JPS6216035B2 - - Google Patents

Info

Publication number
JPS6216035B2
JPS6216035B2 JP3176277A JP3176277A JPS6216035B2 JP S6216035 B2 JPS6216035 B2 JP S6216035B2 JP 3176277 A JP3176277 A JP 3176277A JP 3176277 A JP3176277 A JP 3176277A JP S6216035 B2 JPS6216035 B2 JP S6216035B2
Authority
JP
Japan
Prior art keywords
conductivity type
semiconductor
layer
light
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3176277A
Other languages
Japanese (ja)
Other versions
JPS53116793A (en
Inventor
Junichi Nishizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3176277A priority Critical patent/JPS53116793A/en
Publication of JPS53116793A publication Critical patent/JPS53116793A/en
Publication of JPS6216035B2 publication Critical patent/JPS6216035B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】 本発明は、注入電流を空間的に制御して流す電
流分布形の半導体注入レーザ、選択増幅素子、変
調素子を含む半導体光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor optical device including a current distribution semiconductor injection laser that spatially controls injection current, a selective amplification element, and a modulation element.

最近半導体注入レーザや発光ダイオードなどの
送信源の長寿命化や集束性フアイバの伝送損失の
低減などから光通信はほとんど実用段階に入つて
いる。さらにその集積化も急速に進められてい
る。又効率のよい誘導放射を得るためにこれまで
種々の構造が提案されている。半導体注入レーザ
では注入された電子、正孔もしくはその両者と、
発生した光を空間的に同一部分にとじこめた方が
誘導放射の効率がよい。現在一般的な構造では、
光の閉じ込められる領域をその両側の材料より
も、屈折率を高くしかつ電子や正孔が閉じ込めら
れる領域ではその禁止帯巾が狭い材料を使つて、
電子、正孔のとじこめをよくして、注入電流に対
する注入キヤリア密度を高くして再結合効率を上
げると共に、屈折率差による光のとじこめもよく
することにより、誘導放射の効率をよくしてい
る。その1例を第1図に示す。
Recently, optical communication has almost entered the practical stage due to improvements in the longevity of transmitting sources such as semiconductor injection lasers and light emitting diodes, and reduction in transmission loss in focusing fibers. Furthermore, their integration is progressing rapidly. Furthermore, various structures have been proposed to obtain efficient stimulated radiation. In semiconductor injection lasers, injected electrons, holes, or both,
Stimulated radiation is more efficient if the generated light is spatially confined to the same area. The currently common structure is
The area where light is confined is made of a material with a higher refractive index than the materials on both sides, and the forbidden band width is narrower in the area where electrons and holes are confined.
It improves the efficiency of stimulated radiation by improving the confinement of electrons and holes, increasing the density of injected carriers relative to the injected current, increasing recombination efficiency, and improving the confinement of light due to the difference in refractive index. . An example is shown in FIG.

基板11はn形GaAsであり、層12はn−
Ga1-xAlxAs、活性層13はGaAs、層14はp−
Ga1-xAlxAs、層15はp−GaAs、16,17は
金属電極である。18は光共振器を構成する一方
の端面を示している。活性層13が光の誘導放射
領域である。この場合、Ga1-xAlxAsはGaAsと
AlAsが、1−x:xで入つた単結晶を示してい
