JP2667699B2 - Single-shaft combined plant and start-up method thereof - Google Patents

Single-shaft combined plant and start-up method thereof

Info

Publication number
JP2667699B2
JP2667699B2 JP1013145A JP1314589A JP2667699B2 JP 2667699 B2 JP2667699 B2 JP 2667699B2 JP 1013145 A JP1013145 A JP 1013145A JP 1314589 A JP1314589 A JP 1314589A JP 2667699 B2 JP2667699 B2 JP 2667699B2
Authority
JP
Japan
Prior art keywords
steam
turbine
pressure turbine
auxiliary
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1013145A
Other languages
Japanese (ja)
Other versions
JPH02196113A (en
Inventor
真一 保泉
芳樹 野口
和貞 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1013145A priority Critical patent/JP2667699B2/en
Publication of JPH02196113A publication Critical patent/JPH02196113A/en
Application granted granted Critical
Publication of JP2667699B2 publication Critical patent/JP2667699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/16Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled all the engines being turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、補助蒸気を蒸気タービンに供給して起動す
る一軸型コンバインドプラントに係り、特に、起動時の
蒸気タービンの温度上昇による事故を回避するに好適な
一軸型コンバインドプラント及びその起動方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a single-shaft combined plant that supplies auxiliary steam to a steam turbine to start it, and in particular, avoids accidents due to a rise in temperature of the steam turbine at startup. The present invention relates to a single-shaft combined plant and a method for starting the same.

[従来の技術] ガスタービンと蒸気タービンと発電機とを同軸に連結
した一軸型コンバインドプラントを起動する場合、従来
は、電動機またはディーゼルエンジン等でガスタービン
をある程度回転させガスタービンに付属する空気圧縮機
から該ガスタービンに所要の空気量が供給されるように
なってからガスタービンに点火するようにしている。し
かし、この起動方法を採用する場合は、起動用の電動機
等が必要となる。
[Prior art] When starting a single-shaft combined plant in which a gas turbine, a steam turbine, and a generator are coaxially connected, conventionally, the gas turbine is rotated to some extent by an electric motor or a diesel engine, and air compression attached to the gas turbine is performed. The gas turbine is ignited after a required amount of air is supplied from the gas turbine to the gas turbine. However, when this starting method is adopted, an electric motor or the like for starting is required.

そこで、特開昭58−160502号公報記載の従来技術で
は、起動時に補助蒸気を蒸気タービンに導入することで
蒸気タービンを回転させてガスタービンを回転させ、プ
ラントの起動を行っている。
Therefore, in the prior art described in Japanese Patent Application Laid-Open No. 58-160502, the plant is started by rotating the steam turbine by introducing auxiliary steam into the steam turbine at the time of starting to rotate the gas turbine.

[発明が解決しようとする課題] 上記特開昭58−160502号公報記載の従来技術では、補
助蒸気でプラントの初期起動を行い、ガスタービン点火
後に軸回転数が下がらなくなったとき、補助蒸気の蒸気
タービンへの供給を停止している。この様に補助蒸気を
使用してプラントの初期起動を行う場合、ガスタービン
の排熱による排熱回収装置からの蒸気が蒸気タービンを
駆動するに充分となって蒸気タービンに供給されるまで
は、蒸気タービンはガスタービンにより空転させられる
ことになる。しかし、蒸気タービンがこの様に空転する
と、特に蒸気タービンの最終段の動翼長が長い為、撹拌
効果によって蒸気タービン内部の温度が上昇し、危険な
運転状態に陥る虞がある。
[Problems to be Solved by the Invention] In the prior art described in Japanese Patent Application Laid-Open No. 58-160502, the initial start-up of the plant is performed using auxiliary steam, and when the shaft rotation speed does not decrease after ignition of the gas turbine, the auxiliary steam is used. The supply to the steam turbine has been stopped. When the initial startup of the plant is performed using the auxiliary steam in this way, until the steam from the exhaust heat recovery device due to the exhaust heat of the gas turbine is sufficient to drive the steam turbine and is supplied to the steam turbine, The steam turbine will be idled by the gas turbine. However, when the steam turbine idles in this manner, the temperature inside the steam turbine may increase due to the stirring effect, particularly since the moving blade length of the last stage of the steam turbine is long, which may cause a dangerous operation state.

更にまた、蒸気タービンに補助蒸気を導入してプラン
トの初期起動を行う場合、単に補助蒸気を蒸気タービン
を構成する高圧タービンや中低圧タービンに導入する構
成にしても、プラント設備の蒸気系配管が複雑になり、
またその強度設計が困難になるという不都合がある。
Furthermore, when the auxiliary steam is introduced into the steam turbine to perform the initial start-up of the plant, even if the auxiliary steam is simply introduced into the high-pressure turbine or the medium- and low-pressure turbines constituting the steam turbine, the steam piping of the plant equipment is Become complicated,
Further, there is a disadvantage that the strength design becomes difficult.

