JPS6086888A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPS6086888A
JPS6086888A JP19565783A JP19565783A JPS6086888A JP S6086888 A JPS6086888 A JP S6086888A JP 19565783 A JP19565783 A JP 19565783A JP 19565783 A JP19565783 A JP 19565783A JP S6086888 A JPS6086888 A JP S6086888A
Authority
JP
Japan
Prior art keywords
layer
gaas
single crystal
stripe
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19565783A
Other languages
Japanese (ja)
Other versions
JPH0559593B2 (en
Inventor
Akio Yoshikawa
昭男 吉川
Masaru Kazumura
数村 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19565783A priority Critical patent/JPS6086888A/en
Publication of JPS6086888A publication Critical patent/JPS6086888A/en
Publication of JPH0559593B2 publication Critical patent/JPH0559593B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To form a steep multilayer structure and a striped structure for strong current constriction on an interface and to improve the laser characteristics and the reliability of a semiconductor laser by a method wherein a crystal-growth is performed on a multilayer thin film including a double-hetero structure while a local heating means is applied. CONSTITUTION:A double-hetero structure is grown by successively forming an N type AlXGa1-XAs layer 11, an AlYGa1-YAs layer 12 (0<=Y<X) and a P type AlXGa1-XAs layer 13 on an N type GaAs single crystal substrate 10 as a single crystal, and P type GaAs layers 25 are grown on the double-hetero structure, whereon laser beams are stricken in a stripe shape at a pitch of (1), while a local heating is performed. The neighborhood of a place, where laser beams are striking, is converted into a GaAs single crystal layer 24, while places, where laser beams are not striking, are converted into GaAs polycrystaline layers 25. As a result, a current-constriction is performed at the place of the width of a stripe part 16, thereby enabling to generate a single transverse-mode oscillation at a lower threshold value.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はディジタル・オーディオ・ディスク。[Detailed description of the invention] Industrial applications The present invention is a digital audio disc.

ビデオディスク等のコヒーレント光源を始めとして、各
種電子機器の光源として、用いられる半導体レーザ装置
に関するものである。
The present invention relates to a semiconductor laser device used as a coherent light source for video disks and other devices, as well as a light source for various electronic devices.

従来例の構成とその問題点 電子機器の光源として、半導体レーザに要求されるもの
の1つとして、単一スポットでの発振、すなわち、単−
横モード発振がある。これを実現するためには、活性領
域付近に、光と電流を閉じ込める必要がある。光の閉じ
込めに関しては、二重へテロ構造で活性層をはさみ、そ
れと垂直な方向にも屈折率差を設けて閉じ込めたり、或
いは、活性層中の一部に電流が流れる様にして、光増幅
率に活性層中で分布を持たせて閉じ込める方法力;ある
Conventional configurations and their problems One of the requirements for semiconductor lasers as light sources for electronic devices is oscillation in a single spot, that is, single-spot oscillation.
There is transverse mode oscillation. To achieve this, it is necessary to confine light and current near the active region. Regarding light confinement, optical amplification can be achieved by sandwiching the active layer with a double heterostructure and creating a refractive index difference in the direction perpendicular to the active layer, or by allowing a current to flow through a part of the active layer. There is a method to confine the rate by giving it a distribution in the active layer.

電流の閉じ込め、つtbキャリアの閉じ込めに関しては
、二重へテロ構造で活性JWt’rはさみ、半導体中の
電子のエネルギーノ(ンドの構造により閉じ込め、二重
へテロ構造と垂直な方向では、活性領域付近にのみ電流
が流れる様に、ストライブ状の電流狭さく領域を設ける
のが通常の方法である。
Concerning current confinement and confinement of carriers, the active JWt'r is sandwiched in the double heterostructure, and the electron energy node in the semiconductor is confined by the structure of the sandwich, and in the direction perpendicular to the double heterostructure, the active JWt'r is trapped. A common method is to provide a striped current constriction region so that current flows only near the region.

