust heat recovery boiler 141. To achieve this, it is necessary to increase the amount of fuel input by increasing the opening degree of the fuel control valve 18, thereby increasing the amount of heat that the exhaust gas of the gas turbine 11 has.

そこでこの矛盾を解決するため、暖機運転時(二流量調
整弁29を開いて、ガスタービン11の途中段より燃焼
ガスを油気し、その燃焼ガスをタ゛クト19中の排ガス
(二混入させてやる。このこと(二よりガスタービン1
1の出力が減少して軸回転数が低くなる。よってこのガ
スタービン11の出力の減少分だけ燃料制御弁18を開
いて燃料投入量を増加することができる。またガスター
ビン11の途中段より抽気した燃焼ガスは、ダクト19
内ン流れる排ガスよす鳥いエネルギーを有しているため
、抽気管側内を流れる燃焼ガスを混入した排ガスは、混
入前の従来の場合よシも高いエンタルピーを有し、さら
に排ガスの熱量を増大させることで、暖機時間を短縮す
ることができる。
Therefore, in order to solve this contradiction, during warm-up operation (opening the two-flow regulating valve 29, the combustion gas is evacuated from the middle stage of the gas turbine 11, and the combustion gas is mixed with the exhaust gas (two) in the duct 19). Do this.
1 output decreases and the shaft rotation speed becomes low. Therefore, the amount of fuel input can be increased by opening the fuel control valve 18 by the amount of decrease in the output of the gas turbine 11. In addition, the combustion gas extracted from the middle stage of the gas turbine 11 is transferred to the duct 19.
Because the exhaust gas flowing inside has a lot of energy, the exhaust gas mixed with combustion gas flowing inside the bleed pipe has a higher enthalpy than the conventional case before mixing, and the calorific value of the exhaust gas is also increased. By increasing it, the warm-up time can be shortened.

また負荷上昇時において、ガスタービン11は急速(二
負荷上昇することができるが、蒸気タービン13は時間
がか\る。負荷上昇時間を短縮する儂二[よ、蒸気ター
ビンの負荷上昇時間を短縮すればよい。
Also, when the load increases, the gas turbine 11 can increase the load rapidly (2), but the steam turbine 13 takes time. do it.

そこで負荷上昇指令をうけたのち、燃料制御弁18を開
らいて燃料流量を増加すると同時に流量調整弁29を開
らい、てガスタービン11の途中段より燃焼ガスを抽気
する。このこと(二よりガスタービン11は出力を増加
せずに一足負荷を負担することができる。また抽気した
燃焼ガスをダクト1に導かれて排ガス中に混入する。こ
れらのことによシ排熱回収ボイラ14には高い熱量を有
する排ガスが供給されることにより、蒸気を早く立ち上
げることができ、蒸気タービン13の負荷上昇時間を短
縮することができ、結果的ζニコンバインドサイクル発
電プラントの負荷上昇を早めることができる。
After receiving a load increase command, the fuel control valve 18 is opened to increase the fuel flow rate, and at the same time, the flow rate adjustment valve 29 is opened to bleed combustion gas from an intermediate stage of the gas turbine 11. Because of this (2), the gas turbine 11 can bear a load without increasing its output.Also, the extracted combustion gas is guided to the duct 1 and mixed into the exhaust gas. By supplying exhaust gas with a high calorific value to the recovery boiler 14, steam can be started up quickly, the load rise time of the steam turbine 13 can be shortened, and as a result, the load on the ζNikon combined cycle power plant can be reduced. It can speed up the rise.

第3図は第2図の起動方法(ニルして、暖機運転時の燃
焼ガス抽出量e′をさらに増加し、燃料流量をさら(1
増カルた場合であり、暖機運転−の加速運転を流量調整
弁列で行ない、軸回転数を定格回転数口まで上昇できる
ことを示している。すなわち、起動後に時間Aが経過し
たら燃料を点火する。
Figure 3 shows the starting method shown in Figure 2 (nilling), further increasing the combustion gas extraction amount e' during warm-up operation, and further increasing the fuel flow rate (1).
This shows that the shaft rotational speed can be increased to the rated rotational speed by performing an accelerated operation of the warm-up operation using the flow rate regulating valve array. That is, the fuel is ignited when time A has elapsed after startup.

