JPS6072289A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS6072289A
JPS6072289A JP18104583A JP18104583A JPS6072289A JP S6072289 A JPS6072289 A JP S6072289A JP 18104583 A JP18104583 A JP 18104583A JP 18104583 A JP18104583 A JP 18104583A JP S6072289 A JPS6072289 A JP S6072289A
Authority
JP
Japan
Prior art keywords
layer
region
gaas
single crystal
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18104583A
Other languages
Japanese (ja)
Inventor
Akio Yoshikawa
昭男 吉川
Masaru Kazumura
数村 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18104583A priority Critical patent/JPS6072289A/en
Publication of JPS6072289A publication Critical patent/JPS6072289A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent a crystal from being damaged and enable to obtain the effect of sufficient current stricture by a method wherein a stripe-form diffused region, a single crystal region thereon, and polycrystalline layers on both sides thereof are formed on a double hetero structure. CONSTITUTION:An N-AlxGa1-xAs layer 11, an AlyGa1-yAs layer 12, and a P-AlxGa1-xAs layer 13 are formed on an N<+> GaAs single crystal substrate 10. N-GaAs single crystal layers 26 having the stripe-form P type diffused region 27 are selectively formed thereon, and a P<+> GaAs single crystal layer on the region 27, and P<+> GaAs polycrystalline layers 25 on the layers 26. In the tilted device of this structure, the current is put in stricture by the P<+> GaAs single crystal layers and the region 27, and accordingly a low threshold value can be realized. Besides, the P<+> GaAs single crytal region is electrically connected to the layer 13 via region 27; whereas a P-N junction is formed by the layer 13 and the regions 26, and current stricture is carried out in the region 27.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はディジタル・オーディオ・ディスク。[Detailed description of the invention] Industrial applications The present invention is a digital audio disc.

ビデオディスク等のコヒーレント光源全始めとして、各
種電子機器の光源として用−ら几る半導体し〜ザ装置に
rV3づ“Xd、のである。
The rV3 is used as a coherent light source for video discs and other semiconductor devices, and is used as a light source for various electronic devices.

従来例の構成とその問題点 電子機器の光源として、半導体レーザに要求されるもの
の1つとして、単一スポットでの発振、すなわち、単−
横モード発掘がある。これを実現するためには、活性領
域付近に、光と電流を閉じ込める必要がある。光の閉じ
込めに関しては、二重へテロ構造で活性層をはさみ、そ
fL全爪直な方向にも屈折率さ全設けて閉じ込めたり、
或いは、活性層中の一部に電流が流れる様にして、光増
幅率に活性層中で分布金持たせて閉じ込める方法がある
Conventional configurations and their problems One of the requirements for semiconductor lasers as light sources for electronic devices is oscillation in a single spot, that is, single-spot oscillation.
There is horizontal mode excavation. To achieve this, it is necessary to confine light and current near the active region. Regarding light confinement, the active layer is sandwiched between double heterostructures, and the entire refractive index is set in the straight direction to confine the light.
Alternatively, there is a method of causing a current to flow through a part of the active layer so that the optical amplification factor is distributed in the active layer and confined.

電流の閉じ込め、つまりキャリアの閉じ込めに関しては
、二重へテロ構造で活性層全はさみ、半導体中の電子の
エネルギーバンドの構造により閉じ込め、二重へテロ構
造と垂直な方向では、活性領域付近にのみ電流が流れる
様に、ストライプ状の電流狭さく領域を設けるのが通常
の方法である。
Concerning current confinement, that is, carrier confinement, the double heterostructure sandwiches the entire active layer and is confined by the structure of the energy band of electrons in the semiconductor, and in the direction perpendicular to the double heterostructure, it is confined only near the active region. A common method is to provide a striped current confinement region to allow current to flow.

第1図a −Cに、従来の代表的なストライプ構造レー
ザを示す。これらの図において、10は+ n−GaAs基板、11はn −A 1xCrh1−x
As層、12はAlxGa1.As (0<y<x )
層、13けP−AlxGa1 、As 層、 14はP
 −GaASIii 、15は活性領域、16はストラ
イプ部、17はn−GaAs層・21はプロトン全照射
した高抵抗領域、22はZn拡散領域、23ばSiO2
膜である。
FIGS. 1A to 1C show typical conventional stripe structure lasers. In these figures, 10 is +n-GaAs substrate, 11 is n-A 1xCrh1-x
As layer, 12 is AlxGa1. As (0<y<x)
layer, 13 P-AlxGa1, As layer, 14 P
-GaASIii, 15 is an active region, 16 is a stripe portion, 17 is an n-GaAs layer, 21 is a high resistance region fully irradiated with protons, 22 is a Zn diffusion region, 23 is a SiO2
It is a membrane.