るが、xは通常0.2以上である。層11,12,
14,15が誘導放射領域に近接した領域であ
る。AlAsが多く入るほど、禁制帯巾が広くな
り、屈折率は低下する。x=0.3の場合
Ga0.7Al0.3AsはGaAsに比べて約5%の屈折率差
があるため光のとじこめもよくなり、誘導放射効
率はきわめてよくなるのである。もちろん、キヤ
リアの閉じ込め領域に対して、光の閉じ込め領域
を大きくするような構造も開発されている。その
場合でも、光の強度の強い所にキヤリアの閉じ込
められた領域がくるようにすることが望ましい。
光や電子、正孔のとじこめられている領域を活性
層とよぶ。この層の両側は異つた禁止帯巾の材料
ではさまれているので、通常これをダブルヘテロ
構造(DH構造)とよぶ。この構造はもちろん他
の材料によつても可能であり、例えば、活性層を
Ga1-xInxAs1-yPyにして、その両側にInPを成長し
ておくと、これはDH構造となる。ただし、x、
yは成分比をあらわしていて、x、yを変化させ
ることにより、禁止帯巾がかわり、その発光波長
が変化する。この材料では1μm〜1.3μm付近
が可能であり、光伝送系ガラスフアイバの低損失
領域にあわせることができる。その他活性層が
GaAsSbで両側が、AlGaAsSbなどがあり、種々
の材料によつて、DH構造が可能である。3元
系、4元系などの材料ではその成分をかえると、
発光波長をかえることができる他、格子間隔の調
整ができ成分調整によつて格子歪をなくすことも
できる。この半導体注入レーザの構造では基体の
へきかい面を反射板としてフアブリーペロー
(Fabry−perot)共振器を形成しているので、単
一波長の光を得るのがむずかしく、多くの波長を
含んだレーザ光しか得られない場合が多く光通信
に種々の問題を起こしている。特に出力を大きく
取るために注入電流が大きくなつたときには、多
数の軸モードにより決定される波長の光が放射さ
れる。これらを解決するのに、半導体注入レーザ
の共振器中(電子、正孔あるいは光をとじこめて
いる場所)の光の進行方向に屈折率の周期構造を
つくりそのブラツグ反射を利用する分布帰還形半
導体注入レーザが実現されている。この一例を第
2図に示してある。GaAs、GaAlAsの材料によ
る例をあげると、基板11はn−GaAs、層12
はn−Ga1-xAlxAs、活性層13はp−GaAsある
いはGaAs、層24はp−Ga1-yAlyAs、層25は
p−Ga1-xAlxAs、層15はp−GaAs、16,1
7は金属電極となつている。但しx>yである。
層24と層25の間に周期構造がうめこまれてい
る。この場合は、p−GaAs13の層が電子、正
孔がとじこめられ、ここで再結合をおこして光が
放射される誘導放射領域である。しかし、24の
層にはAlAsの含有量が少なくて、層13と層2
4の間の屈折率差は小さく、層25、層12は
AlAsの含有量が多いため光のとじこめは活性層
13と層24の両方の層にわたつておこなわれて
いる。層24と層25の間の周期構造により特定
の波長のみ選択され、単一波長の発振がおこる。
この構造の以前の形は層24がなく、活性層23
の層にそのまま周期構造がつくられていたが、そ
うすると、活性層23に欠陥ができて、ダイオー
ドの劣化がはげしく、室温連続動作のものは得ら
れず、第2図のような構造によつて初めて室温連
続動作のものが得られている。このような屈折率
に周期をもたせた構造だと電子、正孔のとじこめ
と接合面に対して垂直方向において光のとじこめ
の領域が一致せず、光強度の弱くなるところにキ
ヤリアの閉じ込め領域があるので誘導放射の効率
が下がり望ましくない。さらにこの構造では、半
導体レーザ内で電流は接合面に水平方向にほとん
ど均一に流れるから光の定在波の節の部分を流れ
る電流はほとんど発光に寄与しないで、効率の低
下をまねき、又、他の軸モードの発振を起す原因
ともなり、1モードあたりの発振出力の最大値を
低く抑えてしまうことになる。
Substrate 11 is n-type GaAs and layer 12 is n-
Ga 1-x Al x As, active layer 13 is GaAs, layer 14 is p-
Ga 1-x Al x As, layer 15 is p-GaAs, and 16 and 17 are metal electrodes. Reference numeral 18 indicates one end face constituting the optical resonator. The active layer 13 is the stimulated emission region of light. In this case, Ga 1-x Al x As is GaAs
A single crystal containing AlAs in a ratio of 1-x:x is shown, but x is usually 0.2 or more. layers 11, 12,
14 and 15 are regions close to the stimulated radiation region. The more AlAs is added, the wider the forbidden band and the lower the refractive index. When x=0.3
Ga 0 . 7 Al 0 . 3 As has a difference in refractive index of about 5% compared to GaAs, which improves light confinement, resulting in extremely high stimulated radiation efficiency. Of course, structures have also been developed that increase the light confinement area compared to the carrier confinement area. Even in that case, it is desirable that the area where the carrier is confined is located in a place where the intensity of light is strong.
