JPH0559593B2 - - Google Patents

Info

Publication number
JPH0559593B2
JPH0559593B2 JP19565783A JP19565783A JPH0559593B2 JP H0559593 B2 JPH0559593 B2 JP H0559593B2 JP 19565783 A JP19565783 A JP 19565783A JP 19565783 A JP19565783 A JP 19565783A JP H0559593 B2 JPH0559593 B2 JP H0559593B2
Authority
JP
Japan
Prior art keywords
layer
gaas
stripe
semiconductor laser
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19565783A
Other languages
Japanese (ja)
Other versions
JPS6086888A (en
Inventor
Akio Yoshikawa
Masaru Kazumura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19565783A priority Critical patent/JPS6086888A/en
Publication of JPS6086888A publication Critical patent/JPS6086888A/en
Publication of JPH0559593B2 publication Critical patent/JPH0559593B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はデイジタル・オーデイオ・デイスク、
ビデオデイスク等のコヒーレント光源を始めとし
て、各種電子機器の光源として、用いられる半導
体レーザ装置に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a digital audio disk,
The present invention relates to a semiconductor laser device used as a light source for various electronic devices, including coherent light sources for video disks and the like.

従来例の構成とその問題点 電子機器の光源として、半導体レーザに要求さ
れるものの1つとして、単一スポツトでの発振、
すなわち、単一横モード発振がある。これを実現
するためには、活性領域付近に、光と電流を閉じ
込める必要がある。光の閉じ込めに関しては、二
重ヘテロ構造で活性層をはさみ、それと垂直な方
向にも屈折率差を設けて閉じ込めたり、或いは、
活性層中の一部に電流が流れる様にして、光増幅
率に活性層中で分布を持たせて閉じ込める方法が
ある。
Conventional structure and its problems One of the requirements for a semiconductor laser as a light source for electronic equipment is oscillation at a single spot,
That is, there is single transverse mode oscillation. To achieve this, it is necessary to confine light and current near the active region. Regarding light confinement, the active layer is sandwiched between double heterostructures and a refractive index difference is created in the direction perpendicular to the active layer to confine the light, or
There is a method of confining the optical amplification factor with a distribution in the active layer by allowing a current to flow through a part of the active layer.

電流の閉じ込め、つまりキヤリアの閉じ込めに
関しては、二重ヘテロ構造で活性層をはさみ、半
導体中の電子のエネルギーバンドの構造により閉
じ込め、二重ヘテロ構造と垂直な方向では、活性
領域付近にのみ電流が流れる様に、ストライプ状
の電流狭さく領域を設けるのが通常の方法であ
る。
Regarding current confinement, that is, carrier confinement, the active layer is sandwiched between double heterostructures, and the structure of the energy band of electrons in the semiconductor confines the current. A common method is to provide a striped current confinement region to allow the current to flow.

第1図に、従来の代表的なストライプ構造レー
ザを示す。これらの図において、10はn+
GaAs基板、11はn−AlxGa1-xAs層、12は
AlyGa1-yAs(oy<x)層、13はp−Alx
Ga1-xAs層、14はp−GaAs層、15は活性領
域、16はストライプ部、17はn−GaAs層、
21はプロトンを照射した高抵抗領域、22は
Zn拡散領域、23はSiO2膜である。aはp+
GaAsキヤツプ層14の上から、プロトンを照射
する事により、ストライプ部16を形成したレー
ザである。bは、p−AlxGa1-xAs層13上に、
n−GaAs層17を成長し、n−GaAs17上か
らZnを拡散する事により、n−GaAs層17中に
電流注入用のストライプ部16を形成した、Zn
拡散形ストライプ構造レーザである。cはp+
GaAs cap層14上にSiO2膜等の絶縁膜23を設
ける事により、電流注入用のストライプ16を形
成したレーザである。
FIG. 1 shows a typical conventional striped structure laser. In these figures, 10 is n +
GaAs substrate, 11 is n-Al x Ga 1-x As layer, 12 is
Al y Ga 1-y As (oy<x) layer, 13 is p-Al x
Ga 1-x As layer, 14 p-GaAs layer, 15 active region, 16 stripe portion, 17 n-GaAs layer,
21 is a high resistance region irradiated with protons, and 22 is a high resistance region irradiated with protons.
The Zn diffusion region 23 is a SiO 2 film. a is p +
This laser forms the stripe portion 16 by irradiating protons from above the GaAs cap layer 14. b is on the p-Al x Ga 1-x As layer 13,
A striped portion 16 for current injection is formed in the n-GaAs layer 17 by growing an n-GaAs layer 17 and diffusing Zn from above the n-GaAs 17.
This is a diffused stripe structure laser. c is p +
This is a laser in which a stripe 16 for current injection is formed by providing an insulating film 23 such as a SiO 2 film on the GaAs cap layer 14.