(a)はP−GaAs層14の上からプロトン全照射す
る事により、ストライプ部16を形成したレーザである
。 (b)は P−AlxGa1−xAs 層13上に
・n−GaAs層17全成長し、n−GaAs層17上
から、Znを拡散する事により、n−GaAs層17中
に電気流入用のストライプ部6を形成した。Zn+ 拡散形ストライプ構造レーザである。<C>ばP−Ga
As層14上[5iOz膜等の絶縁膜23を設ける事に
より、電流注入用のストライプ16全形成シタレーザで
ある。
(a) shows a laser in which a stripe portion 16 is formed by irradiating all of the protons from above the P-GaAs layer 14. In (b), the n-GaAs layer 17 is entirely grown on the P-AlxGa1-xAs layer 13, and Zn is diffused from above the n-GaAs layer 17 to form stripes for electrical inflow into the n-GaAs layer 17. Section 6 was formed. This is a Zn+ diffused stripe structure laser. <C>BaP-Ga
By providing an insulating film 23 such as a 5iOz film on the As layer 14, the stripe 16 for current injection is completely formed in the cita laser.

第1図のa〜Cは、何れもストライプ部16により電流
が流れる領域を制限し、半導体レーザの発撮しきい値を
低減するとともに、活性層A7アGa1 、As層(0
<y<x)12中での発振領域(以下、活性領域15と
する。、)全制限して、その形状効果により、高次横モ
ードの発振全抑え、単−横モード発振が実現される、 しかしながら、上記のストライプ構造全作製する方法に
は、以下に述べる欠点がある。
In each of a to C in FIG. 1, the stripe portion 16 limits the area where current flows, reduces the emission threshold of the semiconductor laser, and also reduces the active layer A7, Ga1, As layer (0
<y<x) The oscillation region in the active region 12 (hereinafter referred to as the active region 15) is completely restricted, and due to its shape effect, high-order transverse mode oscillation is completely suppressed, and single-transverse mode oscillation is realized. However, the above-mentioned method for completely fabricating the striped structure has the following drawbacks.

(1)第1図aにおいては・プロトン等のイオン全電磁
界により加速し、作製された二重へテロ構造半導体ウェ
ハに照射する。この時、半導体ウェハの照射さ力、た領
域は、加速されたイオンが通過する事により、損傷を受
ける。しかも、活性領域付近または活性領域直上付近の
プロトン照射領域に近いところでは、GaAs層、Ga
A、dAs層の結晶が損傷を受け、半導体レーザの電気
特性、光学特性、信頼性等を損う、と才りを回避するた
めには、プロトン照射後、高温でアニールを行なう必要
があり、工程が多くなるばかりかアニールされる層中に
、Zn等の熱拡散係数の高いドーパントが存在すると、
これらが動き、キャリア濃度の制御性の良い多層構造が
結果的に得られにくくなる。
(1) In FIG. 1a, ions such as protons are accelerated by a total electromagnetic field and irradiated onto the fabricated double heterostructure semiconductor wafer. At this time, the irradiated area of the semiconductor wafer is damaged by the accelerated ions passing through it. Moreover, near the active region or near the proton irradiation region directly above the active region, the GaAs layer, Ga
A. In order to avoid damage to the crystal of the dAs layer, which would impair the electrical characteristics, optical characteristics, reliability, etc. of the semiconductor laser, it is necessary to perform annealing at a high temperature after proton irradiation. Not only will the number of steps be increased, but if a dopant with a high thermal diffusion coefficient such as Zn is present in the layer to be annealed,
These movements make it difficult to obtain a multilayer structure with good controllability of carrier concentration.

(2)第1図すでは、 Zn拡散を高温(7ccy℃〜
s5o℃)で行なう事が多く、各層中のドーパントも拡
散されPn接合界面が設計位置よりずfしたり、Pn接
合が設計通り形成するのが難しくなるー(3)第1図C
では、A%Ga1 、As活性層12での活性領域15
が、第1図a、bのストライプ構造を有するレーザに比
べて・広がるとbう問題がある。これは、第1図a、b
VC比べて、第1図Cの構造は、ストライプ16による
電流制限が弱−ためである、 発明の目的 本発明は、上記従来の問題点を解消するもので、結晶が
損傷を受けず、しかも電流狭さく効果が十分な半導体レ
ーザ装置を提供するものである。
(2) In Figure 1, Zn diffusion is carried out at high temperature (7ccy℃~
The dopant in each layer is also diffused, causing the Pn junction interface to deviate from the designed position, and making it difficult to form the Pn junction as designed. (3) Figure 1C
Then, A%Ga1, the active region 15 in the As active layer 12
However, compared to the laser having the stripe structure shown in FIGS. 1a and 1b, there is a problem with the laser beam spreading. This is shown in Figure 1 a and b.
Compared to VC, the structure shown in FIG. The present invention provides a semiconductor laser device with a sufficient current narrowing effect.

