JPS6321305A - Gas turbine/steam turbine combined motor - Google Patents

Gas turbine/steam turbine combined motor

Info

Publication number
JPS6321305A
JPS6321305A JP16482586A JP16482586A JPS6321305A JP S6321305 A JPS6321305 A JP S6321305A JP 16482586 A JP16482586 A JP 16482586A JP 16482586 A JP16482586 A JP 16482586A JP S6321305 A JPS6321305 A JP S6321305A
Authority
JP
Japan
Prior art keywords
turbine
output
boiler
gas
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16482586A
Other languages
Japanese (ja)
Inventor
Kurotaka Tsujimura
玄隆 辻村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16482586A priority Critical patent/JPS6321305A/en
Publication of JPS6321305A publication Critical patent/JPS6321305A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PURPOSE:To shorten the starting time by providing a bypass valve and bypass tube in an operating gas passage through which turbines and boiler are intercommunicated to each other in sequence for directly introducing a part or all of the operating gas while bypassing the output turbine. CONSTITUTION:In an operating gas passage through which a compressor turbine 12, output turbine 21 and boiler 31 are intercommunicated with each other, a bypass valve BV and bypass tube BP are provided so that a part or all of the operating gas can be directly introduced from a compressor driving turbine 12 to a boiler 31 while bypassing an output turbine 21. The output turbine 21 operated by the operating gas and a steam turbine 22 operated by the steam which is discharged from the boiler 31 are connected to an output shaft 23 through a reduction gear 24 so that a common load 40 is driven, thus the effective output being obtained. Therefore, a part or all of the operating gas with higher temperature than that in ordinary state can be introduced to the boiler 31 by bypassing the output turbine 21, thereby it is possible to shorten the starting time of the boiler 31.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、発電用、機械駆動用あるいは船舶等の推進装
置に利用されるガスタービン・蒸気タービン複合原動機
の各種機器の構成に係り、特に同種の中小規模のものに
最適な構成のもので、単一の負荷を駆動するための簡単
な構成になる駆動系の技術分野で利用される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the configuration of various devices of gas turbine/steam turbine compound prime movers used for power generation, mechanical drive, or propulsion devices of ships, etc. It has an optimal configuration for small to medium-sized devices, and is used in the technical field of drive systems where it has a simple configuration for driving a single load.

従来の技術 ガスタービンの排気ガスをボイラに導入し、その吐出蒸
気によって蒸気タービンを駆動させ、ガスタービンおよ
び蒸気タービンの両方から動力を取り出す原動機、いわ
ゆるガスタービン・蒸気タービン複合原動機は、その熱
効率が高いことから、発電用をはじめ広い用途に利用さ
れはじめている。
Conventional technology A prime mover that introduces exhaust gas from a gas turbine into a boiler and uses its discharged steam to drive a steam turbine to extract power from both the gas turbine and steam turbine, a so-called combined gas turbine/steam turbine prime mover, has a high thermal efficiency. Due to its high price, it is beginning to be used for a wide range of purposes including power generation.

このガスタービン・蒸気タービン複合原動機(以下単に
複合原動機と略称する)の従来技術による代表的構成を
第2図および第3図に示す。
A typical configuration of this gas turbine/steam turbine compound prime mover (hereinafter simply referred to as compound prime mover) according to the prior art is shown in FIGS. 2 and 3.

まず、従来例1について第2図により説明する。First, conventional example 1 will be explained with reference to FIG.

圧縮機101、タービン102および燃焼機103を主
要素として一体的に構成されたガスタービンこのボイラ
の吐出蒸気によって作動する蒸気タービン202および
その出口系に配置されたコンデンサ32、ポンプ33に
よって蒸気タービン(またはランキン)ザイクル系が構
成されている。
A gas turbine integrally constructed with a compressor 101, a turbine 102, and a combustor 103 as its main elements.The steam turbine ( or Rankine) cycle system is constructed.

ガスタービン100の軸出力は負荷401に、蒸気ター
ビン202の軸出力は別の負荷402の駆動力となる。
The shaft output of the gas turbine 100 serves as a driving force for a load 401, and the shaft output of the steam turbine 202 serves as a driving force for another load 402.

次に従来例2につき第3図により述べる。Next, conventional example 2 will be described with reference to FIG.