本発明の目的は、補助蒸気を使用してプラントを起動
させる時に蒸気タービンの内部温度の上昇を抑制するこ
とができ、しかも、配管設計が容易な一軸型コンバイン
ドプラントを提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a single-shaft combined plant that can suppress an increase in the internal temperature of a steam turbine when starting up the plant using auxiliary steam and that can easily design a piping.

[課題を解決するための手段] 上記目的は、連結軸にて同軸に結合されたガスタービ
ン及び蒸気タービン及び発電機と、前記ガスタービンの
排熱を回収して蒸気を発生する排熱回収装置とを備え、
前記蒸気タービンは高圧タービンと該高圧タービンから
排出された蒸気を前記排熱回収装置で昇温した蒸気が供
給される再熱型の中圧タービンと該中圧タービンの排気
蒸気が供給される低圧タービンとを備えて成る一軸型コ
ンバインドプラントにおいて、該一軸型コンバインドプ
ラント起動時に、前記排熱回収装置からの蒸気とは別の
補助蒸気を前記中圧タービンに供給して前記一軸型コン
バインドプラントの前記連結軸を昇速し、その後に前記
ガスタービンに点火し、該ガスタービンの排熱による前
記排熱回収装置からの蒸気が前記高圧タービンに供給さ
れるまで前記中圧タービンへの前記補助蒸気の供給を継
続することで、達成される。
Means for Solving the Problems The object is to provide a gas turbine, a steam turbine, and a generator coaxially connected by a connecting shaft, and an exhaust heat recovery device that recovers exhaust heat of the gas turbine to generate steam. With
The steam turbine includes a high-pressure turbine, a reheat type intermediate-pressure turbine to which steam discharged from the high-pressure turbine is heated by the exhaust heat recovery device, and a low-pressure to which exhaust steam of the medium-pressure turbine is supplied. A single-shaft combined plant comprising a turbine, when starting up the single-shaft combined plant, supplying auxiliary steam different from steam from the exhaust heat recovery device to the intermediate pressure turbine, The connection shaft is accelerated, and thereafter, the gas turbine is ignited, and the auxiliary steam to the intermediate pressure turbine is supplied to the high pressure turbine until steam from the exhaust heat recovery device due to exhaust heat of the gas turbine is supplied to the high pressure turbine. This is achieved by continuing the supply.

[作用] プラント起動時において、タービン駆動用蒸気が排熱
回収装置から供給されるまで、低圧タービンは補助蒸気
により冷却され、危険な運転状態になることはない。
[Operation] At the time of starting the plant, the low-pressure turbine is cooled by the auxiliary steam until the steam for turbine driving is supplied from the exhaust heat recovery device, so that a dangerous operating state does not occur.

また、プラント起動時に導入する蒸気タービンを再熱
型中圧タービンとしたので、配管や弁類の設計を高圧蒸
気用にする必要がなくなり、更に、配管システムの構成
が容易になる。
Further, since the steam turbine to be introduced at the time of starting the plant is a reheated medium-pressure turbine, it is not necessary to design piping and valves for high-pressure steam, and the configuration of the piping system is further simplified.

[実施例] 以下、本発明の好適な実施例を図面を参照して説明す
る。
EXAMPLES Hereinafter, preferred examples of the present invention will be described with reference to the drawings.

第1図は、本発明の第1実施例に係る一軸型コンバイ
ンドプラントのシステム構成図である。ガスタービン設
備10、再熱型蒸気タービン20及び発電機25が機械的に連
結軸9で一軸に直結され、前記ガスタービン10からの排
ガス熱を回収する排熱回収ボイラ30での発生蒸気は、高
圧蒸気管51,再熱蒸気管55及び低圧蒸気管57により、前
記再熱型蒸気タービン20を構成する高圧タービン21,再
熱型中圧タービン(以下、再熱タービンという)22及び
低圧タービン23に供給される様になっている。またこの
タービン駆動用蒸気供給系とは別に、補助蒸気ヘッダ70
からの補助蒸気は、蒸気遮断弁72を具備する補助蒸気配
管71にて、前記再熱タービン22へ排熱回収ボイラ30から
の蒸気を導入する再熱蒸気配管55へ連結する構成となっ
ている。
FIG. 1 is a system configuration diagram of a single-shaft combined plant according to a first embodiment of the present invention. The gas turbine equipment 10, the reheat steam turbine 20, and the generator 25 are mechanically and directly connected uniaxially by the connecting shaft 9, and the steam generated in the exhaust heat recovery boiler 30 that recovers the exhaust gas heat from the gas turbine 10 is: The high-pressure steam pipe 51, the reheat steam pipe 55, and the low-pressure steam pipe 57 constitute the reheat-type steam turbine 20, a high-pressure turbine 21, a reheat-type intermediate-pressure turbine (hereinafter referred to as reheat turbine) 22, and a low-pressure turbine 23. To be supplied to Separately from this turbine drive steam supply system, the auxiliary steam header 70
Is connected to a reheat steam pipe 55 for introducing steam from the exhaust heat recovery boiler 30 to the reheat turbine 22 at an auxiliary steam pipe 71 having a steam shut-off valve 72. .