発明の構成 この目的を達成するために本発明の半導体レーザ装置は
、n型化合物半導体単結晶基版土に、最上層がP型層で
二重ヘテ′口描造を含む三層以上の化合物半導体単結晶
層が形成され、前記P型層の上に、 13の領域がP型
で、他はn型の化合物半導体単結晶層、さらにその上に
前記一部のP壁領域の上が単結晶で、他はP型多結晶の
P型化合物半導体層が形成されて因る。この構成゛に」
こり、前記一部のP型化合物半導体単結晶領域と、前記
一部のP型化合物半導体単結晶領域とで、電流狭さく用
のストライプ構造が構成され・低しきい値で単−横モー
ド発振の半導体レーザ装置が容易に得られる、 実施例の説明 以下、本発明の一実施例(でついて図面全参照しながら
説明する。第2図は、本発明の一実施例における半導体
レーザ装置の断面図を示すものである、n−GaAs単
結晶基版10の上に、n−AlxG a 1x A s
層11 、AlxGa1 yAs (0≦−y<x)層
12、P−AAxGal−xAsAs層が形成され、そ
の上に・選択的にストライブ状P型拡散領域−27を有
するn−GaAs単結晶層26、さらにP型拡散領域2
7の上にP−GaAs単結晶層24.n−Ga As単
結晶層26の上にP−GaAs多結晶層26は、P−G
aAs単結晶層24とP型拡散領域27によって電流が
狭さくされ、低しきい値が実現できるO 次に本実施例の半導体レーザ装置の製造方法について説
明する。まずn−GaAs単結晶単結晶基土10上タキ
シャル成長方法(液相エピタキシャル法、MOCVD法
、MEB法いずれでも可)により、順次、n−Alx(
ral−xAs層11、A 1yGa1.As 層(o
≦y ’(x ) 12 、 P−Agx(ral−x
AsAlB12れぞれ単結晶として結晶成長させ、その
上に、n−GaAs単結晶層26.P−GaAs多結晶
層26を成長させる。本実施例では、n −GaAs層
26の膜NO12pm 、 P −GaAs層25の膜
厚は0.5μmとしている。多結晶層は、いずれの成長
方法でも、成長基鈑温度全数百度下げて、結晶成長する
ことにより得ら九る。
Structure of the Invention In order to achieve this object, the semiconductor laser device of the present invention has three or more compound layers on an n-type compound semiconductor single crystal substrate, the uppermost layer being a P-type layer and including a double hemlock pattern. A semiconductor single-crystal layer is formed on the P-type layer, and a compound semiconductor single-crystal layer is formed on which 13 regions are of the P-type and other regions are of the n-type. This is due to the formation of a P-type compound semiconductor layer, which is crystalline and the rest is P-type polycrystalline. In this configuration
In this case, a stripe structure for current narrowing is formed by the above-mentioned part of the P-type compound semiconductor single crystal region and the above-mentioned part of the P-type compound semiconductor single crystal region. DESCRIPTION OF EMBODIMENTS DESCRIPTION OF EMBODIMENTS A semiconductor laser device can be easily obtained.An embodiment of the present invention will be described below with reference to all the drawings.FIG. 2 is a sectional view of a semiconductor laser device in an embodiment of the present invention. n-AlxG a 1x A s
Layer 11 , AlxGa1 yAs (0≦-y<x) layer 12 , P-AAxGal-xAsAs layer is formed, on which an n-GaAs single crystal layer selectively has a striped P-type diffusion region -27. 26, and further P-type diffusion region 2
On top of 7 is a P-GaAs single crystal layer 24. A P-GaAs polycrystalline layer 26 is formed on the n-GaAs single crystal layer 26.
The current is narrowed by the aAs single crystal layer 24 and the P-type diffusion region 27, and a low threshold value can be achieved.Next, a method for manufacturing the semiconductor laser device of this embodiment will be described. First, n-Alx (
ral-xAs layer 11, A 1yGa1. As layer (o
≦y'(x) 12, P-Agx(ral-x
AsAlB12 is grown as a single crystal, and an n-GaAs single crystal layer 26 is formed thereon. A P-GaAs polycrystalline layer 26 is grown. In this embodiment, the film thickness of the n-GaAs layer 26 is NO12pm, and the film thickness of the P-GaAs layer 25 is 0.5 μm. Regardless of the growth method, the polycrystalline layer is obtained by crystal growth while lowering the temperature of the growth substrate by several hundred degrees.

