JPS6373583A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPS6373583A
JPS6373583A JP21840186A JP21840186A JPS6373583A JP S6373583 A JPS6373583 A JP S6373583A JP 21840186 A JP21840186 A JP 21840186A JP 21840186 A JP21840186 A JP 21840186A JP S6373583 A JPS6373583 A JP S6373583A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
semiconductor
crystal
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21840186A
Other languages
Japanese (ja)
Inventor
Masaaki Jindou
正明 仁道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21840186A priority Critical patent/JPS6373583A/en
Publication of JPS6373583A publication Critical patent/JPS6373583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve reliability, and to enable mass production by diffusing an impurity and controlling a transverse mode in a region, in which the impurity is not diffused, in a current injection section, removing a semiconductor layer in the surface prior to second crystal growth and forming a semiconductor layer containing an active layer. CONSTITUTION:Since a region 4 in which Zn is diffused to a superlattice layer 2 is constituted of P-type Al0.5Ga0.5As, and made transparent to laser beams, and the superlattice layer 2 absorbs laser beams, and takes an N type, current constriction and loss guide type transverse mode control are conducted in the same stripe. The layer structure of a crystal is all shaped in flat planar structure, thus improving reliability. Since a GaAs layer 3 is removed through vapor phase etching prior to second MOVPE growth, a semiconductor layer including an active layer can be laminated onto an extremely clean crystal surface, and crystal dislocation is reduced. An impurity may be diffused in depth that the superlattice layer is penetrated, and the conditions of the control of a diffusion are relaxed extremely, thus utilizing the mass productivity of an MOVPE method without being limited by other processes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザの製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a semiconductor laser.

〔従来の技術〕[Conventional technology]

近年、デジタル・オーディオディスク、ビデオ・ディス
ク等の半導体レーザを用いた光情報処理が、大容量、ラ
ンデムアクセスが可能などの利点のために盛んに用いら
れている。ここで用いられる半導体レーザには、安定な
基本横モードで発振すること、非点収差が小さいことな
どが要求されるが、特に重要なのは量産性に優れること
である。
2. Description of the Related Art In recent years, optical information processing using semiconductor lasers for digital audio discs, video discs, etc. has been widely used because of its advantages such as large capacity and random access. The semiconductor laser used here is required to oscillate in a stable fundamental transverse mode and have small astigmatism, but what is especially important is that it be excellent in mass production.

ここでは、Metal−Organic  Vapor
  Phase  Epitaxy法(以下、MOVP
E法と略記する)を用いたAlGaAs/ G a A
 s半導体レーザを例にとって説明する。
Here, Metal-Organic Vapor
Phase epitaxy method (hereinafter referred to as MOVP)
AlGaAs/G a A using the E method)
This will be explained using an example of an S semiconductor laser.