第1図のa〜cは、何れもストライプ部16に
より、電流が流れる領域を制限し、半導体レーザ
の発振しきい値を低減するとともに、活性層Aly
Ga1-yAs層(o≦y<x)12中での発振領域
(以下、活性領域15とする。)を制限して、その
形状効果により、高次横モードの発振を抑え、単
一横モード発振が実現される。
In each of a to c of FIG. 1, the stripe portion 16 restricts the area through which current flows, reduces the oscillation threshold of the semiconductor laser, and also reduces the active layer Al y
The oscillation region (hereinafter referred to as the active region 15) in the Ga 1-y As layer (o≦y<x) 12 is restricted, and its shape effect suppresses the oscillation of higher-order transverse modes, resulting in a single Transverse mode oscillation is realized.

しかしながら、上記のストライプ構造を作製す
る方法には、以下に述べる欠点がある。
However, the method for producing the striped structure described above has the following drawbacks.

1 第1図aにおいては、プロトン等のイオンを
電磁界により加速し、作製された二重ヘテロ構
造半導体ウエハに照射する。この時、半導体ウ
エハの照射された領域は、加速されたイオンが
通過する事により、損傷を受ける。しかも、活
性領域付近、または、活性領域直上付近のプロ
トン照射領域に近いところではGaAa層、
GaAlAs層の結晶が損傷を受け、半導体レーザ
の電気特性、光学特性、信頼性等を損う。
1 In FIG. 1a, ions such as protons are accelerated by an electromagnetic field and irradiated onto a fabricated double heterostructure semiconductor wafer. At this time, the irradiated area of the semiconductor wafer is damaged by the accelerated ions passing through it. Moreover, near the active region or near the proton irradiation region directly above the active region, the GaAa layer
The crystal of the GaAlAs layer is damaged, impairing the electrical characteristics, optical characteristics, reliability, etc. of the semiconductor laser.

2 第1図bでは、Zn拡散を高温(700℃〜850
℃)で行なう事が多く、各層中のドーパントも
拡散され、p/n接合界面が設計位置よりずれ
たり、p/n接合が設計通り形状するのが難し
くなる。
2 In Figure 1b, Zn diffusion is carried out at high temperature (700℃~850℃).
C), and the dopants in each layer are also diffused, causing the p/n junction interface to shift from the designed position and making it difficult to shape the p/n junction as designed.

3 第1図cでは、AlyGa1-yAs活性層12での
活性領域15が、第1図a,bのストライプ構
造を有するレーザに比べて広がるという問題が
ある。これは第1図a,bに比べて、第1図c
の構造は、ストライプ16による電流狭さくが
弱いためである。
3. In FIG. 1c, there is a problem that the active region 15 in the Al y Ga 1-y As active layer 12 is wider than in the laser having the stripe structure in FIGS. 1a and 1b. This is compared to Figure 1 a and b, and Figure 1 c
This is because the current confinement by the stripes 16 is weak in the structure shown in FIG.

4 第1図a〜cのストライプ構造レーザでは、
二重ヘテロ構造を含む多層薄膜の結晶成長と、
電流狭さく用のストライプ構造を設ける工程と
は別の装置を利用して作製しており、1つの装
置で両方を一度に作製することはできない。
4 In the stripe structure lasers shown in Figures 1 a to c,
Crystal growth of multilayer thin films containing double heterostructures,
It is manufactured using a separate device from the step of providing the stripe structure for current confinement, and it is not possible to manufacture both at the same time with one device.