結晶成長後、成長表面全有機溶剤等で洗浄した後、Ga
As多結晶層25の一部をストライプ状にレーザビーム
照射音用いて単結晶化する。、0.62μmで発振する
Arレーザビームを6μmφのスポットに絞り(エネル
ギー密度〜i o ’W/ ca )・成長表面上t5
mm/seaで走査する・第3図に示す様な電流狭さく
用のストライプのピッチeが、250μmとなる様に形
成する。なお、電子ビームなどの他の加熱手段を用いて
ストライプ全形成してもよめ。
After crystal growth, after cleaning the growth surface with an all-organic solvent, the Ga
A part of the As polycrystalline layer 25 is formed into a single crystal in a stripe shape using a laser beam irradiation sound. , focus the Ar laser beam oscillating at 0.62 μm into a 6 μmφ spot (energy density ~io'W/ca)・T5 on the growth surface
Scan at mm/sea. Stripes for current narrowing as shown in FIG. 3 are formed with a pitch e of 250 μm. Note that the entire stripe may be formed using other heating means such as an electron beam.

単結晶領域24の比抵抗が、多結晶領域25の比抵抗に
比べ、約4桁小さくなるため、単結晶領域24に電流狭
さくが行なわ几、さらに、n −GaAsボ結晶層では
、P −GaAs層にレーザビーム」− が当たっている直下では、P−GaAs層中のP型ドー
パントであるZnが、その熱拡散係数が大きいために、
拡散さn、n−GaAs単結晶層の1部が第2図に示す
様にP−GaAs領域27となる。
Since the resistivity of the single crystal region 24 is about four orders of magnitude smaller than that of the polycrystalline region 25, current narrowing occurs in the single crystal region 24. Furthermore, in the n-GaAs crystal layer, the p-GaAs Immediately under the laser beam hitting the layer, Zn, which is a P-type dopant in the P-GaAs layer, has a large thermal diffusivity.
A portion of the diffused n, n-GaAs single crystal layer becomes a P-GaAs region 27 as shown in FIG.

このときドーパントは、GaAs中でP型となる熱拡散
係数の大きいものであ九は何でもよい。この+ ことにより、P−GaAs単結晶領域24と、P−Ad
GaAs層13が、P−GaAs領域27金介して電気
的に接続される。一方、n−GaAs領域26には、P
 −A7GaAs層13とn−GaAs領域26の境界
でPn接合が形成され、半導体レーザ動作時には、逆バ
イアスとなり電流が流れない、以上より・P−GaAs
領域24で電流狭さくされる他P−GaA5領域27で
も電流狭さくが行なわれ、その効果は著しい7 なお・本実施例は、GaA s系、GaA7As系材料
について述べたが、InP系などの他の化合物半導体材
料に関しても十分適用できる。
At this time, the dopant may be of any type as long as it has a large thermal diffusion coefficient and becomes P type in GaAs. By this +, the P-GaAs single crystal region 24 and the P-Ad
The GaAs layer 13 is electrically connected to the P-GaAs region 27 via gold. On the other hand, in the n-GaAs region 26, P
- A Pn junction is formed at the boundary between the A7 GaAs layer 13 and the n-GaAs region 26, and when the semiconductor laser operates, it becomes reverse biased and no current flows. From the above, - P-GaAs
In addition to current constriction in the region 24, current constriction is also performed in the P-GaA5 region 27, and the effect is remarkable. It is also fully applicable to compound semiconductor materials.