第3図は、従来の半導体レーザの一例の構成を示す断面
図、(例えば、rIEDM’  83  Procee
dings」、pp292−295参照)、第4図(a
)〜(c)はその製造工程を示す断面図である。この半
導体レーザは、まずn型GaAs基板11上にMOVP
E法によりn型A10.45G a g、55A 5層
12、A I 0.15G a 0−85AS活性層1
3、p型A ] 0.45G a 0−55A 8層1
4、n型GaAs電流ブロック層15を順次積層しく第
4図(a>)、n型GaAs電流ブロック層15を貫通
する満16を選択エツチングにより形成する(第4図(
b))、その後MOVPE法によりp型A 1 g、4
5  G a 0.55A 3層17、p型GaAs層
18を形成しく第4図(’C) ) 、最後にn電極1
9、n電極20を形成して第3図の半導体レーザが完成
する。この半導体レーザは、電流ブロック層15により
電流狭窄を行い、また溝16の領域とその他の領域の実
効的な光吸収率の差によってレーザ光の横モードを基本
モードとしている。
FIG. 3 is a cross-sectional view showing the configuration of an example of a conventional semiconductor laser (for example, rIEDM' 83 Procee
dings”, pp. 292-295), Figure 4 (a
) to (c) are cross-sectional views showing the manufacturing process. This semiconductor laser is first manufactured by MOVP on an n-type GaAs substrate 11.
N-type A10.45G a g, 55A 5 layers 12, AI 0.15G a 0-85AS active layer 1 by E method
3, p-type A] 0.45G a 0-55A 8 layers 1
4. The n-type GaAs current blocking layer 15 is sequentially laminated, and the etching layer 16 penetrating the n-type GaAs current blocking layer 15 is formed by selective etching (FIG. 4(a)).
b)), then p-type A 1 g,4 by MOVPE method
5 Ga 0.55A 3 layer 17, p-type GaAs layer 18 are formed (Fig. 4('C)), and finally n electrode 1 is formed.
9. The n-electrode 20 is formed to complete the semiconductor laser shown in FIG. In this semiconductor laser, the current is constricted by the current blocking layer 15, and the transverse mode of the laser beam is set as the fundamental mode due to the difference in effective light absorption rate between the groove 16 region and other regions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように従来の半導体レーザは、レーザ結晶内に満1
6を含むため、応力が電流注入領域、すなわちレーザ発
振領域に集中し、長期の信頼性に難点がある。また、第
2のMOVPE成長は大気に曝され、酸化したp型A 
I o、45G a o−55A 5層14上に行なわ
れれため、p型A I 0.45G a 0−55As
層17、p型GaAs層18が結晶転移を含んだものと
なり、レーザの信頼性に影響を及ぼす、この酸化がはな
はだしい場合は、レーザ素子のI−V特性において負性
抵抗がみられる。さらに、レーザの製造において、電流
注入のための満16は電流ブロック層15を貫通し、か
つ0.3μm程度の層厚のp型A 10.45G a 
、)、55A s層14を貫通しない程度に行なわれな
ければならないため、涌16形成の制御性、均一性に対
する要求はきわめて厳しく、レーザの量産を妨げている
In this way, conventional semiconductor lasers have a laser crystal with a full
6, stress is concentrated in the current injection region, that is, the laser oscillation region, which poses a problem in long-term reliability. Also, the second MOVPE growth is exposed to the atmosphere and the oxidized p-type A
I o, 45G a o-55A Since it is performed on 5 layers 14, p-type A I 0.45G a 0-55As
The layer 17 and the p-type GaAs layer 18 contain crystal dislocation, which affects the reliability of the laser.If this oxidation is severe, negative resistance is observed in the IV characteristics of the laser device. Furthermore, in manufacturing the laser, a p-type A 10.45G a with a layer thickness of about 0.3 μm is passed through the current blocking layer 15 for current injection.
, ), 55As must be carried out to such an extent that it does not penetrate the S layer 14, so requirements for controllability and uniformity of the formation of the trough 16 are extremely strict, which hinders mass production of lasers.

本発明の目的は、このような問題点を解決し、信頼性が
高く、量産に適した半導体レーザの製造方法を提供する
ことにある。
An object of the present invention is to solve these problems and provide a method for manufacturing a semiconductor laser that is highly reliable and suitable for mass production.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の構成は、第1導電型の半導体基板上に、各層厚
が200Å以下でいずれか一方が第2導電型の第1半導
体層および第2半導体層を交互に積層した超格子層と、
第1導電型の第3半導体層と、活性層と、第2導電型の
第4半導体層とを順次形成し、前記第1半導体層、第3
半導体層、第4半導体層は前記活性層よりもバンドギャ
ップを大きく、前記第2半導体層は前記第1半導体層よ
りもバンドギャップを小さくした半導体レーザの製造方
法において、前記半導体基板上に前記超格子層と第5半
導体層とを順次積層して基板結晶を形成する第1のエピ
タキシャル成長工程と、前記基板結晶上のストライブ状
領域に前記超格子層を貫通する深さまで選択的に第1導
電型の不純物拡散を行う不純物拡散工程と、この不純物
拡散後に前記第5半導体層を除去する工程と、前記第5
半導体層の除去された超格子層上に前記第3半導体層、
前記活性層、前記第4半導体層を順次形成させる第2の
エピタキシャル成長工程とを含むことを特徴とする。
The structure of the present invention includes a superlattice layer in which a first semiconductor layer and a second semiconductor layer, each of which has a thickness of 200 Å or less and one of which is of a second conductivity type, are alternately laminated on a semiconductor substrate of a first conductivity type;
A third semiconductor layer of a first conductivity type, an active layer, and a fourth semiconductor layer of a second conductivity type are sequentially formed;
In the method for manufacturing a semiconductor laser in which a semiconductor layer, a fourth semiconductor layer has a larger band gap than the active layer, and the second semiconductor layer has a smaller band gap than the first semiconductor layer, a first epitaxial growth step of sequentially stacking a lattice layer and a fifth semiconductor layer to form a substrate crystal; and selectively applying a first conductive layer to a stripe-like region on the substrate crystal to a depth penetrating the superlattice layer. an impurity diffusion step of performing a type impurity diffusion; a step of removing the fifth semiconductor layer after the impurity diffusion; and a step of removing the fifth semiconductor layer.
the third semiconductor layer on the superlattice layer from which the semiconductor layer has been removed;
The method is characterized by including a second epitaxial growth step of sequentially forming the active layer and the fourth semiconductor layer.