発明の目的 本発明は上記欠点に鑑み、キヤリア濃度がよく
制御され、界面で急しゆんな多層構造と強い電流
狭さく用ストライプ構造とを1回の結晶成長で形
成する半導体レーザ装置の製造方法を提供するも
のである。
Purpose of the Invention In view of the above-mentioned drawbacks, the present invention provides a method for manufacturing a semiconductor laser device in which the carrier concentration is well controlled, and a multilayer structure with a sudden drop at the interface and a strong current confining stripe structure are formed in one crystal growth. This is what we provide.

発明の構成 この目的を達成するために本発明の半導体レー
ザ装置の製造方法は局部加熱手段を用いながら、
二重ヘテロ構造を含む多層薄膜結晶成長を行ない
その結晶成長層の一部が単結晶領域で他は多結晶
層である薄膜を作製することから構成されてい
る。この構成によつて、二重ヘテロ構造及びその
結晶層に損傷を与えることなく、しかも、多結晶
薄膜の一部である単結晶領域が、良好な電流狭さ
くストライプとなるため、1回の結晶成長でスト
ライプ構造まで作り込め、低しきい値で単一横モ
ード発振する半導体レーザ装置を製造する事がで
きる。
Structure of the Invention In order to achieve this object, the method for manufacturing a semiconductor laser device of the present invention uses local heating means, and
It consists of producing a thin film in which a part of the crystal growth layer is a single crystal region and the other part is a polycrystalline layer by performing multilayer thin film crystal growth including a double heterostructure. With this configuration, the double heterostructure and its crystal layers are not damaged, and the single crystal region that is part of the polycrystalline thin film forms a good current narrowing stripe, allowing one crystal growth. It is possible to fabricate up to a stripe structure using this method, and to manufacture a semiconductor laser device that oscillates in a single transverse mode at a low threshold.

実施例の説明 第2図に、本発明により作製した半導体レーザ
装置の一例を示す。具体的に実施例を用いて、本
発明の製造方法を説明する。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows an example of a semiconductor laser device manufactured according to the present invention. The manufacturing method of the present invention will be specifically explained using Examples.

第2図において、n型GaAs単結晶基板10上
にエピタキシヤル成長法、すなわち、MOCVD
法(有機金属気相成長方法)、又はMBE法(分子
線エピタキシヤル方法)により、順次n−Alx
Gs1-xAs層11、AlyGa1-yAs層12(o≦y<
x)、p−AlxGa1-xAs層13をそれぞれ単結晶と
して成長させ、(p型GaAs単結晶基板10の場
合には、その上に順次、p−AlxGs1-xAs層11、
AlyGa1-yAs層12(o≦y<x)、n−AlxGa1-x
As層13をそれぞれ成長させる)その後、基板
温度をMOCVD法の場合は400℃、MBE法の場合
は、300℃に下げて、上記二重ヘテロ構造上に、
第3図に示す様にピツチ1でストライプ状にレー
ザビーム又は電子ビームをあて局部加熱を行ない
ながら、p−GaAs層25を結晶成長させる。
(p型基板10の場合は、n−GaAs層25を成
長させる。)局部加熱手段は、そのビーム径を5
〜10μmのスポツトに絞つて高速で走査しその部
分の基板温度を100℃〜200℃周囲より高くして、
ストライプ31状にレーザビーム又は電子ビーム
が当たつている箇所の付近は、第2図に示す様
に、GaAs単結晶領域24となり、当たつていな
い場所は、GaAs多結晶層25となる。その結
果、多結晶層25の比抵抗が、単結晶領域24の
比抵抗より4桁程度大きくなるため、ストライプ
部16の幅で電流狭さくが行なわれ、低しきい値
で、単一横モード発振するストライプ構造レーザ
が得られた。
In FIG. 2, an epitaxial growth method, that is, MOCVD, is performed on an n-type GaAs single crystal substrate 10.
(metal-organic vapor phase epitaxy method ) or MBE method (molecular beam epitaxial method)
Gs 1-x As layer 11, Al y Ga 1-y As layer 12 (o≦y<
x), the p-Al x Ga 1-x As layer 13 is grown as a single crystal, and (in the case of the p-type GaAs single crystal substrate 10, the p-Al x Gs 1-x As layer is sequentially grown thereon). 11,
Al y Ga 1-y As layer 12 (o≦y<x), n-Al x Ga 1-x
After that, the substrate temperature is lowered to 400°C for the MOCVD method and 300°C for the MBE method, and the As layer 13 is grown on the double heterostructure.
As shown in FIG. 3, the p-GaAs layer 25 is grown as a crystal by applying a laser beam or an electron beam in a stripe pattern to the pitch 1 to locally heat the layer.
(In the case of the p-type substrate 10, the n-GaAs layer 25 is grown.) The local heating means has a beam diameter of 5
Focus on a ~10μm spot and scan at high speed to raise the substrate temperature in that area to 100℃~200℃ higher than the surrounding area.
As shown in FIG. 2, the area near the area where the laser beam or electron beam hits in the form of a stripe 31 becomes a GaAs single crystal region 24, and the area where it is not hit becomes a GaAs polycrystalline layer 25. As a result, the resistivity of the polycrystalline layer 25 becomes about four orders of magnitude larger than the resistivity of the single crystal region 24, so current narrowing is performed by the width of the stripe portion 16, and a single transverse mode oscillation occurs at a low threshold. A laser with a stripe structure was obtained.