発明の効果 以上のように、本発明は、二重へテロ構造の上に、スト
ライプ状の拡散領域と、その上の単結晶領域およびその
両11iI面の多結晶層が形成されており・信頼性が高
く・しかも低しきい値の半導体レーザ装置が実現できる
Effects of the Invention As described above, the present invention has a stripe-shaped diffusion region on a double heterostructure, a single crystal region thereon, and a polycrystalline layer with 11iI planes on both sides. A semiconductor laser device with high performance and low threshold voltage can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a −cは、従来のストライプ構造を有する半導
体レーザの断面図、第2図は本発明の実施例の半導体レ
ーザ装置の断面図、第3図はレーザビームを照射するこ
とにより、ストライプ構造を形成する方法を説明するた
めの図である。 + 1o =−・n −GaAs基叛、11°・・…n −
A、d XGa、−xAslii(第1層) 、12=
−AlyGa1−yAs(0≦y<x )、13・・・
・・P−AdxGal−xAs層14・・・・・・P−
GaAsi、16・・・・・・活性領域。 16−−−−−−ストライプ部、17 =−−n−Ga
As層、21°°“°°“プロトンを照射した高抵抗領
域、22°゛領域・26・・・・・n−GaAs層。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名。 第1図 第2図 7 第3図
1a-c are cross-sectional views of a conventional semiconductor laser having a stripe structure, FIG. 2 is a cross-sectional view of a semiconductor laser device according to an embodiment of the present invention, and FIG. FIG. 3 is a diagram for explaining a method of forming a structure. + 1o =-・n −GaAs base, 11°...n −
A, d XGa, -xAslii (first layer), 12=
-AlyGa1-yAs (0≦y<x), 13...
...P-AdxGal-xAs layer 14...P-
GaAsi, 16...active region. 16----- Stripe part, 17 =--n-Ga
As layer, 21°°"°°" high resistance region irradiated with protons, 22°" region, 26...n-GaAs layer. Name of agent: Patent attorney Toshio Nakao and one other person. Figure 1 Figure 2 Figure 7 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体基鈑上に・前記−導電型とは反対の導
電型金布する半導体層全最上層とするとともに二重へテ
ロ構造金倉む多層構造が形成され、前記最上層の上に、
ストライプ状に選択的に前記反対導電型の領域を有する
前記−導電型を有する半導体層が形成され、さらに、前
記ストライプ状反対導電型領域の土が単結晶で、前記−
導電型半導体層の上が多結晶の同一組成からなる前記反
対導電型全有する半導体層が形成されていること全特徴
とする半導体レーザ装置。
On a semiconductor substrate of one conductivity type, a multilayer structure is formed with a semiconductor layer of a conductivity type opposite to the above-mentioned conductivity type as the entire top layer and a double heterostructure metal layer, and on top of the top layer. ,
The semiconductor layer having the - conductivity type having regions of the opposite conductivity type selectively in a stripe shape is formed, and further, the soil in the stripe-shaped opposite conductivity type regions is single crystal;
A semiconductor laser device characterized in that a semiconductor layer of opposite conductivity type, which is polycrystalline and has the same composition, is formed on top of the conductivity type semiconductor layer.
JP18104583A 1983-09-28 1983-09-28 Semiconductor laser device Pending JPS6072289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18104583A JPS6072289A (en) 1983-09-28 1983-09-28 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18104583A JPS6072289A (en) 1983-09-28 1983-09-28 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS6072289A true JPS6072289A (en) 1985-04-24

Family

ID=16093798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18104583A Pending JPS6072289A (en) 1983-09-28 1983-09-28 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6072289A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103390A (en) * 1989-09-13 1991-04-30 Sumitomo Electric Ind Ltd Production of algaas epitaxial wafer for red led

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103390A (en) * 1989-09-13 1991-04-30 Sumitomo Electric Ind Ltd Production of algaas epitaxial wafer for red led

Similar Documents

Publication Publication Date Title
US4124826A (en) Current confinement in semiconductor lasers
JPS609356B2 (en) Manufacturing method of semiconductor light emitting device
US20020146866A1 (en) Nitride-based semiconductor laser device and method of fabricating the same
JPS5811111B2 (en) Manufacturing method of semiconductor laser device
JPH04116993A (en) Semiconductor laser and manufacture of the same
JPS6072289A (en) Semiconductor laser device
JPS6174382A (en) Semiconductor laser device and manufacture thereof
JPS61210689A (en) Structure of semiconductor laser and manufacture of said laser
JPS6072287A (en) Manufacture of semiconductor laser device
CN111937260A (en) Semiconductor laser and method for manufacturing the same
JPS6086888A (en) Manufacture of semiconductor laser
JPS6031287A (en) Semiconductor laser device
JPH0559594B2 (en)
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JPH0414277A (en) Semiconductor laser and its manufacture
JP2006287266A (en) Semiconductor laser device
JPS6031286A (en) Manufacture of semiconductor laser device
JPS60258988A (en) Manufacture of semiconductor laser device
JPS6199396A (en) Manufacture of semiconductor laser
JPH11243248A (en) Ridge type semiconductor laser and manufacture thereof
JPS6216035B2 (en)
JPS61187285A (en) Semiconductor laser device
JPS6111478B2 (en)
JPS60258986A (en) Manufacture of semiconductor laser device
JPS63169785A (en) Manufacture of semiconductor laser