本例の」−記第2図の第1例との相異点は、ガスタービ
ン100のタービン部が、圧縮機駆動タービン111と
出力タービン112に分離され、別々の軸系となってい
ることであるが、この場合もガスタービン100として
は一体的に構成されいている。
The difference between this example and the first example shown in FIG. 2 is that the turbine section of the gas turbine 100 is separated into a compressor drive turbine 111 and an output turbine 112, which have separate shaft systems. However, in this case as well, the gas turbine 100 is constructed integrally.

発明が解決しようとする問題点 一ヒ述の従来技術による複合原動機では、ガスタービン
100が一体的に構成されているため、次のような欠点
があった。
Problems to be Solved by the Invention In the conventional compound engine as described above, since the gas turbine 100 is integrally constructed, there are the following drawbacks.

a)負荷およびその駆動系が2系列となり、複雑となる
。特に1〜2万に!以下の容量のものでは、負荷側の回
転数とタービン102あるいは出力タービン112の回
転数とが一致しない事が多いため、これらの出力軸系に
は変速機が両方に必要となり、コスト高となる。
a) There are two systems of loads and their drive systems, which makes them complicated. Especially for 10,000 to 20,000! In the following capacities, the rotational speed on the load side and the rotational speed of the turbine 102 or the output turbine 112 often do not match, so a transmission is required for both of these output shaft systems, resulting in high costs. .

b)ガスタービン100のタービン102の前半部温度
、即ち、略燃焼器103の出口温度は900℃〜130
0℃程度と相当高く、このためにこの部分(高温度ター
ビン)には、各種の冷却手段の採用、超耐熱材の採用の
他、構造」二も各種の高度な設計手段が投入され、また
部品の加工から組立に至るまで特殊な工程を必要とする
b) The temperature of the front half of the turbine 102 of the gas turbine 100, that is, the approximate outlet temperature of the combustor 103 is between 900°C and 130°C.
The temperature is quite high at around 0 degrees Celsius, and for this reason, this part (high-temperature turbine) employs various cooling methods, super heat-resistant materials, and various advanced design measures for the structure. Special processes are required from processing the parts to assembly.

一方、タービン102の後半部(多段タービンの場合、
低圧タービン)あるいは出力タービン112の低温部タ
ービン入口部では、ガス温度は、燃焼器出口温度から約
100〜数百℃低下しており、このための設計手段も加
工組立工程も前者(高温部タービン)に比して本質的に
異なってくる。
On the other hand, the latter half of the turbine 102 (in the case of a multi-stage turbine,
At the low-pressure turbine) or the low-temperature turbine inlet of the output turbine 112, the gas temperature is approximately 100 to several hundred degrees Celsius lower than the combustor outlet temperature, and the design means and fabrication processes for this are limited to the former (high-temperature turbine). ) are essentially different from each other.

したがって、従来のものでは、これらのタービン部の高
温部タービンと低温部タービンを一体的に構成している
ため、 イ)設計から加工、組立に至る全過程で高温部タービン
と低温部タービンとのバランスを取ることに多大の労力
を必要とする。
Therefore, in conventional systems, the high-temperature section turbine and the low-temperature section turbine of these turbine sections are integrally constructed, so a) the high-temperature section turbine and the low-temperature section turbine are connected throughout the entire process from design to processing and assembly. It takes a lot of effort to balance.

口)特に熱的に過酷な高温部タービンが、ガスタービン
100の中央部(軸方向の)にあるため、頻度の多いこ
の部分の点検や補修毎に大規模な分解が必要となり、メ
ンテナンスに要する時間、費用が大である。
Since the high-temperature turbine, which is particularly thermally harsh, is located in the center (in the axial direction) of the gas turbine 100, large-scale disassembly is required for frequent inspections and repairs of this part, which reduces maintenance costs. It takes a lot of time and money.