The region where light, electrons, and holes are confined is called the active layer. Since both sides of this layer are sandwiched between materials with different forbidden widths, this is usually called a double heterostructure (DH structure). This structure is of course also possible with other materials, for example, the active layer can be
If Ga 1-x In x As 1-y P y is formed and InP is grown on both sides, this becomes a DH structure. However, x,
y represents the component ratio, and by changing x and y, the forbidden band changes and the emission wavelength changes. With this material, a thickness of about 1 μm to 1.3 μm is possible, which can be matched to the low loss region of optical transmission glass fibers. Other active layers
A DH structure is possible with various materials, such as GaAsSb on both sides and AlGaAsSb. For ternary and quaternary materials, if you change the components,
In addition to being able to change the emission wavelength, it is also possible to adjust the lattice spacing and eliminate lattice distortion by adjusting the components. In the structure of this semiconductor injection laser, a Fabry-Perot resonator is formed using the deep surface of the substrate as a reflector, so it is difficult to obtain light with a single wavelength, and only laser light containing many wavelengths is used. In many cases, this is not possible, causing various problems in optical communications. Particularly when the injected current becomes large in order to obtain a large output, light with wavelengths determined by a large number of axial modes is emitted. To solve these problems, distributed feedback semiconductors create a periodic structure of refractive index in the direction of light propagation in the resonator of a semiconductor injection laser (the place where electrons, holes, or light are confined) and utilize the bragged reflection. Injection lasers have been realized. An example of this is shown in FIG. For example, the substrate 11 is made of n-GaAs, and the layer 12 is made of GaAs or GaAlAs.
is n-Ga 1-x Al x As, active layer 13 is p-GaAs or GaAs, layer 24 is p-Ga 1-y Al y As, layer 25 is p-Ga 1-x Al x As, and layer 15 is p-Ga 1-x Al x As. p-GaAs, 16,1
7 is a metal electrode. However, x>y.
A periodic structure is embedded between layers 24 and 25. In this case, the layer of p-GaAs 13 is a stimulated emission region in which electrons and holes are trapped, where they are recombined and light is emitted. However, layer 24 has a low content of AlAs, and layer 13 and layer 2
The refractive index difference between layer 25 and layer 12 is small.
Due to the high content of AlAs, light confinement is performed in both the active layer 13 and the layer 24. Due to the periodic structure between the layers 24 and 25, only a specific wavelength is selected, and oscillation of a single wavelength occurs.
Previous forms of this structure lacked layer 24 and active layer 23.
A periodic structure was directly formed in the layer shown in Fig. 2, but this resulted in defects in the active layer 23 and severe deterioration of the diode, making it impossible to obtain a diode that could operate continuously at room temperature. For the first time, a device that can operate continuously at room temperature has been obtained. In a structure with such a periodic refractive index, the region in which electrons and holes are confined and the region in which light is confined in the direction perpendicular to the junction surface do not match, and the carrier confinement region occurs where the light intensity becomes weak. This is undesirable because it reduces the efficiency of stimulated radiation. Furthermore, in this structure, the current flows almost uniformly in the horizontal direction on the junction surface within the semiconductor laser, so the current flowing through the nodes of the standing wave of light hardly contributes to light emission, leading to a decrease in efficiency. This may cause oscillation in other axis modes, and the maximum value of the oscillation output per mode will be suppressed.

今までは、光の定在波の立つ長さ方向について
のべたが、その直角方向においては第3図の斜線
で示すような領域だけに電流を流すストライプ構
造になつていて、様々なストライプ構造を考える
ことによつて、水平方向の発振姿態を制御するこ
とが行なわれている。しかし、これも、図に示す
ように、ストライプ幅全体にほぼ均一に電流が流
れているため、発振姿態が不安定で、電流−光特
性におれまがりがでたり、ステツプ状の電流を流
すと、時間的にその姿態が変化して、指向性がか
わつたり温度の上昇あるいは注入電流レベルの上
昇に従つてその動作姿態に変化があらわれる。
So far, we have talked about the length direction in which the standing wave of light stands, but in the direction perpendicular to this, there is a striped structure in which current flows only in the shaded area in Figure 3, and there are various striped structures. The oscillation mode in the horizontal direction is controlled by considering the following. However, as shown in the figure, the current flows almost uniformly over the entire stripe width, so the oscillation state is unstable, and the current-optical characteristics may be distorted, or if a step current is passed. , its state changes over time, and its operating state changes as the directivity changes or as the temperature rises or the injection current level rises.