なお、本実施例は、GaAs系、GaAlAs系半導
体レーザについて述べたが、InP系や他の多元混
晶系を含む化合物半導体を材料とする半導体レー
ザについても同様に適用が可能である。
Although this embodiment has been described with respect to GaAs-based and GaAlAs-based semiconductor lasers, it is also applicable to semiconductor lasers made of compound semiconductors including InP-based and other multi-component mixed crystal systems.

発明の効果 以上、本発明により、単一横モード発振するス
トライプ構造レーザを作製することができる。
Effects of the Invention As described above, according to the present invention, a striped structure laser that oscillates in a single transverse mode can be manufactured.

本発明の半導体レーザ装置の製造方法は、 1 プロトン照射型ストライプ構造レーザと同等
な電流狭さくストライプを設ける事ができ、低
しきい値レーザが得られ、 2 基板上に成長したエピタキシヤル層に損傷を
与える事がなく、レーザの特性や信頼性を損な
う事がなく、 3 従来のストライプ構造に比べ、ストライプを
設けるためだけの工程が不必要で、1回の結晶
成長で、二重ヘテロ構造を含む半導体レーザ作
製用多層薄膜とストライプ構造を形成する事が
でき簡便である。
The method for manufacturing a semiconductor laser device of the present invention has the following advantages: 1. A current narrowing stripe equivalent to a proton irradiation type stripe structure laser can be provided, and a low threshold laser can be obtained; 2. The epitaxial layer grown on the substrate can be prevented from being damaged. 3. Compared to conventional striped structures, there is no need for a process just to provide stripes, and a double heterostructure can be created with one crystal growth. It is easy to form a striped structure with a multilayer thin film for manufacturing a semiconductor laser.