第1図に、従来の代表的なントライフ゛構造し−ザ全示
す。これらの図において、10はn+−G a A s
基板、11はn A l x G a 1x A s層
、12はAI Ga As(o<y<” )層、1si
dp−71−7 AI Ga As層、14はp−GaAs層、16は活
x 1−x 性領域、16はストライプ部、17はn −G a A
 g層、21はプロトンを照゛射した高抵抗領域、22
はZn拡散領域、23はS z 02膜である。
FIG. 1 shows the entirety of a typical conventional blade structure. In these figures, 10 is n+-G a A s
Substrate, 11 is n Al x Ga 1 x As layer, 12 is AI Ga As (o<y<”) layer, 1si
dp-71-7 AI GaAs layer, 14 is p-GaAs layer, 16 is active x1-x active region, 16 is stripe part, 17 is n-GaA
g layer, 21 is a high resistance region irradiated with protons, 22
is a Zn diffusion region, and 23 is a S z 02 film.

aはp−GaAsキャップ層14の上から、プロトンを
照射する事により、ストライプ部16を形成したレーザ
である。bは、p−AlxGa1−xAsAs層上3上
n−GaAs層17を成長し、n−GaAs17上から
Zn全拡散する事によシ、n −G a A s層17
中に電流注入用のストライプ部16を形成した。Znn
拡散スストライブ構造レーザある。
A is a laser that forms a stripe portion 16 by irradiating protons from above the p-GaAs cap layer 14. b, by growing an n-GaAs layer 17 on the p-AlxGa1-xAsAs layer 3 and completely diffusing Zn from above the n-GaAs layer 17, thereby forming an n-GaAs layer 17.
A stripe portion 16 for current injection was formed therein. Znn
There is a diffused stripe structure laser.

Cはp −GaAs cap層1層上4上io2膜等の
絶縁膜23を設ける事により、電流注入用のストライプ
16を形成したレーザである。
C is a laser in which a stripe 16 for current injection is formed by providing an insulating film 23 such as an io2 film on the top layer 4 of the p-GaAs cap layer.

第1図のa ”−Cは、何れもストライプ部16により
、電流が流れる領域を制限し、半導体レーザの発振しき
い値を低減するとともに、活性層A l y G a 
1−y A s層(0≦y(x)12中での発振領域(
以下、活性領域16とする。)’fr:制限して、その
形状効果により、高次横モードの発振全抑え、単−横モ
ード発振が実現される。
In each case, the stripe portion 16 limits the area where current flows, reduces the oscillation threshold of the semiconductor laser, and also reduces the oscillation threshold of the active layer A y Ga in FIG. 1.
1-y As s layer (0≦y(x) oscillation region in 12 (
Hereinafter, this will be referred to as the active region 16. )'fr: Due to its shape effect, high-order transverse mode oscillation is completely suppressed and single-transverse mode oscillation is realized.

しかしながら、上記のストライプ構造を作製する方法に
は、以下に述べる欠点がある。
However, the method for producing the striped structure described above has the following drawbacks.

1 第1図aにおいては、プロトン等のイオンを電磁界
によシ加速し、作製された二重へテロ構造半導体ウェハ
に照射する。この時、半導体ウェハの照射された領域は
、加速されたイオンが通過する事によシ、損傷を受ける
。しかも、活性領域付近、または、活性領域直上付近の
プロトン照射領域に近いところではG a A s層、
G a A I A s層の結晶が損傷ヲ受け、半導体
レーザの電気特性、光学特性、信頼性等を損う。これを
回避するためには、プロトン照射後、高温でアニールを
行なう必要があり、工程が多くなるばかりか、アニール
される層中に、Zn等の熱拡散係数の高いドーパントが
存在すると、これらが動きキャリア濃度の制御性の良い
多層構造が、結果的に得られにくくなる。
1 In FIG. 1a, ions such as protons are accelerated by an electromagnetic field and irradiated onto a fabricated double heterostructure semiconductor wafer. At this time, the irradiated area of the semiconductor wafer is damaged by the passage of the accelerated ions. Moreover, near the active region or near the proton irradiation region directly above the active region, the Ga As layer,
The crystal of the GaAIAs layer is damaged, impairing the electrical characteristics, optical characteristics, reliability, etc. of the semiconductor laser. In order to avoid this, it is necessary to perform annealing at a high temperature after proton irradiation, which not only increases the number of steps but also causes the presence of dopants with high thermal diffusion coefficients such as Zn in the annealed layer. As a result, it becomes difficult to obtain a multilayer structure with good controllability of the moving carrier concentration.

2 第1 図b−r:は、Zn拡散を高温(7ooC〜
a5ot、)で行なう事が多く、各層中のドーパントも
拡散され、p/”接合界面が設計位置よシずれたり、p
 / ”接合が設計通シ形成するのが難しくなる。
2 Figure 1 b-r: Zn diffusion is carried out at high temperature (7ooC ~
a5ot, ), and the dopant in each layer is also diffused, causing the p/” junction interface to shift from the designed position, or p
/ ``Joints become difficult to form according to design.