C) ガスタービン100と、ボイラ31および蒸気タ
ービン202を含めた蒸気タービンサイクル系とでは、
機器の熱的設計条件が大幅に異なり、その起動過程(停
止状態から所定の連合運転に至る過程)も木質的に異質
のもので、一般にガスタービンは急速起動が可能である
が、蒸気タービンザイクル系の起動から所定運転までの
時間は、ガスタービンに比してはるかに長い時間を必要
とする。
C) In the gas turbine 100 and the steam turbine cycle system including the boiler 31 and the steam turbine 202,
The thermal design conditions of the equipment are significantly different, and the start-up process (the process from a stopped state to a specified combined operation) is also different in nature. Gas turbines are generally capable of rapid start-up, but steam turbine cycles The time from system startup to predetermined operation is much longer than that for gas turbines.

=4− したがって、出来るだけ早く全力運転にもって行きたい
場合でもボイラ31へ導入されるガスタービン100の
排気ガスはタービン102の全段(第1図)あるいは圧
縮機駆動タービン111および出力タービン112の両
方を通って、通常のボイラに比して低い温度となってお
り、このためにボイラ31を所定の運転状況へもってゆ
くために、さらに長時間を特徴とする 特に、このボイラ31の起動時間を短縮したい場合は、
ボイラ上流側に追加燃焼装置を追設することがおこなわ
れる。
= 4- Therefore, even if it is desired to bring the gas turbine into full operation as soon as possible, the exhaust gas of the gas turbine 100 introduced into the boiler 31 will be transferred to all stages of the turbine 102 (FIG. 1) or to the compressor drive turbine 111 and the output turbine 112. In particular, the start-up time of this boiler 31 is characterized by a longer time in order to bring the boiler 31 to a predetermined operating condition. If you want to shorten the
An additional combustion device will be installed upstream of the boiler.

問題点を解決するための手段 本発明は、上述の問題を解決するために、次のような手
段を採っている。すなわち、 圧縮機、圧縮機駆動タービンおよび燃焼器を主要素とす
る軸出力なしのガスタービンよりなるガス発生ユニット
、負荷もしくは被駆動機を駆動する同一出力軸に連結さ
れた出力タービンおよび蒸気タービンよりなる出力ユニ
ットを各々一体的に構成した複合原動機、同複合原動機
でガス発生ユニットの圧縮機駆動タービン、出力ユニ・
ソトの出力タービンおよびボイラの順に、逐次連通ずる
作動ガス通路に、作動ガスの一部あるいは全量を出力タ
ービンをバイパスして、直接ボイラへ導入するためのバ
イパス弁およびバイパス管を設けた複合原動機とする。
Means for Solving the Problems The present invention takes the following measures in order to solve the above-mentioned problems. In other words, a gas generation unit consisting of a gas turbine with no shaft output whose main elements are a compressor, a compressor-driven turbine, and a combustor, an output turbine and a steam turbine connected to the same output shaft that drives a load or driven machine. A compound prime mover that has two output units integrated into each other, a compressor-driving turbine for a gas generation unit, an output unit, and a compound prime mover.
A complex prime mover equipped with a bypass valve and a bypass pipe for introducing a part or all of the working gas directly into the boiler, bypassing the output turbine, in the working gas passage that successively communicates with the output turbine and the boiler. do.

実施例 次に、本発明の一実施例の構成および作用について第1
図を参照して詳述する。
Embodiment Next, the structure and operation of an embodiment of the present invention will be explained in the first part.
This will be explained in detail with reference to the drawings.

圧縮機+IQ、圧縮機駆動のタービン12および燃焼器
13を主要素として、これら王者が一体的に構成された
、軸出力のないガスタービンよりなるガス発生ユニット
10゜ 負荷40を駆動する出力軸23に連結された出力タービ
ン21および蒸気タービン22(必要に応じて減速歯車
24を有する)が一体的に構成された出力ユニット。
The main elements are a compressor + IQ, a compressor-driven turbine 12, and a combustor 13, and the output shaft 23 drives a 10° load 40, which is a gas generation unit 10 consisting of a gas turbine with no shaft output, in which these kings are integrally constructed. An output unit in which an output turbine 21 and a steam turbine 22 (having a reduction gear 24 as necessary) connected to the unit are integrated.

前記蒸気タービン22を含む、ボイラ31.コンデンサ
32およびポンプ33を有する蒸気タービンサイクル系
統。
A boiler 31 .including the steam turbine 22 . Steam turbine cycle system with condenser 32 and pump 33.

