JPS63169785A - Manufacture of semiconductor laser - Google Patents

Manufacture of semiconductor laser

Info

Publication number
JPS63169785A
JPS63169785A JP206787A JP206787A JPS63169785A JP S63169785 A JPS63169785 A JP S63169785A JP 206787 A JP206787 A JP 206787A JP 206787 A JP206787 A JP 206787A JP S63169785 A JPS63169785 A JP S63169785A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor
semiconductor laser
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP206787A
Other languages
Japanese (ja)
Inventor
Masaaki Nidou
正明 仁道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP206787A priority Critical patent/JPS63169785A/en
Publication of JPS63169785A publication Critical patent/JPS63169785A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser which has low oscillation threshold value and high reliability by averaging the composition a superlattice layer to become an active region except a stripelike region by an impurity diffusing or ion implanting process. CONSTITUTION:An N-type Al0.45Ga0.55As layer 2, a superlattice layer 3 in which an AlAs layer and a GaAs layer are alternately laminated, a P-type Al0.45Ga0.55 As layer 4 and a P-type GaAs layer 5 are sequentially formed on an N-type GaAs substrate 1 by a first MOVPE growth. Then, with an SiO2 film as a mask a stripelike region remains, a Zn-diffused layer 6 of the depth arriving at the layer 3 is formed, and the composition of the layer 3 is averaged. Thereafter, with an SiO2 film 10 as a mask it is selectively etched to the depth which does not arrive at the layer 3 to form a mesa 11. Further, an N-type GaAs 7 is formed by a second MOVPE growth, and a P-type electrode and an N-type electrode are eventually formed. According to this method, a semiconductor laser having lower oscillation threshold and high reliability can be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、動作電流が低く、放射ビームの横断面形状が
円形に近い半導体レーザを高い量産性で得ることのでき
る半導体レーザの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method of manufacturing a semiconductor laser that can produce a semiconductor laser with a low operating current and a radiation beam whose cross-sectional shape is close to circular with high mass productivity. .

(従来の技術) ここでは、有機金属気相成長法(シ完1−Organi
cV1−0r Phase Epitaxy法、以下M
OVPE法と略記する)を用いたAJIGaAs/Ga
As半導体レーザを例にとって説明する。第3図は、従
来技術による半導体レーザの構造(たとえばIEDM 
’83 Proceedingspp292−295 
’)を示す断面図、第4図はその製造工程を示す断面図
である。n型GaAs基板12上にMOVPE法により
n型All a 、 a gGas 、 @ JIB層
13、AQ e 、 15GJle、sJS活性層14
、p型AQ * 、 a gGas 、 s sAs層
15、n型GaAs電流ブロック層16を順次積層しく
第4図(a))、n型GaAs電流ブロック層16を貫
通する溝17を選択エツチングにより形成する(第4図
(b))、その後、MOVPE法によりp型AJI @
 、 4 BGa、、、、As層18、p型GaAs層
19を形成しく第4図(C))、最後にp電極20、n
t電極21形成して第3図の半導体レーザは完成する(
第3図)、電流ブロック層16により電流狭窄を行ない
、また溝17の領域とその他の領域の実効的な屈折率お
よび光吸収率の差によってレーザ光の横モードを基本モ
ードとしている。
(Prior art) Here, metal organic vapor phase epitaxy
cV1-0r Phase Epitaxy method, hereinafter M
AJI GaAs/Ga using OVPE method)
This will be explained by taking an As semiconductor laser as an example. FIG. 3 shows the structure of a semiconductor laser according to the prior art (for example, an IEDM).
'83 Proceedings spp292-295
'), and FIG. 4 is a cross-sectional view showing the manufacturing process. An n-type All a , a gGas , @JIB layer 13 , AQ e , 15GJle, and sJS active layer 14 are formed on an n-type GaAs substrate 12 by the MOVPE method.
, p-type AQ*, agGas, ssAs layer 15, and n-type GaAs current blocking layer 16 are sequentially laminated (FIG. 4(a)), and a groove 17 penetrating the n-type GaAs current blocking layer 16 is formed by selective etching. (Fig. 4(b)), and then p-type AJI@
, 4 BGa,..., As layer 18, p-type GaAs layer 19 are formed (FIG. 4(C)), and finally p electrode 20, n
The semiconductor laser shown in FIG. 3 is completed by forming the t-electrode 21 (
(FIG. 3), current confinement is performed by the current blocking layer 16, and the transverse mode of the laser beam is set as the fundamental mode due to the difference in effective refractive index and light absorption rate between the region of the groove 17 and other regions.