3 第1図Cでは、A l yG a 1y A s活
性層12での活性領域16が、第1図a、bのスト2イ
フ゛構造を有するレーザに比べて広がるという問題があ
る。これは第1図a、bに比べて、第1図Cの構造は、
ストライプ16による電流狭さくが弱いためである。
3. In FIG. 1C, there is a problem that the active region 16 in the AlyGa 1yAs active layer 12 is wider than in the laser having the two-wave structure of FIGS. 1a and 1b. Compared to Figure 1 a and b, the structure in Figure 1 C is
This is because the current constriction by the stripes 16 is weak.

4 第1図a −cのストライプ構造レーザでは、二重
へテロ構造を含む多層薄膜の結晶成長と、電流狭さく用
のストライプ構造を設ける工程とは別の装置を利用して
作製しており、1つの装置で両方を一度に作製すること
はできない。
4 The striped structure lasers shown in FIGS. 1a to 1c are fabricated using separate equipment for the crystal growth of the multilayer thin film containing the double heterostructure and the process for providing the striped structure for current confinement. It is not possible to produce both at once with one device.

発明の目的 本発明は上記欠点に鑑み、キャリア濃度がよく制御され
、界面で急しゅんな多層構造と強い電流狭さく用ストラ
イプ構造とを1回の結晶成長で形成する半導体レーザ装
置の製造方法を提供するものである。
OBJECTS OF THE INVENTION In view of the above drawbacks, the present invention provides a method for manufacturing a semiconductor laser device in which the carrier concentration is well controlled and a steep multilayer structure and a strong current confining stripe structure are formed at the interface in one crystal growth. It is something to do.

発明の構成 この目的を達成するために本発明の半導体レーザ装置の
製造方法は局部加熱手段を用いながら、二重へテロ構造
を含む多層薄膜結晶成長を行ないその結晶成長層の一部
が単結晶領域で他は多結晶層である薄膜全作製すること
から構成されている。
Structure of the Invention In order to achieve this object, the method for manufacturing a semiconductor laser device of the present invention involves growing a multilayer thin film crystal including a double heterostructure while using local heating means, and forming a part of the crystal growth layer into a single crystal. In some areas, the rest consists of entirely fabricating a thin film, which is a polycrystalline layer.

この構成によって、二重ヘテ占構造及びその結晶層に損
傷を与えることなく、しかも、多結晶薄膜の一部である
単結晶領域が、良好な電流狭さくストライプとなるため
、1回の結晶成長でストライプ構造まで作り込め、低し
きい値で単−横モード発振する半導体レーザ装fl’を
製造する事ができる。
This structure does not damage the double hetero-occupied structure and its crystal layer, and the single crystal region, which is a part of the polycrystalline thin film, forms a good current narrowing stripe. It is possible to manufacture a semiconductor laser device fl' which can be fabricated up to a stripe structure and which oscillates in a single transverse mode at a low threshold value.

実施例の説明 第2図に、本発明により作製した半導体レーザ装置の一
例を示す。具体的に実施例を用いて、本発明の製造方法
を説明する。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows an example of a semiconductor laser device manufactured according to the present invention. The manufacturing method of the present invention will be specifically explained using Examples.

第2図において、n型G a A s単結晶基板10上
にエピタキシャル成長法、すなわち、MOCVD法(有
機金属気相成長方法)、又はMBE法(分子線エピタキ
シャル方法)により、順次−−A I !G a 1−
xA s層11 、 AI、Ga1−yAs層12(。
In FIG. 2, an n-type GaAs single crystal substrate 10 is epitaxially grown, that is, by MOCVD (metal organic chemical vapor deposition) or MBE (molecular beam epitaxial method), sequentially --A I! G a 1-
xAs layer 11, AI, Ga1-yAs layer 12 (.