ガス発生ユニット10亀では、外気を圧縮機11により
圧縮し、燃焼器13で高温ガスとし、この高温、高圧の
作動ガスの有効ヘッドの一部分を利用して、ガス発生ユ
ニット10の圧縮機駆動タービン12を出た中圧中温の
作動ガスは、その残存有効ヘッドの大部分を利用して、
出力ユニット20の出力タービン2.1を作動させる。
In the gas generation unit 10, outside air is compressed by the compressor 11 and turned into high-temperature gas by the combustor 13, and a part of the effective head of this high-temperature, high-pressure working gas is used to drive the compressor-driving turbine of the gas generation unit 10. The medium-pressure medium-temperature working gas that exits 12 utilizes most of its remaining effective head to
The power turbine 2.1 of the power unit 20 is activated.

出力タービン21を出た依然として数百°Cのレベルに
ある低温、低圧の作動ガスは、ボイラ32に導入され、
2次作動流体(一般には水)を加熱蒸発させた後、外気
へ排出される。
The low-temperature, low-pressure working gas that has left the output turbine 21 and is still at a level of several hundred degrees Celsius is introduced into the boiler 32.
After the secondary working fluid (generally water) is heated and evaporated, it is discharged to the outside atmosphere.

なお、ボイラ31の吐出蒸気は蒸気タービン22に導入
され、これを作動させた後、コンデンサ32て液相とな
り、更にポンプ33によって再度、ボイラ3Xへ戻され
る。
Note that the steam discharged from the boiler 31 is introduced into the steam turbine 22, which is operated, becomes a liquid phase in the condenser 32, and is returned to the boiler 3X again by the pump 33.

圧縮機タービン12、出力タービン21、ボイラ31を
連通する作動ガス通路には、必要に応じてバイパス弁B
Yおよびバイパス管BPが設けられ、作動ガスの一部又
は全量を出力タービン21に通さず、圧縮機駆動タービ
ン12から直接ボイラ訂へ導入することが出来る。
A bypass valve B is installed in the working gas passage communicating the compressor turbine 12, the output turbine 21, and the boiler 31 as necessary.
A Y and a bypass pipe BP are provided so that part or all of the working gas can be introduced directly from the compressor drive turbine 12 into the boiler without passing through the output turbine 21.

前記の作動ガスによって作動する出力タービン21およ
び前記のボイラ31の吐出蒸気によって作動する蒸気タ
ービン22は、減速歯車24を介して、出力軸23と連
結されており、共通の負荷40を駆動し、有効出力とす
る。
The output turbine 21 operated by the working gas and the steam turbine 22 operated by the discharge steam of the boiler 31 are connected to the output shaft 23 via the reduction gear 24, and drive a common load 40. Make it a valid output.

本発明による複合原動機は、単に電気的あるいは機械的
動力源のみならず、ボイラからの蒸気や熱水の一部を外
部へ供給するなど総合的に利用可能である。
The compound prime mover according to the present invention can be used not only as an electric or mechanical power source but also in a comprehensive manner, such as supplying a portion of steam or hot water from a boiler to the outside.

発明の効果 本発明になる複合原動機によると、次の如き効果が得ら
れる a)外部負荷に対して有効出力を出す出力タービン21
および蒸気タービン22が一体的に構成され、かつ出力
軸23が共通のため、単一の負荷40を駆動するための
駆動系が簡単となり、低コストで使い勝手のよい複合原
動機が得られる。
Effects of the Invention According to the compound prime mover of the present invention, the following effects can be obtained: a) Output turbine 21 that outputs effective output against external load;
Since the steam turbine 22 and the steam turbine 22 are integrally constructed and the output shaft 23 is common, the drive system for driving a single load 40 is simple, and a complex prime mover that is low cost and easy to use can be obtained.

b)作動ガスによって作動するタービン部が高圧、高温
のガス発生ユニットlOの圧縮機駆動タービン12と中
圧、中温の出力ユニット20の出力タービン21とに分
離されているため、各部の構造も単純化されると共に両
者の設計から加工、組立に至る過程が単純に整理でき、
それぞれの過程が能率的で製作コストも安価で、かつ全
システムとしての信頼性を高めると共に、メンテナンス
に要する時間、費用が節減される。
b) Since the turbine section operated by working gas is separated into the compressor drive turbine 12 of the high-pressure, high-temperature gas generation unit IO and the output turbine 21 of the intermediate-pressure, intermediate-temperature output unit 20, the structure of each section is simple. As well as being able to simplify the process from design to processing and assembly,
Each process is efficient, the manufacturing cost is low, the reliability of the entire system is increased, and the time and cost required for maintenance are reduced.