〔作用〕[Effect]

本発明の半導体レーザの製造方法においては、超格子層
に不純物拡散を行うと組織が平均化されることを利用し
、電流注入部は不純物拡散を行ってレーザ光に対して透
明になるようにし、不純物拡散を行わない領域はレーザ
光を吸収する損失ガイド型の横モード制御を行い、さら
に第2の結晶成長に先立って表面の半導体層を除去して
清浄な結晶表面に活性層を含む半導体層を形成すること
により、信頼性が高く、量産性に適した製造方法が得ら
れる。
In the semiconductor laser manufacturing method of the present invention, the structure is averaged when impurities are diffused into the superlattice layer, and the current injection part is made transparent to laser light by diffusing impurities. In the region where impurity diffusion is not performed, loss-guided transverse mode control is performed to absorb laser light, and prior to the second crystal growth, the semiconductor layer on the surface is removed to form a semiconductor containing an active layer on a clean crystal surface. By forming layers, a manufacturing method that is highly reliable and suitable for mass production can be obtained.

〔実施例〕〔Example〕

次に、本発明を図面により詳細に説明する。 Next, the present invention will be explained in detail with reference to the drawings.

第1図は本発明の実施例により得られる半導体レーザの
構造を示す断面図、第2図(a)〜(d)はその製造方
法を工程順に示し断面図である。はじめに第1のMOV
PE成長を行ってn型GaAs基板1上に、層厚80人
のAlAs層と層厚80人のn型GaA3層を交互に積
層した超格子層2と、GaAs層3とを形成する(第2
図(a))、つぎに、超格子層2ストライプ状に選択Z
n拡散を行なって不純物拡散層4を形成しく第2図(b
))、第2のMOVPE成長に先立ってMOVPE反応
管内で塩化水素、アルシンを用いた気相エツチングを行
なってGaAs層3を除去しく第2図(C))、第2の
MOVPE成長を行ってp型A + 0.450 a 
g、55A s層5.Alo、tsG a O,65A
 S活性層6.n型A ] 0.45G a 0−55
AS層7、n型GaAs層8を形成する(第2図(d)
)、最後にn電極9、n電極10を形成して第1図に示
す半導体レーザが完成する。
FIG. 1 is a sectional view showing the structure of a semiconductor laser obtained according to an embodiment of the present invention, and FIGS. 2(a) to 2(d) are sectional views showing the manufacturing method thereof in order of steps. Introduction 1st MOV
A superlattice layer 2 and a GaAs layer 3 are formed on an n-type GaAs substrate 1 by PE growth, in which an AlAs layer with a thickness of 80 layers and an n-type GaA layer with a thickness of 80 layers are alternately laminated. 2
Figure (a)), then the superlattice layer is selected in two stripes Z
The impurity diffusion layer 4 is formed by performing n-diffusion.
)), prior to the second MOVPE growth, gas phase etching was performed using hydrogen chloride and arsine in the MOVPE reaction tube to remove the GaAs layer 3 (Fig. 2(C)), and the second MOVPE growth was performed. p-type A + 0.450 a
g, 55A s layer 5. Alo, tsG a O, 65A
S active layer 6. n-type A] 0.45G a 0-55
An AS layer 7 and an n-type GaAs layer 8 are formed (Fig. 2(d)).
), and finally an n-electrode 9 and an n-electrode 10 are formed to complete the semiconductor laser shown in FIG.