その後、直ちに燃料制御弁18および流量調整外測の開
度な一定にし、燃料流量は値a′で一定、また軸回転数
をCに押えるようζ:燃焼カス油気量e′を制御して暖
機運転(二人る。時間B(二経過したら、暖機が十分に
行なわれ、ドラムお内の蒸気圧力が上昇したならば、流
Jt祠整弁29を絞って加速運転(−入る。このとき軸
回転数によυ流箪IA整外測の開度を制御し、軸回転数
を定格回転数dにまで加速上昇させて同期化する。その
後時間りが経過した時点で流量調整弁29を閉じ燃料を
増加させて負荷をとる。
Thereafter, the opening of the fuel control valve 18 and the flow rate adjustment external measurement are made constant, and the fuel flow rate is kept constant at the value a', and the combustion scum oil amount e' is controlled so as to keep the shaft rotation speed at C. Warm-up operation (two people). After time B (two people have passed), when warm-up has been sufficiently performed and the steam pressure inside the drum has increased, throttle the flow control valve 29 and start accelerated operation (-). At this time, the opening degree of the υ flow control IA external measurement is controlled according to the shaft rotation speed, and the shaft rotation speed is accelerated to the rated rotation speed d and synchronized. 29 is closed and the fuel is increased to take the load.

この実施例では、点火人の後、負荷を取シはじめる時間
りまで、燃料制御弁18の開度は一定で燃料流量a“で
一定としておき、流量調整外測を絞υ、燃焼ガス抽気量
を減少させること(二より、軸回転数を上昇させ、同期
時(−はこの流量調整弁29により軸回転数を制御1−
るようにしている。これによって加速上昇時および同期
時に燃料流量を一定としているため、ガスタービン燃焼
器17内の火炎が安定することになる。これは結果的に
は、起動時(二おけるガスタービン11の信頼性を向上
させることができ、また燃料が急喉に増加することがな
いため、起動時に発生するNOX I−酸化炭素、未燃
炭化水素などの有害な燃焼生成物の発生量を低い値に押
えること(二なる。
In this embodiment, after the ignition starts, the opening degree of the fuel control valve 18 is kept constant and the fuel flow rate a is constant until the time when the load is started, and the flow rate adjustment external measurement is restricted to υ and the combustion gas extraction amount. (2) increase the shaft rotation speed, and at the time of synchronization (-, the flow rate adjustment valve 29 controls the shaft rotation speed 1-
I try to do that. As a result, the fuel flow rate is kept constant during acceleration and rise, and during synchronization, so that the flame within the gas turbine combustor 17 is stabilized. As a result, this can improve the reliability of the gas turbine 11 at the time of startup (second stage), and since the fuel does not increase rapidly, it reduces the amount of NOX I-carbon oxides and unburned gas generated at startup. To suppress the generation of harmful combustion products such as hydrocarbons to a low value (Second).

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれは、ガスタービンの途中段か
ら抽気した燃焼ガスを流量調整弁を介して排熱回収ボイ
ラへ混入するように構成したことによシ、排熱回収ボイ
ラに供給する排ガスの有する熱量を増加し、プラントの
起動時間および負荷上昇時間を短縮することができる。
As described above, according to the present invention, the combustion gas extracted from the middle stage of the gas turbine is configured to be mixed into the exhaust heat recovery boiler via the flow rate regulating valve, and thereby the combustion gas is supplied to the exhaust heat recovery boiler. It is possible to increase the amount of heat contained in the exhaust gas and shorten the plant start-up time and load rise time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のコンバインドサイクル発電プラントの
一実施例を示す構成図、第2図および第3図は本発明の
発電プラントの起動方法を説明するための曲線図である
。 10・・・コンバインドサイクル発電プラント、】1・
・・カスタービン、12・・・発電機、13・・・蒸気
タービン、14・・・排熱回収ボイラ、J5・・・空気
圧縮機、   16・・・配管、17・・・燃焼器、 
    18・・・燃料制御弁19・・・排気ダクト、
    27・・・排ガスバイパス装置、あ・・・抽気
管、     29・・・抽気流量−整弁。 (8733)  代理人 弁理士 猪 股 祥 晃(ほ
か1名)第1図 第2図 第3図
FIG. 1 is a block diagram showing an embodiment of the combined cycle power plant of the present invention, and FIGS. 2 and 3 are curve diagrams for explaining a method of starting up the power plant of the present invention. 10... Combined cycle power generation plant, ]1.
... Cast turbine, 12... Generator, 13... Steam turbine, 14... Exhaust heat recovery boiler, J5... Air compressor, 16... Piping, 17... Combustor,
18...Fuel control valve 19...Exhaust duct,
27...Exhaust gas bypass device, ah...bleeding pipe, 29...bleeding flow rate - valve regulation. (8733) Agent Patent attorney Yoshiaki Inomata (and 1 other person) Figure 1 Figure 2 Figure 3