C)ガス発生ユニット10の圧縮機駆動タービン12と
出力ユニット20の出力タービン21およびボイラ31
の王者を連絡する作動ガス通路にバイパス弁BYおよび
バイパス管BPを設け、作動ガスの一部又は全量を必要
に応して出ツノタービン21(バイパスさせることによ
り、通常の状態より(バイパスの無い場合より)高温の
ガスをボイラ31に導入できるので、ボイラ31の立上
り時間を短かくでき、複合原動機の起動に要する時間を
短縮できる。
C) Compressor drive turbine 12 of gas generation unit 10 and output turbine 21 and boiler 31 of output unit 20
A bypass valve BY and a bypass pipe BP are provided in the working gas passage that connects the main body of the working gas, and by bypassing part or all of the working gas to the output horn turbine 21 (when there is no bypass), it is possible to Since high temperature gas can be introduced into the boiler 31, the startup time of the boiler 31 can be shortened, and the time required to start up the compound engine can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる一実施例を示す系統図、第2図
は従来技術による複合原動機の系統図、第3図は従来例
の他の構成を示す系統図である。 lO・・ガス発生ユニット、11・・圧縮機、12・・
圧縮機駆動タービン、13・・燃焼器、20・・出力ユ
ニット、21・・出力タービン、22・・蒸気タービン
、23・・出力軸、24・・減速歯車、31・・ボイラ
、32・・コンデンサ、33・・ポンプ、40・・負L
 BY・・バイパス弁、BP・・バイパス管。 (はかlる) 手続補正書(自発) 昭和61年IO月 7 日 特許庁長官 黒 1) 明 雄 殿 I、事件の表示   特願昭61年164825号2、
発明の名称   ガスタービン・蒸気タービン複合原動
機3、補正をする者  事件との関係 特許出願人名称
   三菱重工業株式会社 4、復代理人  〒100東京都千代田区有楽町−丁目
8番1号日比谷パークビルヂング519号(電話213
−0686)5、補正の対象   明細書の「特許請求
の範囲」、「発明の詳細な説明」、 「図面の簡単な説明」の欄 及び図面の第1図 6、補正の内容 [A]明細書を次のように補正します。 (1)特許請求の範囲を別紙のとおり訂正。 (2)第2頁において、第17行「燃焼機」を「燃焼器
」と訂正、第20行「ボイラ31、同ボイラ31と」を
「ボイラ31、」と訂正。 (3)第3頁第2−3行「コンデンサ」を「コンデンサ
ー」と訂正。 (4)第6頁第20行「、同複合原動機でガス発生ユ」
を1とする。」と訂正。 (5)第7頁において、第1−6行「ニット・・・とす
る。」を削除。第9行「詳述する。」を「詳述する。こ
の実施例は大きくわけて次の3つの部分から成る。」と
訂正、第10行「のタービン」を「タービン」と訂正、
第16=17行「出力ユニット。」を「出力ユニット2
00」と訂正、第18−19行「コンデンサ」を1コン
デンサー」と訂正。 (6)第8頁において、第11行「32」を131」と
訂正、第15行「コンデンサ」を「コンデンサー」と訂
正、第18行「圧縮機タービンJを[圧縮機駆動タービ
ン」と訂正。 (7)第11頁第10行「コンデンサ」を「コンデンサ
ー」と訂正。 [B]図面中、第1図を別紙のとおり訂正します(符号
11の添字「圧縮器」を1圧縮機」と訂正)。 特許請求の範囲 七 圧縮機、圧縮機駆動タービンおよび燃焼器を主要素
とする軸出力なしのガスタービンよりなるガス発生ユニ
ットと、負荷もしくは被駆動機を駆動する同一出力軸に
連結された出力タービンおよび蒸気タービンよりなる出
力ユニットとを各々−体的に構成したことを特徴とする
ガスタービン・蒸気タービン複合原動機。 2 上記特許請求の範囲の第1項に記載の複合原動機に
おいてガス発生ユニットの圧縮機駆動タービン、出力ユ
ニットの出力タービンおよびボイラの順に、逐次連通ず
る作動ガス通路に作動ガスの一部あるいは全景を出力タ
ービンをバイパスして、直接ボイラへ導入するためのバ
イパス手段を設けた=とを特徴とすケガスタービン・蒸
気タービン複合原動機。
FIG. 1 is a system diagram showing one embodiment of the present invention, FIG. 2 is a system diagram of a compound prime mover according to the prior art, and FIG. 3 is a system diagram showing another configuration of the conventional example. lO...Gas generation unit, 11...Compressor, 12...
Compressor drive turbine, 13...Combustor, 20...Output unit, 21...Output turbine, 22...Steam turbine, 23...Output shaft, 24...Reduction gear, 31...Boiler, 32...Condenser , 33...Pump, 40...Negative L