などその実用的効果は大なるものがある。It has great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜cは、従来のストライプ構造を有す
る半導体レーザの断面図、第2図は、本発明の半
導体レーザ装置の製造方法により作製した半導体
レーザ装置の断面図、第3図は同方法において局
部加熱手段を用いてストライプ構造をつける方法
を説明するための図である。 10……n−GaAs基板(p−GaAs基板)、1
1……n−AlxGa1-xAs層(p−AlxGa1-xAs層)、
12……AlyGa1-yAs層(o≦y<x、活性層)、
13……p−AlxGa1-xAs層(n−AlxGa1-xAs
層)、14……p−GaAs層(n−GaAs層)、1
5……活性領域、16……ストライプ又はストラ
イプ幅、17……n−GaAs層、21……プロト
ンを照射した高抵抗領域、22……Zn拡散領域、
23……SiO2膜、24……GaAs単結晶領域、2
5……GaAs多結晶層、31……ストライプ状に
単結晶を結晶成長させる部分、32……基板上に
エピタキシヤル成長した半導体ウエハ。
1a to 1c are cross-sectional views of a conventional semiconductor laser having a stripe structure, FIG. 2 is a cross-sectional view of a semiconductor laser device manufactured by the method of manufacturing a semiconductor laser device of the present invention, and FIG. 3 is a cross-sectional view of a semiconductor laser device manufactured by the method. FIG. 3 is a diagram for explaining a method of forming a stripe structure using local heating means in FIG. 10... n-GaAs substrate (p-GaAs substrate), 1
1...n-Al x Ga 1-x As layer (p-Al x Ga 1-x As layer),
12...Al y Ga 1-y As layer (o≦y<x, active layer),
13... p-Al x Ga 1-x As layer (n-Al x Ga 1-x As
layer), 14...p-GaAs layer (n-GaAs layer), 1
5... Active region, 16... Stripe or stripe width, 17... N-GaAs layer, 21... High resistance region irradiated with protons, 22... Zn diffusion region,
23...SiO 2 film, 24...GaAs single crystal region, 2
5...GaAs polycrystalline layer, 31...A portion where a single crystal is grown in a stripe shape, 32...A semiconductor wafer epitaxially grown on a substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 二重ヘテロ構造を含む多層薄膜上に、レーザ
ビーム又は電子ビームを局部的に照射しながら結
晶成長を行い、前記局部照射した部分に単結晶薄
膜、前記局部加熱されない部分に多結晶薄膜を形
成することを特徴とする半導体レーザ装置の製造
方法。
1 Crystal growth is performed on a multilayer thin film containing a double heterostructure while locally irradiating a laser beam or an electron beam, and a single crystal thin film is formed in the locally irradiated area and a polycrystalline thin film is formed in the area that is not locally heated. A method of manufacturing a semiconductor laser device, characterized by:
JP19565783A 1983-10-19 1983-10-19 Manufacture of semiconductor laser Granted JPS6086888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19565783A JPS6086888A (en) 1983-10-19 1983-10-19 Manufacture of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19565783A JPS6086888A (en) 1983-10-19 1983-10-19 Manufacture of semiconductor laser

Publications (2)

Publication Number Publication Date
JPS6086888A JPS6086888A (en) 1985-05-16
JPH0559593B2 true JPH0559593B2 (en) 1993-08-31

Family

ID=16344817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19565783A Granted JPS6086888A (en) 1983-10-19 1983-10-19 Manufacture of semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6086888A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2687668B2 (en) * 1990-04-17 1997-12-08 日本電気株式会社 High power semiconductor laser device and manufacturing method thereof

Also Published As

Publication number Publication date
JPS6086888A (en) 1985-05-16

Similar Documents

Publication Publication Date Title
JP2831667B2 (en) Semiconductor laser device and method of manufacturing the same
US4932033A (en) Semiconductor laser having a lateral p-n junction utilizing inclined surface and method of manufacturing same
JPS6180882A (en) Semiconductor laser device
JPH0646669B2 (en) Semiconductor laser and manufacturing method thereof
GB2046983A (en) Semiconductor lasers
JPH07162086A (en) Manufacture of semiconductor laser
JP2001057459A (en) Semiconductor laser
JPH0559593B2 (en)
JP2001077465A (en) Semiconductor laser and manufacture thereof
JPH0846283A (en) Manufacture of semiconductor laser
JPH0559594B2 (en)
JPH0430758B2 (en)
JPH0648742B2 (en) Method for manufacturing semiconductor laser
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPS6352479B2 (en)
JP2001185810A (en) Semiconductor optical device and manufacturing method therefor
US4358850A (en) Terraced substrate semiconductor laser
JPS60137088A (en) Semiconductor laser device
JPH03104292A (en) Semiconductor laser
JPH0414277A (en) Semiconductor laser and its manufacture
JPH0766992B2 (en) AlGaInP semiconductor laser and manufacturing method thereof
JPS621290A (en) Hetero-junction type semiconductor laser
JPH01162397A (en) Semiconductor laser element
JP2586826B2 (en) AlGaInP-based semiconductor laser and its manufacturing method
JP2538613B2 (en) Semiconductor laser and manufacturing method thereof