〔発明の効果〕〔Effect of the invention〕

本実施例の半導体レーザの製造方法によれば、超格子層
2にZn拡散を行った領域4はp型A1a、5G a 
o、5 A sとなり、レーザ光に対して透明となり、
また、超格子層2はレーザ光を吸収し、かつn型である
ため、電流狭窄と損失ガイド型の横モード制御が同一の
ストライプにおいてなされるセルフ・アライン構造にな
っている。さらに、結晶の層構造はすべて平坦なブレー
ナ構造であるため、活性層に余分なストレスがかからず
、信頼性に優れた半導体レーザを得ることができる。さ
らに、第2のMOVPE成長に先立ってGaAs層3を
気相エツチングにより除去するため、きわめて清浄な結
晶表面上に活性層の含む半導体層を積層でき、結晶転位
の少ないレーザ結晶を得ることができる。さらに、不純
物拡散の深さは超格子層を貫通すればよく、拡散の制御
条件はきわめてゆるやかである。ずなわち、MOVPE
法の量産性を他の工程に制限されずに活用することがで
きます。
According to the semiconductor laser manufacturing method of this embodiment, the region 4 in which Zn is diffused into the superlattice layer 2 is p-type A1a, 5G a
o, 5 A s, transparent to laser light,
Furthermore, since the superlattice layer 2 absorbs laser light and is n-type, it has a self-aligned structure in which current confinement and loss-guided transverse mode control are performed in the same stripe. Furthermore, since the crystal layer structure is all a flat Brainer structure, no extra stress is applied to the active layer, making it possible to obtain a highly reliable semiconductor laser. Furthermore, since the GaAs layer 3 is removed by vapor phase etching prior to the second MOVPE growth, the semiconductor layer including the active layer can be stacked on an extremely clean crystal surface, making it possible to obtain a laser crystal with few crystal dislocations. . Furthermore, the depth of impurity diffusion only needs to penetrate the superlattice layer, and the conditions for controlling diffusion are extremely loose. Zunawachi, MOVPE
The mass productivity of the method can be utilized without being restricted to other processes.

なお、本発明の説明において、MOVPE法を用いたA
lGaAs/GaAs半導体レーザを例にとって説明し
たが、MOVPE法以外の法相外長法あるいは分子ビー
ムエピタキシャル法を用いた、他の材料系の半導体レー
ザに本発明が適用できることは言うまでもない。
In addition, in the description of the present invention, A
Although the explanation has been given using a lGaAs/GaAs semiconductor laser as an example, it goes without saying that the present invention can be applied to semiconductor lasers made of other materials using a normal phase outer length method or a molecular beam epitaxial method other than the MOVPE method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例により得られる半導体レーザの
断面図、第2図(a)〜(d)はその製造方法を工程順
に示す断面図、第3図は従来技術による半導体レーザの
一例を示す断面図、第4図(a)〜(C)はその製造方
法を工程順に示す断面図である。 1・・・n型GaAs基板、2・・・超格子層、3・・
・GaAs層、4・・・不純物拡散層、5.14.17
・・・p型A l O,45G a 0.55A 45
層、6 、13・A iO。 +50 a 0.85A S活性層、7.12−n型A
 + 0.45G a o、5sA 5層、8.15−
n型GaAs層、9.20・・・n電極、10.19・
・・p電極、11・・・n型GaAs基板、16−・・
溝、18−n型GaA5層。 茅 1 図 拓 2 回
FIG. 1 is a cross-sectional view of a semiconductor laser obtained by an embodiment of the present invention, FIGS. 2(a) to (d) are cross-sectional views showing the manufacturing method in order of steps, and FIG. 3 is an example of a semiconductor laser according to the prior art. FIGS. 4(a) to 4(C) are cross-sectional views showing the manufacturing method in the order of steps. 1... n-type GaAs substrate, 2... superlattice layer, 3...
・GaAs layer, 4... impurity diffusion layer, 5.14.17
... p-type A l O, 45G a 0.55A 45
Layer, 6, 13·A iO. +50 a 0.85A S active layer, 7.12-n type A
+0.45G ao, 5sA 5 layers, 8.15-
n-type GaAs layer, 9.20...n electrode, 10.19.
...p electrode, 11...n-type GaAs substrate, 16-...
Groove, 18-n-type GaA5 layer. Kaya 1 illustration 2 times