これらの短所を補ないかつ構造が比較的簡単で
集積化に適している電流分布形半導体光装置を提
供することが本発明の目的である。
It is an object of the present invention to provide a current distribution type semiconductor optical device that overcomes these disadvantages, has a relatively simple structure, and is suitable for integration.

以下図面を参照して本発明を半導体光装置の3
5半導体注入レーザを例にとり詳述する。
The present invention will be described below with reference to the drawings.
This will be explained in detail by taking a No. 5 semiconductor injection laser as an example.

通常半導体注入レーザではレーザ発光をする
と、ダイオードの接合部の抵抗が下り、電流が流
れやすくなる。たとえば、GaAs−GaAlAsDHレ
ーザでは、活性層の厚さにもよるが、0.5μm厚
さでもレーザ発光開始すると接合部の抵抗は1/10
以下に低下する。抵抗の低下は、活性層の厚さが
薄いほど顕著である。しかし、もともと順方向注
入することによりレーザ発光させているため接合
部の抵抗が小さく、むしろ基板の抵抗や電極をと
つてある金属と半導体部の間の接触抵抗とによる
直列抵抗が大きく、接合部の抵抗変化はそれに比
べて小さく多くの場合、レーザ発光が起るような
電流領域では、電流分布は接合部以外の直列抵抗
の分布で殆んど決まる。これらの直列抵抗を非常
に小さくして接合部の抵抗と同等もしくは小さく
すれば、光が強い所は抵抗が低くなり電流が多く
流れ、光の弱い所は抵抗が殆んど低くならないか
ら流れる電流が減少するというように、光の定在
波の強度分布に対応して電流分布が生じる。例え
ば第4図は説明するための簡単な図である。層4
4が光の導波する活性層部であり、層41と層4
3はそれをはさむ、屈折率の低い部分を示し、第
1図で示すと、層41が、層11,12であり、
層43が、層14,15に当たる。矢印44は電
流が矢印方向に流れ、矢印の部分に電流が多く流
れることを示し、45の波状の線は光の定在波を
表わす。定在波の立つ方向が光の進行方向であ
る。図中に示すようにまずレーザ発光して共振器
の中に光の定在波45が立つとその定在波の腹の
部分46は電界強度が強く、節の部分47は電界
強度が弱いため、接合部の抵抗に比べて、非常に
小さな直列抵抗しかないレーザ・ダイオードなら
電界強度の強い所に自然に電流は集中するように
なり、電界強度の弱い部分に流れる電流が減少し
て電流の利用効率が上昇する。電流が光の腹の部
分に集中するために光に対する利得がその部分だ
け大きく、節の部分は小さくなつて光に対する利
得が周期的になることによつて、この周期にあわ
ない波長の光は増巾されず、定在波の周期にあう
波長の光のみが増巾され単一波長でレーザ発光を
するようになり、誘導放射の効率もきわめてよく
なる。当然のことながら、単一モードで得られる
発光出力も増大する。しかるに通常のレーザ・ダ
イオードでは前述した通り大きな直列抵抗の存在
のためにむしろ電流はその直列抵抗によつて決ま
つてしまい、通常の構造のレーザ・ダイオードで
は活性層に一様に電流が流れて一つの波長の存在
波が立つても、電流分布は均一になつているた
め、前述した定在波の節の部分に残された利得を
使つて他のいろいろの軸モードの波長のレーザ発
光がおこる。すなわち、単一波長の強度の大きい
発光を抑止する。故にそれを解決するためにあら