BY: Bypass valve, BP: Bypass pipe. (Kariru) Procedural amendment (spontaneous) July 7, 1985 Commissioner of the Japan Patent Office Black 1) Akio I, Indication of case Patent application No. 164825 of 1988 2,
Title of the invention: Gas turbine/steam turbine combined prime mover 3, person making the amendment Relationship to the case Patent applicant name: Mitsubishi Heavy Industries, Ltd. 4, sub-agent: 519 Hibiya Park Building, 8-1 Yurakucho-chome, Chiyoda-ku, Tokyo 100 No. (telephone 213)
-0686) 5. Subject of amendment: "Claims", "Detailed Description of the Invention", "Brief Description of Drawings" columns of the specification and Figure 1 6 of the drawings, Contents of amendment [A] Description Correct the text as follows. (1) The scope of claims has been amended as shown in the attached sheet. (2) On page 2, "combustor" in line 17 has been corrected to "combustor", and in line 20, "boiler 31, with boiler 31" has been corrected to "boiler 31". (3) On page 3, lines 2-3, "capacitor" was corrected to "condenser". (4) Page 6, line 20, “Gas generation with the same compound prime mover.”
Let be 1. ” and corrected. (5) On page 7, lines 1-6 “Knitting...” was deleted. In line 9, “Details.” was corrected to “Details. This embodiment consists of the following three parts.” In line 10, “Turbine” was corrected to “Turbine.”
Line 16=17 “Output unit.” is changed to “Output unit 2.”
00", and in lines 18-19, "capacitor" was corrected to "1 capacitor". (6) On page 8, ``32'' in line 11 is corrected as ``131'', ``capacitor'' in line 15 is corrected as ``condenser'', and line 18 ``Compressor turbine J is corrected as [compressor drive turbine]'' . (7) On page 11, line 10, “capacitor” was corrected to “condenser”. [B] Figure 1 in the drawings has been corrected as shown in the attached sheet (the suffix ``compressor'' in code 11 has been corrected to ``1 compressor''). Claim 7: A gas generation unit consisting of a gas turbine with no shaft output whose main elements are a compressor, a compressor-driven turbine, and a combustor, and a power turbine connected to the same output shaft that drives a load or driven machine. A gas turbine/steam turbine compound prime mover, characterized in that a gas turbine/steam turbine compound prime mover is configured with an output unit consisting of a steam turbine and a steam turbine. 2. In the compound engine according to claim 1, a portion or the entire view of the working gas is transmitted to the working gas passage that communicates with the compressor drive turbine of the gas generation unit, the output turbine of the output unit, and the boiler in this order. A gas turbine/steam turbine combined prime mover characterized by having a bypass means for bypassing the output turbine and introducing the power directly to the boiler.