≦y<x)、p−AI、Ga1.As層13をそれぞれ
単結晶として成長させ、(p型G a A s単結晶基
板10の場合には、その上に順次、p−AlxGa1−
)cAB 層11 、AlyGa、 、Aa層12(0
≦yくχ) −トA ] x Ga 1x A s層1
3をそれぞれ成長させる)その後、基板温度yMOcV
D法の場合は400C,MBE法の場合は、300Cに
下けて、上記二重へテロ構造上に、第3図に示す様にピ
ッチlでストライプ状にレーザビーム又は電子ビームを
あて局部加熱を行ないながら、p−GaAs層26を結
晶成長させる。(p型基板1の場合は、n −G a 
A s層26を成長させる。)局部加熱手段は、そのビ
ーム径を6〜10μmのスポットに絞って高速で走査し
その部分の基板温度を100C〜2oocWd囲よシ高
くして、ストライプ3゛状にレーザビーム又は電子ビー
ムが当たっている箇所の付近は、第2図に示す様に、G
 a A s単結晶領域24となり、当たっていない場
所は、 GaAs+多結晶層26となる。その結果、多
結晶層25の比抵抗が、単結晶領域24の比抵抗より4
桁程度大きくなるため、ストライプ部160幅で電流狭
さくが行なわれ、低しきい値で、単−横モード発撮する
ストライプ構造レーザが得られた。
≦y<x), p-AI, Ga1. Each As layer 13 is grown as a single crystal (in the case of a p-type GaAs single crystal substrate 10, p-AlxGa1-
) cAB layer 11 , AlyGa, , Aa layer 12 (0
≦y×χ) −toA ] x Ga 1x A s layer 1
3) Then, the substrate temperature yMOcV
The temperature is lowered to 400C in the case of the D method and 300C in the case of the MBE method, and a laser beam or electron beam is applied to the double heterostructure in stripes at a pitch l as shown in Figure 3 for local heating. While carrying out these steps, the p-GaAs layer 26 is grown as a crystal. (In the case of p-type substrate 1, n - Ga
The As layer 26 is grown. ) The local heating means narrows the beam diameter to a spot with a diameter of 6 to 10 μm and scans it at high speed, raising the temperature of the substrate in that area by 100 C to 2 OOCW, and the laser beam or electron beam is applied in a 3-degree stripe pattern. As shown in Figure 2, the area around the G
This becomes an aAs single crystal region 24, and the uncontacted area becomes a GaAs+ polycrystalline layer 26. As a result, the specific resistance of the polycrystalline layer 25 is 4
Since the current becomes larger by several orders of magnitude, the current is narrowed by the width of the stripe portion 160, and a striped structure laser that emits light in a single transverse mode with a low threshold value is obtained.

なお、本実施例は、G a A s系−Ga A I 
A s不生導体レーザについて述べたが、Iup系や他
の多元混晶系を含む化合物半導体を材料とする半導体レ
ーザについても同様に適用が可能である。
In addition, in this example, Ga As system-Ga AI
Although the description has been made regarding the As passive conductor laser, the present invention can be similarly applied to semiconductor lasers made of compound semiconductors including Iup systems and other multi-component mixed crystal systems.

発明の効果 以上、本発明によシ、単−横モード発撮するストライプ
構造レーザを作製することができる。
In addition to the effects of the invention, according to the present invention, a striped structure laser that emits light in a single transverse mode can be manufactured.

0 本発明の半導体レーザ装置の製造方法は、S 1 
プロトン照射型ストライプ構造レーザと同等な電流狭さ
くストライプを設ける事ができ、低しきい値レーザが得
られ、 1 2 基板上に成長したエピタキシャル層に損傷を与
える事がなく、レーザの特性や信頼性全損なう事がなく
、 3 従来のストライプ構造に比べ、ストライプを設ける
ためだけの工程が不必要で、1回の結晶成長で、二重へ
テロ構造を含む半導体レーザ作製用多層薄膜とストライ
プ構造を形成する事ができ簡便である。
0 The method for manufacturing a semiconductor laser device of the present invention includes S 1
A current narrowing stripe equivalent to that of a proton irradiation type stripe structure laser can be provided, a low threshold laser can be obtained, and the epitaxial layer grown on the substrate will not be damaged, improving the characteristics and reliability of the laser. 3. Compared to the conventional stripe structure, no process is required just to provide the stripe, and a multilayer thin film for semiconductor laser fabrication including a double heterostructure and a stripe structure can be created in one crystal growth. It is easy to form.

などその実用的効果は大なるものがある。It has great practical effects.