ここで、プラントの起動時には、前記補助蒸気ヘッダ
70からの蒸気を補助蒸気配管71を介して再熱タービン22
に導入し、エネルギーを与えることによって該再熱ター
ビン22を駆動する。再熱タービン22の回転によってこれ
と同軸に結合されているガスタービン10及び発電機25も
同時に回転を開始し、ガスタービン10を構成する圧縮機
12は大気を吸引し、燃焼器15へ燃焼用の圧縮空気を送り
込むことになる。こうして蒸気タービン20にて回転して
いる連結軸9の回転数があらかじめ定められた回転数に
到達し、前記燃焼器15での着火条件が成立した後燃料流
量調整弁14を微開し、該燃焼器15へ燃料を送り込み、こ
れに点火する。その後は、連結軸9の回転数を、前記燃
料流量調整弁14を調整することによって制御し、定格回
転数に到達後、ガスタービンの負荷上昇を行う。
Here, when the plant is started, the auxiliary steam header is used.
Steam from 70 is reheated through auxiliary steam piping 71
To drive the reheat turbine 22 by applying energy. Due to the rotation of the reheat turbine 22, the gas turbine 10 and the generator 25, which are coaxially coupled thereto, also start rotating at the same time, and the compressor constituting the gas turbine 10
12 sucks the atmosphere and sends compressed air for combustion to the combustor 15. In this way, the rotation speed of the connecting shaft 9 rotating in the steam turbine 20 reaches a predetermined rotation speed, and after the ignition condition in the combustor 15 is satisfied, the fuel flow control valve 14 is slightly opened. Fuel is sent to the combustor 15 and ignited. Thereafter, the rotational speed of the connecting shaft 9 is controlled by adjusting the fuel flow rate adjusting valve 14, and after reaching the rated rotational speed, the load of the gas turbine is increased.

ガスタービン点火後は、高温の排ガスがガスタービン
11から排出され、この排熱を前記排熱回収ボイラ30で熱
回収し、高圧蒸気並びに低圧蒸気を発生することになる
が、発生初期の蒸気は温度が低く前記蒸気タービン20へ
の通気条件が整うまではタービンバイパス運用を行うこ
とになる。すなわち、高圧ドラム31で発生した高圧蒸気
は過熱器32を通り、高圧主蒸気管51,高圧タービンバイ
パス弁62を具備した高圧バイパス管61,さらに低温再熱
蒸気管54を介して排熱回収ボイラ30内に備えられる再熱
器33にて再熱され、再熱蒸気配管55及び中圧タービンバ
イパス管63を介して復水器40に排出される。また、低圧
ドラム34で発生した低圧蒸気も低圧過熱器35で加熱さ
れ、低圧蒸気管57,低圧タービンバイパス管65を介して
復水器40へ排出される。
After ignition of the gas turbine, high-temperature exhaust gas is
The exhaust heat is discharged from the exhaust heat recovery steam in the exhaust heat recovery boiler 30, and high-pressure steam and low-pressure steam are generated. Until it is ready, turbine bypass operation will be performed. That is, the high-pressure steam generated in the high-pressure drum 31 passes through the superheater 32, the high-pressure main steam pipe 51, the high-pressure bypass pipe 61 having the high-pressure turbine bypass valve 62, and the low-temperature reheat steam pipe 54, and the exhaust heat recovery boiler. The reheated steam is reheated by a reheater 33 provided in 30 and discharged to a condenser 40 via a reheated steam pipe 55 and a medium-pressure turbine bypass pipe 63. The low-pressure steam generated by the low-pressure drum 34 is also heated by the low-pressure superheater 35 and discharged to the condenser 40 via the low-pressure steam pipe 57 and the low-pressure turbine bypass pipe 65.

この様にタービンバイパス運転を実施し、前記排熱回
収ボイラ30での発生蒸気が蒸気タービン20に導入されな
い間は、該蒸気タービン20は前記ガスタービン10への燃
料投入による回転数制御にて受動的に回転させられてお
り、この時、蒸気タービン20に何ら蒸気が供給されない
場合には、特に長翼で構成される低圧タービン23の内部
温度が撹拌効果によって上昇し、危険な運転状態になる
ことが予想される。そこで本実施例では、ガスタービン
点火前まで連結軸9の回転数上昇に利用した補助蒸気
を、引き続き、低圧タービン23の冷却に必要な量、再熱
タービン22を通して低圧タービン23に供給し、低圧ター
ビン23内部での温度上昇を抑制する。
While the turbine bypass operation is carried out in this way, and the steam generated in the exhaust heat recovery boiler 30 is not introduced into the steam turbine 20, the steam turbine 20 is passively controlled by controlling the number of revolutions by supplying fuel to the gas turbine 10. When no steam is supplied to the steam turbine 20 at this time, the internal temperature of the low-pressure turbine 23 composed of long blades in particular rises due to the stirring effect, resulting in a dangerous operation state. It is expected that. Therefore, in the present embodiment, the auxiliary steam used to increase the rotation speed of the connecting shaft 9 before ignition of the gas turbine is continuously supplied to the low pressure turbine 23 through the reheat turbine 22 in an amount required for cooling the low pressure turbine 23. The temperature rise inside the turbine 23 is suppressed.