かじめ抵抗に空間的に周期をもたせて、電流分布
をつくり、利得に周期をもたせることにより、単
一波長発振でかつ、単一モードで得られる出力の
限界が大きい半導体注入レーザがえられる。あら
かじめ決つた空間的周期をもたせて、電流を流す
と、発振モードも安定になり、発光効率が良く温
度依存性、電流注入レベル依存性はきわめて少な
く、安定したレーザ光がえられる。その実施例
を、第5図a,b,c,dに示す。基本的な構造
は第1図に示したものと同じものを使用して、そ
れに抵抗の空間分布をもたせている。ただし、抵
抗の空間分布は、光と電子、正孔をとじこめてい
る層(活性層:光の誘導放射領域)まで、もたせ
てはいけない。なぜなら、製造時において、その
周期をつくるためにイオン打ち込み、イオンミリ
ング、化学エツチングあるいは選択拡散などの技
術を使用するときに、欠陥などが生じやすいため
活性層に至るまでで、それをとめなくては、発光
効率が悪くなり、特性のよい半導体注入レーザを
製作できなくなる。すなわち、誘導放射領域に近
接した領域のみにとどめねばならない。例えば、
その周期は、材料をGaAs(1.43eV)に例をとる
と、その発振波長は自由空間でλ=8500Åくら
いであるから屈折率はほぼn=3.6として、GaAs
内で、基本的な周期としてΛ=1180mÅとなれば
よい。mは整数値で、m=1、2、3、4とな
る。現在では製作技術上から通常m=3にして、
Λ=3500Åほどの間隔の周期構造をつくつてい
る。もちろん現在ではΛ=1200Å程度のものも実
験に成功している。しかしこの周期は使う材料に
より異なり、InSb(禁止帯巾0.18eV(300〓))
や、InAs(禁止帯巾0.35eV(300〓))などによ
つて半導体レーザをつくると発振波長は長くなる
からさらにmが小さい値において製作可能とな
る。(mは小さい方が屈折率分布をもつたものに
対してはブラツグ反射の効率がよくなり、又電流
分布形のものについては電流利用効率が上るので
mは小さい方がよい。)InSbの場合、300〓で、
Λ=8100mÅくらいになる。(m:整数)これく
らいだと簡単にm=1で周期構造ができる。さら
に3元系で、PbSnTeやHgCdTeなども、長波長
のものができる。例えば、Pb1-xSnxTeでx=0.2
くらいだと、自由空間で波長10μmくらいで、屈
折率は4より少し大きいくらいだから、周期はほ
ぼΛ=(1.1m)μm(m:整数)くらいになり、
非常に周期構造の製作が簡単となる。3元系(上
記の他に、InGaP、GaPSb、GaAlSbなど)や4
元系(InGaAsP、GaAlSbAs、AlGaInAsなど)
だと、成分の比をかえることにより、その周期は
かわる。特に、PbSnTeやHgCdTeなどの長波長
のものは一様に電流が流れているときに節と腹の
距離が長くなるので光の定在波の節の所に流れる
電流が電界強度の強い所(光の定在波の腹)に拡
散でながれて行つて、効率をあげるようなことは
少ないので、本発明の電流分布形にすることによ
りきわめて電流利用効率はあがる。
Normally, when a semiconductor injection laser emits laser light, the resistance at the diode junction decreases, making it easier for current to flow. For example, in a GaAs-GaAlAsDH laser, although it depends on the thickness of the active layer, the resistance of the junction becomes 1/10 when the laser starts emitting light even with a thickness of 0.5 μm.