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板上に、各層厚が200Å以下で
いずれか一方が第2導電型の第1半導体層および第2半
導体層を交互に積層した超格子層と、第1導電型の第3
半導体層と、活性層と、第2導電型の第4半導体層とを
順次形成し、前記第1半導体層、第3半導体層、第4半
導体層は前記活性層よりもバンドギャップを大きく、前
記第2半導体層は前記第1半導体層よりもバンドギャッ
プを小さくした半導体レーザの製造方法において、前記
半導体基板上に前記超格子層と第5半導体層とを順次積
層して基板結晶を形成する第1のエピタキシャル成長工
程と、前記基板結晶上のストライプ状領域に前記超格子
層を貫通する深さまで選択的に第1導電型の不純物拡散
を行う不純物拡散工程と、この不純物拡散後に前記第5
半導体層を除去する工程と、前記第5半導体層の除去さ
れた超格子層上に前記第3半導体層、前記活性層、前記
第4半導体層を順次形成させる第2のエピタキシャル成
長工程とを含む半導体レーザの製造方法。
A superlattice layer in which a first semiconductor layer and a second semiconductor layer, each of which has a thickness of 200 Å or less and one of which is a second conductivity type, is alternately laminated on a semiconductor substrate of a first conductivity type; 3
A semiconductor layer, an active layer, and a fourth semiconductor layer of a second conductivity type are sequentially formed, the first semiconductor layer, the third semiconductor layer, and the fourth semiconductor layer having a larger band gap than the active layer; The second semiconductor layer has a bandgap smaller than that of the first semiconductor layer. In the method for manufacturing a semiconductor laser, the superlattice layer and the fifth semiconductor layer are sequentially stacked on the semiconductor substrate to form a substrate crystal. an impurity diffusion step of selectively diffusing a first conductivity type impurity into a striped region on the substrate crystal to a depth penetrating the superlattice layer; and after this impurity diffusion, the fifth
A semiconductor comprising: a step of removing a semiconductor layer; and a second epitaxial growth step of sequentially forming the third semiconductor layer, the active layer, and the fourth semiconductor layer on the removed superlattice layer of the fifth semiconductor layer. Laser manufacturing method.
JP21840186A 1986-09-16 1986-09-16 Manufacture of semiconductor laser Pending JPS6373583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21840186A JPS6373583A (en) 1986-09-16 1986-09-16 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21840186A JPS6373583A (en) 1986-09-16 1986-09-16 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6373583A true JPS6373583A (en) 1988-04-04

Family

ID=16719329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21840186A Pending JPS6373583A (en) 1986-09-16 1986-09-16 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6373583A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758823B2 (en) * 1989-12-21 1995-06-21 ベル コミュニケーションズ リサーチ インコーポレーテッド Geometric doping method and electronic device manufactured by the same method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758823B2 (en) * 1989-12-21 1995-06-21 ベル コミュニケーションズ リサーチ インコーポレーテッド Geometric doping method and electronic device manufactured by the same method

Similar Documents

Publication Publication Date Title
US4932033A (en) Semiconductor laser having a lateral p-n junction utilizing inclined surface and method of manufacturing same
JPH0646669B2 (en) Semiconductor laser and manufacturing method thereof
JPS59129486A (en) Semiconductor laser device and manufacture thereof
JPH07112091B2 (en) Method of manufacturing embedded semiconductor laser
JPS59129473A (en) Semiconductor laser device and manufacture thereof
JPS6381884A (en) Semiconductor laser device and manufacture of the same
JPS6373583A (en) Manufacture of semiconductor laser
JPS6349396B2 (en)
JPS6331190A (en) Semiconductor laser and manufacture thereof
JPS6352479B2 (en)
JPS6331191A (en) Manufacture of semiconductor laser
JPS60137088A (en) Semiconductor laser device
JPS5834988A (en) Manufacture of semiconductor laser
JPS63164284A (en) Semiconductor laser device and manufacture thereof
JPS6086889A (en) Manufacture of semiconductor laser
JPS60189986A (en) Semiconductor laser
JPH08274413A (en) Semiconductor device and its manufacture
JPS63169785A (en) Manufacture of semiconductor laser
JP2538613B2 (en) Semiconductor laser and manufacturing method thereof
JPH0430758B2 (en)
JPH04253389A (en) Semiconductor light emitting element and manufacture thereof
JPH0559593B2 (en)
JPH01166592A (en) Semiconductor laser element
JPS63169786A (en) Semiconductor laser device
JPH04130692A (en) Semiconductor laser and manufacture thereof