補助蒸気の供給期間としては、前記排熱回収ボイラ30
での発生蒸気を前記蒸気タービン20へ通気するまでで良
く、これを第2図に示す。ここで第2図に示す補助蒸気
量の制御、すなわち起動当初の軸系の回転数上昇並びに
ガスタービン点火後の蒸気タービン冷却蒸気量の確保等
は、該再熱タービン22への蒸気量を調整する目的及び当
初より設置されている再熱蒸気量調整弁56にて行う。
As the supply period of the auxiliary steam, the exhaust heat recovery boiler 30
It suffices until the steam generated in the above is vented to the steam turbine 20, which is shown in FIG. Here, the control of the amount of auxiliary steam shown in FIG. 2, that is, the increase in the rotation speed of the shaft system at the start of the start and the securing of the amount of steam for cooling the steam turbine after ignition of the gas turbine, etc., are performed by adjusting the amount of steam to the reheat turbine 22. The reheating steam amount adjustment valve 56, which is installed from the beginning, performs this purpose.

また、上記の起動過程においては、再熱タービン22に
蒸気を導入するため、高圧タービン21が空転することに
なるが、これは高圧タービン排気側と復水器40とを弁60
を具備する配管59で連絡し、上記運転中は該弁40を開
し、高圧タービン内部圧力を復水器と同じ真空状態に保
つことで温度上昇を抑制する。これは、高圧タービン21
の翼長が短いため、斯かる対策で十分冷却が可能とな
る。
In the above-described start-up process, the high-pressure turbine 21 idles in order to introduce steam into the reheat turbine 22, but this is performed by connecting the high-pressure turbine exhaust side and the condenser 40 to the valve 60.
During the above operation, the valve 40 is opened, and the internal pressure of the high-pressure turbine is kept at the same vacuum as that of the condenser to suppress the temperature rise. This is the high pressure turbine 21
Since the blade length is short, sufficient cooling is possible by such measures.

尚、プラント初期起動時に、補助蒸気を高圧タービン
21に導入しても、連結軸を回転させ、更に昇速させると
いう目的を達成することはできる。しかし、本実施例で
は、以下の理由により、高圧タービンではなく、再熱タ
ービン22に補助蒸気を導入し、プラントの初期起動を行
っている。
During the initial startup of the plant, auxiliary steam is supplied to the high-pressure turbine.
Even if it is introduced into 21, the object of rotating the connecting shaft and further increasing the speed can be achieved. However, in the present embodiment, the auxiliary steam is introduced into the reheat turbine 22 instead of the high-pressure turbine for the following reason, and the initial startup of the plant is performed.

1) 高圧タービン21にプラント初期起動用の補助蒸気
を導入した場合、高圧タービン21を回転させた補助蒸気
は低温再熱蒸気管を通り排熱回収ボイラ内の再熱器に導
かれる構成となるが、この段階ではガスタービンからの
排ガスが排熱回収ボイラに導入されていないため、再熱
蒸気管を通る蒸気は、前記高圧タービンで仕事をして低
温の蒸気となっており、再熱タービンに通気することが
できない状態となっている。従って、この低温蒸気は中
圧タービンバイパス管を通して復水器へ排出することに
なる。このため、低圧タービンへの冷却蒸気は他の系統
から供給する必要があり、システムが複雑になると共
に、ガスタービン点火前にタービンバイパス系の制御も
必要であり、起動操作が非常に複雑になってしまう。
1) When the auxiliary steam for initial starting of the plant is introduced into the high-pressure turbine 21, the auxiliary steam that rotates the high-pressure turbine 21 is guided through the low-temperature reheat steam pipe to the reheater in the exhaust heat recovery boiler. However, since the exhaust gas from the gas turbine is not introduced into the exhaust heat recovery boiler at this stage, the steam passing through the reheat steam pipe is a low-temperature steam that has worked in the high pressure turbine. It cannot be ventilated. Therefore, the low-temperature steam is discharged to the condenser through the intermediate-pressure turbine bypass pipe. Therefore, it is necessary to supply cooling steam to the low-pressure turbine from another system, which complicates the system and also requires control of the turbine bypass system before the gas turbine is ignited. Would.

2) 一般に、補助蒸気圧力は10〜20kg/cm2程度である
が、高圧蒸気圧力は約100kg/cm2である。このため、補
助蒸気供給時は比容積の関係から、主蒸気系の配管,弁
類の高圧蒸気圧力での設計に対し5〜10倍の大きなもの
が必要となる。
2) In general, the auxiliary steam pressure is of the order of 10-20 kg / cm 2, high-pressure steam pressure is about 100 kg / cm 2. For this reason, when the auxiliary steam is supplied, the design of the main steam system piping and valves at a high steam pressure is required to be 5 to 10 times larger due to the relationship of the specific volume.