decreases below. The decrease in resistance is more pronounced as the thickness of the active layer becomes thinner. However, since the laser is emitted by forward injection, the resistance at the junction is small.In fact, the series resistance due to the resistance of the substrate and the contact resistance between the metal used as the electrode and the semiconductor part is large. The resistance change is small compared to that, and in many cases, in the current range where laser emission occurs, the current distribution is almost determined by the distribution of series resistance outside the junction. If these series resistances are made very small to be equal to or smaller than the resistance of the junction, the resistance will be low in areas where the light is strong and a large amount of current will flow, and the resistance will hardly decrease in areas where the light is weak, so the current will flow. A current distribution is generated corresponding to the intensity distribution of the standing wave of light, such that the current distribution decreases. For example, FIG. 4 is a simple diagram for explanation. layer 4
4 is an active layer portion for guiding light, and layer 41 and layer 4
3 indicates the low refractive index portion sandwiching it, and as shown in FIG. 1, the layer 41 is the layers 11 and 12,
Layer 43 corresponds to layers 14 and 15. An arrow 44 indicates that current flows in the direction of the arrow, with a large amount of current flowing in the area indicated by the arrow, and a wavy line 45 indicates a standing wave of light. The direction in which the standing wave stands is the direction in which the light travels. As shown in the figure, when a laser is first emitted and a standing wave 45 of light is created in the resonator, the electric field strength is strong at the antinode part 46 of the standing wave, and the electric field strength is weak at the node part 47. If the laser diode has a series resistance that is very small compared to the resistance of the junction, the current will naturally concentrate where the electric field strength is strong, and the current flowing through the weak electric field strength will decrease, causing the current to decrease. Utilization efficiency increases. Since the current is concentrated at the antinode of the light, the gain for light is large in that part, and the gain for light is small at the nodes, and the gain for light becomes periodic, so light with a wavelength that does not match this period is Instead of being amplified, only the light with a wavelength that matches the period of the standing wave is amplified, resulting in laser emission with a single wavelength, and the efficiency of stimulated radiation is also extremely high. Naturally, the luminous output obtained in single mode is also increased. However, in a normal laser diode, as mentioned above, due to the presence of a large series resistance, the current is rather determined by the series resistance, and in a laser diode with a normal structure, the current flows uniformly through the active layer. Even if the existing wave of one wavelength is generated, the current distribution is uniform, so the gain left at the nodes of the standing wave described above can be used to emit laser light of various other axial mode wavelengths. It happens. That is, high-intensity light emission of a single wavelength is suppressed. Therefore, in order to solve this problem, by giving a spatial period to the resistor in advance, creating a current distribution, and giving a period to the gain, it is possible to create a semiconductor with a large limit on the output that can be obtained in a single wavelength oscillation and in a single mode. An injection laser is obtained. When a current is passed with a predetermined spatial period, the oscillation mode becomes stable, the luminous efficiency is high, temperature dependence and current injection level dependence are extremely small, and stable laser light can be obtained. Examples thereof are shown in FIGS. 5a, b, c, and d. The basic structure is the same as that shown in Figure 1, but with a spatial distribution of resistance. However, the spatial distribution of resistance must not extend to the layer that traps light, electrons, and holes (active layer: stimulated light emission region). This is because during manufacturing, when techniques such as ion implantation, ion milling, chemical etching, or selective diffusion are used to create the period, defects are likely to occur, so it is necessary to prevent them before they reach the active layer. In this case, the luminous efficiency deteriorates, making it impossible to manufacture a semiconductor injection laser with good characteristics. That is, it must be limited to only the area close to the stimulated radiation area. for example,
Taking the material GaAs (1.43 eV) as an example, its oscillation wavelength is about λ 0 = 8500 Å in free space, so the refractive index is approximately n = 3.6, and GaAs
Within this range, the basic period should be Λ=1180 mÅ. m is an integer value, m=1, 2, 3, 4. Currently, due to manufacturing technology, m = 3,
It forms a periodic structure with an interval of about Λ = 3500 Å. Of course, at present, experiments with Λ=1200Å have also been successfully conducted. However, this period varies depending on the material used, and InSb (forbidden band width 0.18eV (300〓))
If a semiconductor laser is made of InAs (bandwidth forbidden: 0.35 eV (300〓)), the oscillation wavelength will be longer, so it can be manufactured with a smaller value of m. (The smaller m is, the better the Bragg reflection efficiency is for objects with a refractive index distribution, and the higher the current utilization efficiency is for objects with a current distribution type.) In the case of InSb , 300〓,
Λ=about 8100mÅ. (m: integer) If this is the case, a periodic structure can be easily created with m=1. Furthermore, ternary systems such as PbSnTe and HgCdTe can also be produced with long wavelengths. For example, x=0.2 for Pb 1-x Sn x Te
, the wavelength in free space is about 10 μm, and the refractive index is slightly larger than 4, so the period is approximately Λ = (1.1 m) μm (m: integer),
The periodic structure can be manufactured very easily. Ternary systems (in addition to the above, InGaP, GaPSb, GaAlSb, etc.) and four-element systems
Element system (InGaAsP, GaAlSbAs, AlGaInAs, etc.)