(発明が解決しようとする問題点) この半導体レーザは、溝17に接する領域においてレー
ザ光が大きな吸収を受けるから、横モードは安定するが
、その反面、発振閾値はそれほど小さくできず、また外
部微分量子効率も低い、しきい値が最低になるように溝
17の幅を決めればレーザビームは活性層に垂直方向に
長い楕円形になってしまう、また、電流狭窄については
、溝17に接するp型All * 、 a 5Gas 
、 s iAsAs層化5いて電流が広がってしまうか
ら、発振閾値を小さくするためにはp型AJI e 、
 a 5GJi* 、 s 1Asya15を薄くする
必要があるが、この時レーザ光はさらに大きい吸収を受
けるので、発振閾値は下がらない、さらに、従来の製造
方法ではp型u*、asGae、5sA9J11B及び
p型GaAs層19は大気にさらされ酸化したp型Aj
lo、asGae、asAs層15上に形成されるから
、成長層は結晶転位をふくんだものとなり、p型Ajl
e、 4sGa*、 aaAs層15の酸化がはなはだ
しい場合は、レーザの電流−電圧特性に負性抵抗が見ら
れる。
(Problems to be Solved by the Invention) In this semiconductor laser, the laser beam is largely absorbed in the region in contact with the groove 17, so the transverse mode is stabilized, but on the other hand, the oscillation threshold cannot be made very small, and The differential quantum efficiency is also low.If the width of the groove 17 is determined so that the threshold value is the minimum, the laser beam will become an elongated ellipse in the direction perpendicular to the active layer.In addition, regarding current confinement, the laser beam will be in contact with the groove 17. p-type All*, a5Gas
, s iAsAs layering 5 causes the current to spread, so in order to reduce the oscillation threshold, p-type AJI e ,
It is necessary to make a 5GJi*, s 1Asya15 thinner, but at this time the laser light undergoes even greater absorption, so the oscillation threshold does not decrease.Furthermore, with conventional manufacturing methods, p-type u*, asGae, 5sA9J11B and p-type The GaAs layer 19 is a p-type Aj that is exposed to the atmosphere and oxidized.
Since it is formed on the lo, asGae, and asAs layers 15, the growth layer contains crystal dislocations, and the p-type Ajl
e, 4sGa*, aaIf the oxidation of the aaAs layer 15 is severe, negative resistance is observed in the current-voltage characteristics of the laser.

そこで、本発明の目的は、基本横モードで発振し、発振
閾値が低く、信頼性が高い半導体レーザが得られる方法
の提供にある。
Therefore, an object of the present invention is to provide a method for obtaining a semiconductor laser that oscillates in the fundamental transverse mode, has a low oscillation threshold, and is highly reliable.

(問題点を解決するための手段) 本発明の半導体レーザの製造方法は、第1導電型の半導
体基板上に、第1導電型の第1半導体層と、前記第1半
導体層よりもバンドギャップの小さい活性層とこの活性
層よりもバンドギャップの大きい第2半導体層とを交互
に積層してなり前記活性層および第2半導体層の層厚が
いずれも200Å以下である超格子層と、前記活性層よ
りもバンドギャップが大きい第2導電型の第3半導体層
とを順次に成長して半導体基板結晶を形成する第1の結
晶成長工程と、前記半導体基板結晶のストライプ状の領
域以外の領域に前記超格子層に達する深さまで第2導電
型の不純物の拡散またはイオンの注入を行なって前記超
格子層の組成を平均化する工程と、前記ストライプ状の
領域を残して前記第3半導体層を貫通しないでこの第3
半導体層の途中に到る深きまで選択的にエツチングを行
なうエツチング工程と、前記ストライプ状の領域以外の
領域に選択的に高抵抗または第1導電型の半導体層を含
む半導体層を形成する第2の結晶成長工程とを含むこと
を特徴とする。
(Means for Solving the Problems) A method for manufacturing a semiconductor laser according to the present invention includes forming a first semiconductor layer of a first conductivity type on a semiconductor substrate of a first conductivity type; a superlattice layer formed by alternately stacking an active layer with a small bandgap and a second semiconductor layer with a larger band gap than the active layer, wherein the active layer and the second semiconductor layer each have a layer thickness of 200 Å or less; a first crystal growth step of forming a semiconductor substrate crystal by sequentially growing a third semiconductor layer of a second conductivity type having a larger band gap than the active layer; and a region other than the striped region of the semiconductor substrate crystal. a step of averaging the composition of the superlattice layer by diffusing impurities of a second conductivity type or implanting ions to a depth reaching the superlattice layer; This third without penetrating
an etching step for selectively etching to a depth halfway through the semiconductor layer; and a second step for selectively forming a semiconductor layer including a high resistance or first conductivity type semiconductor layer in areas other than the striped area. and a crystal growth step.