この点、再熱タービン22への補助蒸気供給方式を採用
する本発明の場合には、再熱タービン22に導入された蒸
気がそのまま低圧タービン23に流入するため、特に別の
独立した冷却蒸気を導入する必要はなく、系統多び運転
制御共、シンプルで信頼性も高いものとなる。
In this regard, in the case of the present invention that employs an auxiliary steam supply system to the reheat turbine 22, since the steam introduced into the reheat turbine 22 flows into the low-pressure turbine 23 as it is, another independent cooling steam is particularly used. There is no need to introduce it, and both system and operation control will be simple and reliable.

一方、再熱蒸気圧力は約20kg/cm2近傍が選定されるこ
とになるため、補助蒸気の圧力とほぼ同じであり、再熱
蒸気系の配管,弁類も特に大きなものは必要とせず、経
済的なプラントを提供することができる。
On the other hand, since the reheat steam pressure is selected to be around 20 kg / cm 2 , it is almost the same as the auxiliary steam pressure, and the reheat steam system piping and valves do not need particularly large ones. An economical plant can be provided.

以上の点から、再熱/一軸型コンバインドプラントの
蒸気タービンによる起動時に、補助蒸気を再熱タービン
に導入する方法がいかに効果的であるかが理解できよ
う。
From the above, it can be understood how effective the method of introducing the auxiliary steam into the reheat turbine when the reheat / single-shaft combined plant is started by the steam turbine.

第3図は、本発明の第2実施例に係る一軸型コンバイ
ンドプラントの構成図である。本実施例では、再熱ター
ビン22への補助蒸気導入に際して、排熱回収ボイラ30か
らの再熱蒸気管55とは独立に直接補助蒸気配管71を前記
再熱タービン22に連結している。そして、ガスタービン
点火前の蒸気タービンによる回転数上昇時、並びに低圧
タービン冷却用蒸気供給時の補助蒸気量制御は、該補助
蒸気配管71上に具備された調整弁73によって行ってい
る。本実施例によっても第1実施例と同様の効果を得る
ことができる。
FIG. 3 is a configuration diagram of a single-shaft combined plant according to a second embodiment of the present invention. In this embodiment, when introducing the auxiliary steam into the reheat turbine 22, the auxiliary steam pipe 71 is directly connected to the reheat turbine 22 independently of the reheat steam pipe 55 from the exhaust heat recovery boiler 30. When the rotation speed of the steam turbine is increased before ignition of the gas turbine, and when the steam for cooling the low-pressure turbine is supplied, the control of the amount of auxiliary steam is performed by the regulating valve 73 provided on the auxiliary steam pipe 71. According to this embodiment, the same effect as that of the first embodiment can be obtained.

第4図は、プラント起動時に、排熱回収ボイラ30の低
圧蒸気ドラム34から発生する蒸気が、低圧タービン23の
冷却用蒸気として使用できるようになったとき、補助蒸
気による冷却に代え、低圧蒸気ドラム34からの蒸気を、
低圧蒸気配管57及び弁58を介して低圧蒸気タービン23に
導入する実施例の制御説明図である。この様に、低圧蒸
気ドラム34からの蒸気が冷却用として使用できる様にな
った時点で、補助蒸気の供給をストップし、低圧蒸気ド
ラム34からの蒸気を使用するので、補助蒸気供給時間を
短縮でき、経済的な運転が可能となる。勿論、排熱回収
ボイラ30からの蒸気を再熱タービン22に供給して該蒸気
で再熱タービン22が駆動される様になったとき(このと
きは、再熱タービン22からの排気蒸気が低圧タービン23
に導入され、冷却用の補助蒸気は不要になる。)補助蒸
気の再熱タービン22への供給を停止しても良いことは、
言うまでもない。
FIG. 4 shows that when the steam generated from the low-pressure steam drum 34 of the exhaust heat recovery boiler 30 can be used as the cooling steam for the low-pressure turbine 23 at the time of starting the plant, the low-pressure steam is replaced with the cooling by the auxiliary steam. Steam from drum 34,
FIG. 4 is a control explanatory diagram of an embodiment in which the steam is introduced into the low-pressure steam turbine 23 via a low-pressure steam pipe 57 and a valve 58. As described above, when the steam from the low-pressure steam drum 34 can be used for cooling, the supply of the auxiliary steam is stopped and the steam from the low-pressure steam drum 34 is used, so the auxiliary steam supply time is reduced. And economical operation becomes possible. Of course, when the steam from the exhaust heat recovery boiler 30 is supplied to the reheat turbine 22 and the reheat turbine 22 is driven by the steam (in this case, the exhaust steam from the reheat turbine 22 is Turbine 23
And no additional steam for cooling is required. ) The supply of the auxiliary steam to the reheat turbine 22 may be stopped.
Needless to say.