Claims (1)

【特許請求の範囲】[Claims] 圧縮機、圧縮機駆動タービンおよび燃焼器を主要素とす
る軸出力なしのガスタービンよりなるガス発生ユニット
、負荷もしくは被駆動機を駆動する同一出力軸に連結さ
れた出力タービンおよび蒸気タービンよりなる出力ユニ
ットを各々一体的に構成したガスタービン・蒸気タービ
ン複合原動機、同複合原動機でガス発生ユニットの圧縮
機駆動タービン、出力ユニットの出力タービンおよびボ
イラの順に、逐次連通する作動ガス通路に作動ガスの一
部あるいは全量を出力タービンをバイパスして、直接ボ
イラへ導入するためのバイパス弁およびバイパス管を設
けたガスタービン・蒸気タービン複合原動機。
A gas generation unit consisting of a gas turbine without shaft output whose main elements are a compressor, a compressor-driven turbine, and a combustor; an output consisting of a power turbine and a steam turbine connected to the same output shaft that drives a load or driven machine; A gas turbine/steam turbine combined prime mover in which each unit is integrally configured, a compressor drive turbine of a gas generation unit, an output turbine of an output unit, and a boiler in the combined prime mover are connected to a working gas passage connected in sequence to the working gas passage. A gas turbine/steam turbine combined prime mover equipped with a bypass valve and bypass pipe to bypass some or all of the output turbine and introduce it directly to the boiler.
JP16482586A 1986-07-15 1986-07-15 Gas turbine/steam turbine combined motor Pending JPS6321305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16482586A JPS6321305A (en) 1986-07-15 1986-07-15 Gas turbine/steam turbine combined motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16482586A JPS6321305A (en) 1986-07-15 1986-07-15 Gas turbine/steam turbine combined motor

Publications (1)

Publication Number Publication Date
JPS6321305A true JPS6321305A (en) 1988-01-28

Family

ID=15800633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16482586A Pending JPS6321305A (en) 1986-07-15 1986-07-15 Gas turbine/steam turbine combined motor

Country Status (1)

Country Link
JP (1) JPS6321305A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050013A (en) * 1999-08-03 2001-02-23 Mitsubishi Heavy Ind Ltd Refuse incinerating power plant
JP2011137456A (en) * 2010-01-04 2011-07-14 General Electric Co <Ge> Clutch type turbine wheel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759402A (en) * 1980-09-24 1982-04-09 Hitachi Ltd Prescribed position stop control system considered with operating time
JPS59510A (en) * 1982-06-28 1984-01-05 Toshiba Corp Combined cycle electric generation plant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5759402A (en) * 1980-09-24 1982-04-09 Hitachi Ltd Prescribed position stop control system considered with operating time
JPS59510A (en) * 1982-06-28 1984-01-05 Toshiba Corp Combined cycle electric generation plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050013A (en) * 1999-08-03 2001-02-23 Mitsubishi Heavy Ind Ltd Refuse incinerating power plant
JP2011137456A (en) * 2010-01-04 2011-07-14 General Electric Co <Ge> Clutch type turbine wheel
US9464537B2 (en) 2010-01-04 2016-10-11 General Electric Company Clutched turbine wheels

Similar Documents

Publication Publication Date Title
US5809768A (en) Hydrogen-oxygen combustion turbine plant
US5678401A (en) Energy supply system utilizing gas and steam turbines
JP3162479B2 (en) Gas / steam combined power plant
EP3314096B1 (en) Power system and method for producing useful power from heat provided by a heat source
US3715887A (en) Multiple stage gas compression apparatus and method
US11280226B2 (en) Waste heat recovery system
AU2013231164A1 (en) An organic rankine cycle for mechanical drive applications
WO2000037785A1 (en) Heat engine
US4594850A (en) Combined cycle total energy system
AU700618B2 (en) Steam-turbine plant
EP1492941B1 (en) Steam and gas turbine installation
CN107476996B (en) Generating set
US3503207A (en) Closed cycle co2 gas turbine power plant with partial condensation of the working substance prior to expansion thereof
JPS6321305A (en) Gas turbine/steam turbine combined motor
US3398525A (en) Combined multistage power plant having a rotary compressor serving as the low pressure stage and a rotary pressure-wave machine serving as the high pressure stage
JP2002038907A (en) Electric power plant of combined cycle
JP2602951B2 (en) How to start a combined cycle plant
CN113863996A (en) Multi-shaft turbine compression expander
RU2095634C1 (en) Combined gas pimping unit
JP2002242700A (en) Ultra-turbine
CN213743549U (en) Two-unit series heating system of backpressure unit and condensing unit
JP2000240471A (en) Heat engine
CN219220539U (en) Organic Rankine cycle system
CN212296518U (en) Complementary flow type organic Rankine cycle system and two-stage expansion machine
WO2019064224A1 (en) Plant and process for energy production