(作用) 本発明では、活性領域となる超格子層は、ストライプ状
の領域を除いて、不純物拡散またはイオン注入のプロセ
スによって組成を平均化する。このように形成された平
均化層より超格子層のほうが屈折率が高いから、本発明
の方法で形成きれる半導体レーザにおいては活性領域に
水平方向に屈折率のステップが形成される。すなわち、
この半導体レーザでは、レーザ光は水平および垂直の双
方から屈折率差により活性領域に導波され、レーザビー
ムを円形にすることができる。また、第1導電型の不純
物拡散またはイオン注入された領域は第1導電型の半導
体層と接するからサイリスクを形成し、活性領域に効果
的に電流狭窄を行なうことができる。
(Function) In the present invention, the composition of the superlattice layer serving as the active region is averaged by an impurity diffusion or ion implantation process, except for the striped region. Since the superlattice layer has a higher refractive index than the averaging layer formed in this way, in the semiconductor laser that can be formed by the method of the present invention, a step in the refractive index is formed in the horizontal direction in the active region. That is,
In this semiconductor laser, laser light is guided into the active region both horizontally and vertically due to the difference in refractive index, making it possible to form a circular laser beam. Further, since the region into which impurities of the first conductivity type are diffused or ions are implanted is in contact with the semiconductor layer of the first conductivity type, a silicon risk is formed, and current can be effectively constricted in the active region.

(実施例) 第1図は、本発明にかかる半導体レーザの製造方法によ
ってえられる半導体レーザの構造の一例を示す断面図、
第2図(1m)〜(d)はその製法を示す工程図である
。はじめに第1のMOVPE成長を行なってn型GaA
s基板1上にn型A11o、4gGa*、gsAs層2
、層厚80人のAjlAs層と層厚80人のGaAs1
lを交互に積層した超格子層3、p型Ajls、 4s
Ga*、 11A!S層4、p型GaAsM5を順次形
成する(第2!50(a))、−qぎに、5i0*膜1
0をマスクとしテストライプ状の領域を残して超格子層
3に達する深さのZn拡散層6を形成し、超格子層3の
組成を平均化する(第2図(b))、この後、SiO□
膜10をマスクとして超格子層3に達しない深きまで選
択エツチングを行なってメサ11を形成する(第2図(
C))、さらに第2のMOVPE成長を行なってn型G
aAs 7を形成しく第2図(d))、最後にp電!8
、nt電極を形成して半導体レーザは完成する(第1図
)。
(Example) FIG. 1 is a cross-sectional view showing an example of the structure of a semiconductor laser obtained by the method of manufacturing a semiconductor laser according to the present invention;
FIGS. 2(1m) to 2(d) are process diagrams showing the manufacturing method. First, a first MOVPE growth is performed to grow n-type GaA.
n-type A11o, 4gGa*, gsAs layer 2 on s-substrate 1
, AjlAs layer with a layer thickness of 80 people and GaAs1 layer with a layer thickness of 80 people.
superlattice layer 3, p-type Ajls, 4s
Ga*, 11A! S layer 4 and p-type GaAsM5 are sequentially formed (2nd!50(a)), -q, 5i0* film 1
0 as a mask, a Zn diffusion layer 6 is formed deep enough to reach the superlattice layer 3, leaving a stripe-shaped region, and the composition of the superlattice layer 3 is averaged (Fig. 2(b)). , SiO□
Using the film 10 as a mask, selective etching is performed to a depth that does not reach the superlattice layer 3 to form a mesa 11 (see FIG. 2).
C)), and further performs a second MOVPE growth to form n-type G.
aAs 7 is formed (Fig. 2(d)), and finally a p-electrode! 8
, nt electrodes are formed to complete the semiconductor laser (FIG. 1).