第5図は、本発明の第3実施例に係る一軸型コンバイ
ンドプラントの構成図である。本実施例では、再熱ター
ビン22と補助蒸気ヘッダ70とを連結する補助蒸気配管71
の途中に、蒸気温度調整装置74を設けている。この様に
蒸気温度調整装置74を設けることで、補助蒸気導入によ
るプラント初期起動時において、起動前のプラント停止
時間(停止時間をプラントの冷却温度の関数として見る
ことができる。)あるいは起動時のタービンメタル温度
により区分されるプラント起動モードに応じた補助蒸気
温度を実現でき、更に効果的なタービン起動が可能とな
る。
FIG. 5 is a configuration diagram of a single-shaft combined plant according to a third embodiment of the present invention. In the present embodiment, an auxiliary steam pipe 71 connecting the reheat turbine 22 and the auxiliary steam header 70 is provided.
A steam temperature controller 74 is provided in the middle of the process. By providing the steam temperature adjusting device 74 in this manner, at the time of initial plant startup with the introduction of auxiliary steam, the plant shutdown time before startup (the shutdown time can be viewed as a function of the plant cooling temperature) or at startup. Auxiliary steam temperature according to the plant startup mode classified by the turbine metal temperature can be realized, and more effective turbine startup is possible.

[発明の効果] 本発明によれば、補助蒸気をプラント初期起動後にも
中圧タービンから低圧タービンに流して該低圧タービン
の冷却を行うので、低圧タービンの温度上昇による異常
運転状態を回避でき、補助蒸気による安全なプラント起
動が実現できる。しかも、再熱タービンに補助蒸気を供
給してプラント起動を行うので、配管システムが簡便と
なり、更に補助蒸気用の配管や弁類の強度を高める必要
がなくなるので、信頼性が高まりコストも低減される効
果がある。
[Effects of the Invention] According to the present invention, the auxiliary steam flows from the intermediate-pressure turbine to the low-pressure turbine even after the initial startup of the plant to cool the low-pressure turbine, so that an abnormal operation state due to an increase in the temperature of the low-pressure turbine can be avoided. Safe plant startup with auxiliary steam can be realized. Moreover, since the auxiliary steam is supplied to the reheat turbine to start the plant, the piping system is simplified, and it is not necessary to increase the strength of the auxiliary steam pipes and valves, so that reliability is improved and cost is reduced. Has an effect.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例に係る一軸型コンバインド
プラントの構成図、第2図(a),(b)は補助蒸気供
給制御の一実施例に係る説明図、第3図は本発明の第2
実施例に係る一軸型コンバインドプラントの構成図、第
4図(a),(b)は補助蒸気供給制御の別実施例の説
明図、第5図は本発明の第3実施例に係る一軸型コンバ
インドプラントの構成図である。 10……ガスタービン設備、11……ガスタービン、12……
圧縮機、13……燃料配管、14……燃料流量調整弁、15…
…燃焼器、20……再熱型蒸気タービン設備、21……高圧
タービン、22……再熱タービン、23……低圧タービン、
25……発電機、30……排熱回収ボイラ、31……高圧ドラ
ム、32……過熱器、33……再熱器、34……低圧ドラム、
35……低圧過熱器、40……復水器、51……高圧蒸気管、
52……高圧蒸気量調整弁、53……再熱蒸気逆止弁、54…
…低温再熱蒸気管、55……再熱蒸気管、56……再熱蒸気
量調整弁、57……低圧蒸気管、59……ベンチレータ蒸気
管、60……ベンチレータ弁、61……高圧タービンバイパ
ス管、62……高圧タービンバイパス弁、63……中圧ター
ビンバイパス管、64……中圧タービンバイパス弁、65…
…低圧タービンバイパス管、66……低圧タービンパイパ
ス弁、70……補助蒸気ヘッダ、71……補助蒸気配管、72
……補助蒸気遮断弁、73……補助蒸気量調整弁、74……
蒸気温度調整装置。
FIG. 1 is a configuration diagram of a single-shaft combined plant according to a first embodiment of the present invention, FIGS. 2 (a) and 2 (b) are explanatory diagrams according to an embodiment of auxiliary steam supply control, and FIG. Second of the invention
4 (a) and 4 (b) are explanatory diagrams of another embodiment of the auxiliary steam supply control, and FIG. 5 is a single-shaft type combined plant according to a third embodiment of the present invention. It is a block diagram of a combined plant. 10 ... Gas turbine equipment, 11 ... Gas turbine, 12 ...
Compressor, 13 ... Fuel pipe, 14 ... Fuel flow control valve, 15 ...
… Combustor, 20… Reheat steam turbine equipment, 21… High pressure turbine, 22… Reheat turbine, 23… Low pressure turbine,
25 ... generator, 30 ... waste heat recovery boiler, 31 ... high pressure drum, 32 ... superheater, 33 ... reheater, 34 ... low pressure drum,
35 …… Low pressure super heater, 40 …… Condenser, 51 …… High pressure steam pipe,
52 …… High-pressure steam control valve, 53 …… Reheat steam check valve, 54…
… Low-temperature reheat steam pipe, 55 …… Reheat steam pipe, 56 …… Reheat steam flow control valve, 57 …… Low pressure steam pipe, 59 …… Ventilator steam pipe, 60 …… Ventilator valve, 61 …… High pressure turbine Bypass pipe, 62… High pressure turbine bypass valve, 63… Medium pressure turbine bypass pipe, 64 …… Medium pressure turbine bypass valve, 65…
… Low-pressure turbine bypass pipe, 66… low-pressure turbine bypass valve, 70… auxiliary steam header, 71… auxiliary steam pipe, 72
…… Auxiliary steam shut-off valve, 73 …… Auxiliary steam amount adjustment valve, 74 ……
Steam temperature controller.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】連結軸にて同軸に結合されたガスタービン
及び蒸気タービン及び発電機と、前記ガスタービンの排
熱を回収して蒸気を発生する排熱回収装置とを備え、前
記蒸気タービンは高圧タービンと該高圧タービンから排
出された蒸気を前記排熱回収装置で昇温した蒸気が供給
される再熱型の中圧タービンと該中圧タービンの排気蒸
気が供給される低圧タービンとを備えて成る一軸型コン
バインドプラントにおいて、該一軸型コンバインドプラ
ント起動時に、前記排熱回収装置からの蒸気とは別の補
助蒸気を前記中圧タービンに供給して前記一軸型コンバ
インドプラントの前記連結軸を昇速し、その後に前記ガ
スタービンに点火し、該ガスタービンの排熱による前記
排熱回収装置からの蒸気が前記蒸気タービンに供給され
るまで前記中圧タービンへの前記補助蒸気の供給を継続
することを特徴とする一軸型コンバインドプラント起動
方法。