体レーザの断面図、第2図は、本発明の半導体レーザ装
置の製造方法により作製した半導体レーザ装置の断面図
、第3図は同方法において局部加熱手段を用いてストラ
イプ構造をつける方法を説明するための図である。
2 is a cross-sectional view of a semiconductor laser device manufactured by the method of manufacturing a semiconductor laser device of the present invention, and FIG. 3 illustrates a method of forming a stripe structure using local heating means in the same method. This is a diagram for

10−−・−n−GaAs基板(p−GaAs基板)、
11・・・・・・n−A18Ga1−xAB層(p A
 l x G a 1x ”層)、層)、14−・・・
p−GaAs層(n−GaAs層)、16・・・・・・
活性領域、16・・・・・・ストライプ又はストライプ
幅、17・・・・・・n−GaAs層、21・・・・・
・プロトンを照射した高抵抗領域、22・・・・・・Z
n拡散領域、23・・・・・・S z 02膜、24・
・・・・・G a A s単結晶領域、26・・・・・
・G a A s多結晶層、31・・・・・・ストライ
プ状に単結晶を結晶成長させる部分、32・・・・・・
基板上にエピタキシャル成長した半導体ウニ・・。
10---n-GaAs substrate (p-GaAs substrate),
11...n-A18Ga1-xAB layer (p A
l x G a 1x'' layer), layer), 14-...
p-GaAs layer (n-GaAs layer), 16...
Active region, 16...stripe or stripe width, 17...n-GaAs layer, 21...
・High resistance region irradiated with protons, 22...Z
n diffusion region, 23...S z 02 film, 24.
...Ga As single crystal region, 26...
・G a As polycrystalline layer, 31... Part where single crystal is grown in a stripe shape, 32...
Semiconductor sea urchin grown epitaxially on a substrate...

代理人の氏名 弁理士 中 尾 敏 男 ほか1名Ix
1図
Name of agent: Patent attorney Toshio Nakao and one other person Ix
Figure 1

Claims (1)

【特許請求の範囲】[Claims] 二重へテロ構造を含む多層薄膜上に、レーザビーム又は
電子ビームを局部的に照射しながら結晶成長を行い、前
記局部照射した部分に単結晶薄膜、前記局部加熱されな
い部分に多結晶薄膜を形成することを特徴とする半導体
レーザ装置の製造方法。
Crystal growth is performed on a multilayer thin film containing a double heterostructure while locally irradiating a laser beam or an electron beam, and a single crystal thin film is formed in the locally irradiated area and a polycrystalline thin film is formed in the area that is not locally heated. A method of manufacturing a semiconductor laser device, characterized by:
JP19565783A 1983-10-19 1983-10-19 Manufacture of semiconductor laser Granted JPS6086888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19565783A JPS6086888A (en) 1983-10-19 1983-10-19 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19565783A JPS6086888A (en) 1983-10-19 1983-10-19 Manufacture of semiconductor laser

Publications (2)

Publication Number Publication Date
JPS6086888A true JPS6086888A (en) 1985-05-16
JPH0559593B2 JPH0559593B2 (en) 1993-08-31

Family

ID=16344817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19565783A Granted JPS6086888A (en) 1983-10-19 1983-10-19 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6086888A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03297187A (en) * 1990-04-17 1991-12-27 Nec Corp High output semiconductor laser element and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03297187A (en) * 1990-04-17 1991-12-27 Nec Corp High output semiconductor laser element and manufacture thereof

Also Published As

Publication number Publication date
JPH0559593B2 (en) 1993-08-31

Similar Documents

Publication Publication Date Title
US4124826A (en) Current confinement in semiconductor lasers
US5013684A (en) Buried disordering sources in semiconductor structures employing photo induced evaporation enhancement during in situ epitaxial growth
JP2752423B2 (en) Method for diffusing Zn into compound semiconductor
US4716125A (en) Method of producing semiconductor laser
JPS5948976A (en) Semiconductor laser
JPS6086888A (en) Manufacture of semiconductor laser
JPH0846283A (en) Manufacture of semiconductor laser
JPS6086889A (en) Manufacture of semiconductor laser
JPH0430758B2 (en)
JPS63177495A (en) Semiconductor laser device
KR100363240B1 (en) Semiconductor laser diode and its manufacturing method
JP3143105B2 (en) Method for manufacturing semiconductor laser device
JPS6072289A (en) Semiconductor laser device
JPH0414277A (en) Semiconductor laser and its manufacture
JP2538613B2 (en) Semiconductor laser and manufacturing method thereof
TW439335B (en) A semiconductor laser and the fabrication method thereof
JPH0370391B2 (en)
JPS6244715B2 (en)
JPH04206585A (en) Semiconductor laser and manufacture thereof
JPH07162083A (en) Semiconductor laser device and its manufacture
JPH02298090A (en) Semiconductor light-emitting and manufacture thereof
JPS61171185A (en) Semiconductor laser device
JPS6031286A (en) Manufacture of semiconductor laser device
JPS6085587A (en) Semiconductor laser device
JPS6373583A (en) Manufacture of semiconductor laser