本発明を適用して製造した第1図の半導体レーザにおい
ては、超格子層3よりもZn拡散を行なって超格子HJ
3のm成を平均化したZn拡散層6の方が屈折率が小さ
くなるから活性領域の水平方向に屈折率差がつく、その
ため、活性層水平方向と垂直方向の双方が屈折率ガイド
される構造であり、非点収差が小さく、かつ安定な基本
横モードとなる。Zn拡散の幅を制御することによりレ
ーザビームの横断面形状を円形にすることもできる。ま
た、n型Ajl*、asGao、5gAs層2、Zn拡
散層6、n型GaAs 7はN−P−Nサイリスクを形
成するから、電流ブロック層となる。したがって、第1
図の半導体レーザにおいてはキャリアと光の双方が効果
的に活性領域に閉じ込められ、発振閾値が低く、かつ高
い光出力まで安定な基本横モード発振を行なうことがで
きる。さらに、本発明の製造工程において活性領域が大
気にさらされ酸化することがなく、高い信頼性の半導体
レーザを得ることができる。 なお、本発明の説明にお
いて、MOVPE法を用いたAjlGaAs/GaAs
半導体レーザを例にとって説明したが、MOVPE法以
外の法相外長法あるいは分子ビームエピタキシャル法を
用いた、他の材料系の半導体レーザに本発明が適用でき
ることは言うまでもない。
In the semiconductor laser of FIG. 1 manufactured by applying the present invention, Zn is diffused from the superlattice layer 3 to form the superlattice HJ.
Since the refractive index of the Zn diffused layer 6, which averages the m composition of 3, is smaller, there is a difference in the refractive index in the horizontal direction of the active region.Therefore, the active layer is guided in both the horizontal and vertical directions. This structure has small astigmatism and a stable fundamental transverse mode. By controlling the width of Zn diffusion, the cross-sectional shape of the laser beam can also be made circular. Furthermore, since the n-type Ajl*, asGao, 5gAs layer 2, Zn diffusion layer 6, and n-type GaAs 7 form an NPN silicon layer, they become a current blocking layer. Therefore, the first
In the semiconductor laser shown in the figure, both carriers and light are effectively confined in the active region, the oscillation threshold is low, and stable fundamental transverse mode oscillation can be performed up to a high optical output. Furthermore, in the manufacturing process of the present invention, the active region is not exposed to the atmosphere and oxidized, making it possible to obtain a highly reliable semiconductor laser. In addition, in the description of the present invention, AjlGaAs/GaAs using the MOVPE method
Although the present invention has been explained using a semiconductor laser as an example, it goes without saying that the present invention can be applied to semiconductor lasers made of other materials using a normal phase outer length method or a molecular beam epitaxial method other than the MOVPE method.

(発明の効果) 以上に説明したように、本発明の方法によれば、基本横
モードで発振し、発振閾値が低く、信頼性が高い半導体
レーザが製造できる。
(Effects of the Invention) As described above, according to the method of the present invention, a semiconductor laser that oscillates in the fundamental transverse mode, has a low oscillation threshold, and is highly reliable can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1IyJは本発明の製造方法により得られる半導体レ
ーザの一例を示す断面図、第2図はその製造方法の一例
を示す工程図、第3図は従来技術による半導体レーザの
構造の一例を示す断面図、第4図は第3図の構造の製造
方法を示す工程図である。 1 、12・・・n型GaAs基板、2 、13・・・
n型M8.。 Gae1gJ3層、3・・・超格子層、4 、15 、
1g”−p型Aj)o、asGao、5gAs層、5 
、19−p型GaAs層、6・・・不純物拡散層、7,
16=n型GaAs暦、8 、20−p電極、9 、2
1・・・n電極、10・・・5tOa膜、11・/’す
、14”’/’Jle、taGa*、aiAS活性層、
17川溝。
1IyJ is a cross-sectional view showing an example of a semiconductor laser obtained by the manufacturing method of the present invention, FIG. 2 is a process diagram showing an example of the manufacturing method, and FIG. 3 is a cross-sectional view showing an example of the structure of a semiconductor laser according to the prior art. 4 are process diagrams showing a method of manufacturing the structure shown in FIG. 3. 1, 12... n-type GaAs substrate, 2, 13...
n-type M8. . Gae1gJ3 layer, 3... superlattice layer, 4, 15,
1g”-p type Aj)o, asGao, 5gAs layer, 5
, 19-p-type GaAs layer, 6... impurity diffusion layer, 7,
16=n-type GaAs calendar, 8, 20-p electrode, 9, 2
1...n electrode, 10...5tOa film, 11/'su, 14'''/'Jle, taGa*, aiAS active layer,
17 river ditch.