1. A gas turbine, a steam turbine, and a generator coaxially connected by a connecting shaft, and an exhaust heat recovery device that recovers exhaust heat of the gas turbine to generate steam, wherein the steam turbine is A high-pressure turbine, a reheat type intermediate-pressure turbine to which steam discharged from the high-pressure turbine is heated by the exhaust heat recovery device, and a low-pressure turbine to which exhaust steam of the intermediate-pressure turbine is supplied. In the single-shaft combined plant, the auxiliary steam, which is different from the steam from the exhaust heat recovery device, is supplied to the intermediate-pressure turbine to raise the connecting shaft of the single-shaft combined plant. The gas turbine is then ignited, and the medium-pressure turbine is ignited until steam from the exhaust heat recovery device due to exhaust heat of the gas turbine is supplied to the steam turbine. Single-shaft combined plant startup method characterized by continuing the supply of auxiliary steam to the bottle.
【請求項2】請求項1において、中圧タービンへタービ
ン駆動用蒸気を供給する経路を利用して補助蒸気を中圧
タービンに供給し、中圧タービンの蒸気調整弁にて補助
蒸気量を調整することを特徴とする一軸型コンバインド
プラント起動方法。
2. The auxiliary steam is supplied to the intermediate-pressure turbine using a path for supplying turbine driving steam to the intermediate-pressure turbine, and the amount of the auxiliary steam is adjusted by a steam control valve of the intermediate-pressure turbine. Activating a single-shaft combined plant.
【請求項3】請求項1において、中圧タービンへタービ
ン駆動用蒸気を供給する経路とは別の補助蒸気用経路に
て該中圧タービンに補助蒸気を供給し、該補助蒸気用経
路中に設けた調整弁にて補助蒸気量を調整することを特
徴とする一軸型コンバインドプラント起動方法。
3. The auxiliary steam is supplied to the intermediate-pressure turbine through an auxiliary-steam path separate from a path for supplying turbine driving steam to the intermediate-pressure turbine. A method for starting a single-shaft combined plant, wherein an auxiliary steam amount is adjusted by an adjusting valve provided.
【請求項4】請求項1乃至請求項3のいずれかにおい
て、プラント起動前のプラント停止時間あるいは蒸気タ
ービンのメタル温度の少なくとも一方に応じて補助蒸気
の温度を調整することを特徴とする一軸型コンバインド
プラント起動方法。
4. The single-shaft type according to claim 1, wherein the temperature of the auxiliary steam is adjusted according to at least one of a plant shutdown time before starting the plant and a metal temperature of the steam turbine. How to start a combined plant.
【請求項5】連結軸にて同軸に結合されたガスタービン
及び蒸気タービン及び発電機と、前記ガスタービンの排
熱を回収して蒸気を発生する排熱回収装置とを備え、前
記蒸気タービンは高圧タービンと該高圧タービンから排
出された蒸気を前記排熱回収装置で昇温した蒸気が供給
される再熱型の中圧タービンと該中圧タービンの排気蒸
気が供給される低圧タービンとを備えて成る一軸型コン
バインドプラントにおいて、前記排熱回収装置からの蒸
気とは別の補助蒸気を前記中圧タービンに供給して停止
中の前記連結軸を回転させ、前記ガスタービン点火後に
前記排熱回収装置からの蒸気が前記高圧タービンに供給
されるまで前記補助蒸気の前記中圧タービンへの供給を
維持する補助蒸気供給装置を備えることを特徴とする一
軸型コンバインドプラント。
5. A gas turbine, a steam turbine, and a generator coaxially connected by a connecting shaft, and an exhaust heat recovery device that recovers exhaust heat of the gas turbine to generate steam, wherein the steam turbine is A high-pressure turbine, a reheat type intermediate-pressure turbine to which steam discharged from the high-pressure turbine is heated by the exhaust heat recovery device, and a low-pressure turbine to which exhaust steam of the intermediate-pressure turbine is supplied. In the single-shaft combined plant consisting of, the auxiliary heat different from the steam from the exhaust heat recovery device is supplied to the intermediate pressure turbine to rotate the connection shaft that is stopped, and the exhaust heat recovery is performed after the gas turbine ignition. A single-shaft combined fuel supply system comprising an auxiliary steam supply device for maintaining the supply of the auxiliary steam to the medium-pressure turbine until steam from a device is supplied to the high-pressure turbine. Runt.
【請求項6】高圧タービンと再熱型中圧タービンと該再
熱型中圧タービンの排気蒸気が導入される低圧タービン
とで構成された蒸気タービンと、該蒸気タービンと同軸
の連結軸で結合されたガスタービン及び発電機と、前記
ガスタービンの排熱を回収して蒸気を発生し該蒸気を前
記高圧タービンと前記再熱型中圧タービンに戻す蒸気経
路を備える排熱回収装置と、プラント起動時に前記再熱
型中圧タービンに前記排熱回収装置からの蒸気とは別の
補助蒸気を前記再熱タービンに供給する補助蒸気供給装
置とを備えて成ることを特徴とする一軸型コンバインド
プラント。
6. A steam turbine including a high-pressure turbine, a reheat-type intermediate-pressure turbine, and a low-pressure turbine into which exhaust steam of the reheat-type medium-pressure turbine is introduced, and a connection shaft coaxial with the steam turbine. Gas turbine and generator, a waste heat recovery device including a steam path for recovering waste heat of the gas turbine to generate steam and returning the steam to the high pressure turbine and the reheated medium pressure turbine, and a plant A single-shaft combined plant, comprising: an auxiliary steam supply device for supplying, to the reheat medium-pressure turbine, auxiliary steam other than steam from the exhaust heat recovery device to the reheat turbine at startup. .
JP1013145A 1989-01-24 1989-01-24 Single-shaft combined plant and start-up method thereof Expired - Lifetime JP2667699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1013145A JP2667699B2 (en) 1989-01-24 1989-01-24 Single-shaft combined plant and start-up method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1013145A JP2667699B2 (en) 1989-01-24 1989-01-24 Single-shaft combined plant and start-up method thereof