Claims (3)

【特許請求の範囲】[Claims] (1)  ガスタービン、発電機、蒸気タービンおよび
排熱回収ボイラの組み合せから構成したコンバインドサ
イクルシステムにおいて、前記ガスタービンから排熱回
収ボイラへの排ガスダクトに、前記ガスタービンの途中
段から抽出した燃焼ガスを流量調整弁を介して混入する
排ガスバイパス装置を設けたことをII!、徴とするコ
ンバインドサイクル発電プラント。
(1) In a combined cycle system consisting of a combination of a gas turbine, a generator, a steam turbine, and an exhaust heat recovery boiler, combustion extracted from an intermediate stage of the gas turbine is connected to an exhaust gas duct from the gas turbine to the exhaust heat recovery boiler. II! An exhaust gas bypass device that mixes gas through a flow rate adjustment valve is installed! , a combined cycle power plant with characteristics.
(2)流量調整弁を暖機運転中に開路して抽出燃焼ガス
を排ガスバイパス装置から混入することを特徴とする特
許請求の範囲第1項記載のコンバインドサイクル発電プ
ラント。
(2) The combined cycle power generation plant according to claim 1, wherein the flow rate regulating valve is opened during warm-up operation to mix the extracted combustion gas from the exhaust gas bypass device.
(3)流量調整弁を加速運転中に流量調整して抽出燃焼
ガスを排ガスバイパス装置から混入することを特徴とす
る特許請求の範囲第2項記載のコンバインドサイクル発
電プラント。
(3) The combined cycle power plant according to claim 2, wherein the extracted combustion gas is mixed in from the exhaust gas bypass device by adjusting the flow rate of the flow rate regulating valve during acceleration operation.
JP10992482A 1982-06-28 1982-06-28 Combined cycle electric generation plant Pending JPS59510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10992482A JPS59510A (en) 1982-06-28 1982-06-28 Combined cycle electric generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10992482A JPS59510A (en) 1982-06-28 1982-06-28 Combined cycle electric generation plant

Publications (1)

Publication Number Publication Date
JPS59510A true JPS59510A (en) 1984-01-05

Family

ID=14522565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10992482A Pending JPS59510A (en) 1982-06-28 1982-06-28 Combined cycle electric generation plant

Country Status (1)

Country Link
JP (1) JPS59510A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321305A (en) * 1986-07-15 1988-01-28 Mitsubishi Heavy Ind Ltd Gas turbine/steam turbine combined motor
JP2017110650A (en) * 2015-12-15 2017-06-22 ゼネラル・エレクトリック・カンパニイ System for generating steam via turbine extraction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321305A (en) * 1986-07-15 1988-01-28 Mitsubishi Heavy Ind Ltd Gas turbine/steam turbine combined motor
JP2017110650A (en) * 2015-12-15 2017-06-22 ゼネラル・エレクトリック・カンパニイ System for generating steam via turbine extraction

Similar Documents

Publication Publication Date Title
JP2593578B2 (en) Combined cycle power plant
JP3878684B2 (en) Operation method of gas turbo equipment group
KR101588209B1 (en) Stand-by operation of a gas turbine
EP0083109A2 (en) Combined plant having steam turbine and gas turbine connected by single shaft
EP1186761A2 (en) Energy recovery from compressor discharge bleed air in gas turbine plants
NO322002B1 (en) Method and apparatus for starting emission-free gas turbine power stations
KR950008937A (en) How to perform partial-load operation in a group of gas turbines
CN107227979B (en) A kind of combination circulation steam turbine quick start warming-up system and method
US6161385A (en) Turbomachine and method of use
JPH0949436A (en) Starting method of combination plant
JP3973688B2 (en) Method for expanding flue gas flow in a turbine and the turbine
JP2000130108A (en) Starting method for combined cycle power plant
CA2242073C (en) Combined cycle power generation plant
JP2002070506A (en) Combined cycle power generation plant and warming and cooling steam supply method of combined cycle power generation plant
JPS59510A (en) Combined cycle electric generation plant
JPS5925853B2 (en) Power plant operation control method and device for implementing this method
US5661967A (en) Method of operating a sequentially fired gas-turbine group
JPH0416612B2 (en)
JP3518252B2 (en) Closed steam cooled gas turbine combined plant and gas turbine combined plant
JPS5925038A (en) Parallel gas turbine
JPH02259301A (en) Waste heat recovery boiler
JPH08189308A (en) Single-shaft type combined cycle electric power plant
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant
JPH0688502A (en) Power generating plant
JP2667699B2 (en) Single-shaft combined plant and start-up method thereof