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板上に、第1導電型の第1半導体
層と、前記第1半導体層よりもバンドギャップの小さい
活性層とこの活性層よりもバンドギャップの大きい第2
半導体層とを交互に積層してなり前記活性層および第2
半導体層の層厚がいずれも200Å以下である超格子層
と、前記活性層よりもバンドギャップが大きい第2導電
型の第3半導体層とを順次に成長して半導体基板結晶を
形成する第1の結晶成長工程と、前記半導体基板結晶の
ストライプ状の領域以外の領域に前記超格子層に達する
深さまで第2導電型の不純物の拡散またはイオンの注入
を行なって前記超格子層の組成を平均化する工程と、前
記ストライプ状の領域を残して前記第3半導体層を貫通
しないでこの第3半導体層の途中に到る深さまで選択的
にエッチングを行なうエッチング工程と、前記ストライ
プ状の領域以外の領域に選択的に高抵抗または第1導電
型の半導体層を含む半導体層を形成する第2の結晶成長
工程とを含むことを特徴とする半導体レーザの製造方法
A first semiconductor layer of a first conductivity type, an active layer having a smaller bandgap than the first semiconductor layer, and a second semiconductor layer having a larger bandgap than the active layer are formed on a semiconductor substrate of a first conductivity type.
The active layer and the second semiconductor layer are alternately laminated with semiconductor layers.
A first semiconductor substrate crystal is formed by sequentially growing a superlattice layer in which each of the semiconductor layers has a thickness of 200 Å or less and a third semiconductor layer of a second conductivity type having a larger band gap than the active layer. and averaging the composition of the superlattice layer by diffusing impurities of a second conductivity type or implanting ions into regions other than the striped regions of the semiconductor substrate crystal to a depth that reaches the superlattice layer. an etching step of etching selectively to a depth halfway through the third semiconductor layer without penetrating the third semiconductor layer while leaving the striped region; a second crystal growth step of selectively forming a semiconductor layer including a high resistance or first conductivity type semiconductor layer in the region.
JP206787A 1987-01-07 1987-01-07 Manufacture of semiconductor laser Pending JPS63169785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP206787A JPS63169785A (en) 1987-01-07 1987-01-07 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP206787A JPS63169785A (en) 1987-01-07 1987-01-07 Manufacture of semiconductor laser

Publications (1)

Publication Number Publication Date
JPS63169785A true JPS63169785A (en) 1988-07-13

Family

ID=11518999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP206787A Pending JPS63169785A (en) 1987-01-07 1987-01-07 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS63169785A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482594A (en) * 1987-09-24 1989-03-28 Mitsubishi Electric Corp Semiconductor laser device and manufacture thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482594A (en) * 1987-09-24 1989-03-28 Mitsubishi Electric Corp Semiconductor laser device and manufacture thereof

Similar Documents

Publication Publication Date Title
US4932033A (en) Semiconductor laser having a lateral p-n junction utilizing inclined surface and method of manufacturing same
GB2046983A (en) Semiconductor lasers
JPS62205681A (en) Manufacture of embedded type semiconductor laser
JPS63169785A (en) Manufacture of semiconductor laser
JPH0846283A (en) Manufacture of semiconductor laser
JPH05129721A (en) Semiconductor laser and manufacture thereof
JPS6077482A (en) Manufacture of semiconductor laser
JPH01186688A (en) Semiconductor laser device
JPS63193573A (en) Waveguide type phototransistor
JPS63164284A (en) Semiconductor laser device and manufacture thereof
JPS6035591A (en) High performance semiconductor laser device and manufacture thereof
JPS6373583A (en) Manufacture of semiconductor laser
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JPH02240988A (en) Semiconductor laser
JPH04206585A (en) Semiconductor laser and manufacture thereof
JPH02114583A (en) Manufacture of semiconductor laser
JPS60189280A (en) Manufacture of semiconductor laser
JPS62145793A (en) Semiconductor device
JPH0370391B2 (en)
JPS59222984A (en) Semiconductor laser device
JPH01140789A (en) Semiconductor laser
JPH06302909A (en) Semiconductor laser device
JPH027489A (en) Semiconductor laser
JPS60189984A (en) Semiconductor laser and manufacture thereof
JPH02250386A (en) Manufacture of semiconductor laser