Publications (2)

Publication Number Publication Date
JPH02196113A JPH02196113A (en) 1990-08-02
JP2667699B2 true JP2667699B2 (en) 1997-10-27

Family

ID=11824996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1013145A Expired - Lifetime JP2667699B2 (en) 1989-01-24 1989-01-24 Single-shaft combined plant and start-up method thereof

Country Status (1)

Country Link
JP (1) JP2667699B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2593578B2 (en) * 1990-10-18 1997-03-26 株式会社東芝 Combined cycle power plant
JP5221443B2 (en) 2009-05-08 2013-06-26 株式会社東芝 Method for starting single-shaft combined cycle power plant and single-shaft combined cycle power plant

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840506U (en) * 1981-09-11 1983-03-17 株式会社東芝 Combined cycle power plant

Also Published As

Publication number Publication date
JPH02196113A (en) 1990-08-02

Similar Documents

Publication Publication Date Title
JP3034162B2 (en) Power plant and its operation method
JP2593578B2 (en) Combined cycle power plant
JPH08240105A (en) Combined cycle power plant and steam turbine warming method
US10975733B2 (en) Compressor driven by ORC waste heat recovery unit and control method
JP7167136B2 (en) Steam turbine plant and its cooling method
JPH0678724B2 (en) Cooling method and cooling device for steam turbine in single-shaft combined plant
US11879365B2 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JP2000130108A (en) Starting method for combined cycle power plant
JP3919966B2 (en) Operation method of combined cycle power plant
JP2667699B2 (en) Single-shaft combined plant and start-up method thereof
JPH0763010A (en) Starting method for single type combined cycle power generating facility
JPH06323162A (en) Steam-cooled gas turbine power plant
JP5734117B2 (en) Combined cycle power plant and operation method thereof
JP2602951B2 (en) How to start a combined cycle plant
JP2806338B2 (en) Gas turbine generator
JP4208993B2 (en) Single axis combined plant startup system
JP2667699C (en)
JP4209060B2 (en) Steam cooling rapid start system
JPH02259301A (en) Waste heat recovery boiler
JPH08270459A (en) Gas turbine installation and operating method thereof
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant
JP2002221007A (en) Thermal power generation plant
JP2001289009A (en) Single-shaft combined turbine equipment
JPH08189308A (en) Single-shaft type combined cycle electric power plant
JP2885346B2 (en) Combined plant control method and apparatus