Then, by changing the ratio of the components, the period changes. In particular, in the case of long-wavelength materials such as PbSnTe and HgCdTe, when the current flows uniformly, the distance between the node and the antinode becomes long. It is rare for the current distribution shape of the present invention to increase the efficiency of current utilization, since it is rare for the current distribution shape of the present invention to increase the efficiency by spreading to the antinodes of the standing waves.

第5図aは上部2層に水素分子などの打ちこみ
を行つて周期的に高抵抗層をもたせる。縞模様の
黒い部分56が、イオン打ち込みをした領域をあ
らわしていて、11,12,13,14,15は
第1図と同じものにする。イオン打ち込みをおこ
なうとその領域には欠陥ができるが、成長温度に
比べ、非常に低い温度例えば成長温度800℃くら
いに対し、わずか200℃〜400℃くらいで熱処理を
すると相当回復する。さらに、その欠陥が生ずる
領域は、高抵抗層であるので、電流がほとんど流
れず、かつイオン打ち込みは活性層まで行つてい
ないので、光も存在しない領域となるので、半導
体注入レーザの劣化には殆んど影響しない。又、
イオン打ち込みとしては、たとえば水素だけでな
く、イオウ、シリコン、ベリリウム、カドニウム
など状況に応じて使い分けることはできる。(小
さな欠陥も電流が流れたり、強い光があると大き
な欠陥になつて半導体注入レーザが劣化する。)
その他に例えばZnなどを周期的に選択拡散して
もよい。
In FIG. 5a, hydrogen molecules or the like are implanted into the upper two layers to periodically form high-resistance layers. A black striped area 56 represents the ion-implanted area, and 11, 12, 13, 14, and 15 are the same as in FIG. When ion implantation is performed, defects are created in the region, but they can be recovered considerably by heat treatment at a temperature of only 200 to 400 degrees Celsius, which is much lower than the growth temperature, for example, 800 degrees Celsius. Furthermore, since the region where the defect occurs is a high-resistance layer, almost no current flows, and since the ion implantation has not reached the active layer, there is no light, so the semiconductor implanted laser is susceptible to deterioration. has almost no effect. or,
For ion implantation, it is possible to use not only hydrogen, but also sulfur, silicon, beryllium, cadmium, etc. depending on the situation. (Even a small defect can become a large defect if current flows or strong light is present, causing the semiconductor injection laser to deteriorate.)
In addition, for example, Zn or the like may be selectively diffused periodically.

半導体注入レーザの光共振器端面は、光の定在
波の腹になる光の定在波の腹になるのでm:(整
数値)の値が奇数の周期(半波長の奇数倍の周
期)のときには丁度高抵抗領域の中間の所などで
へきかいしたときに、定在波の腹と電流が多く流
れる領域が一致して、あらかじめ決められた周期
に合つた波長をもつた光の利得が高くなる。しか
しながらmが遇数のときは、定在波の腹は1/4波
長高抵抗領域の中間の位置からずれるので、へき
かい面の位置は注意しなければならない。
The optical resonator end face of a semiconductor injection laser is the antinode of the standing wave of light, so m: (integer value) has an odd period (a period that is an odd multiple of the half wavelength). In the case of , when the peak is cut in the middle of the high resistance region, the antinode of the standing wave coincides with the region where a large amount of current flows, and the gain of light with a wavelength that matches the predetermined period is high. Become. However, when m is an even number, the antinode of the standing wave deviates from the middle position of the 1/4 wavelength high resistance region, so care must be taken in the position of the cleavage plane.

しかし、共振器端面の位置が定在波の腹にあた
る所からずれると、定在波の腹の所に電流が流れ
なくなる。極端な場合だと定在波の節の所に電流
が多く流れるようなこともおこる。そうなると電
流が全面に均一に流れていた時よりも効率は悪く
なり、閾値電流も上昇し、発光モードなどの特性
は悪くなる。故に、共振器端面の位置はきわめて
重要で定在波の腹の位置とへきかい面が一致する
必要がある。但し、一致するとは厳密に一致する
だけでなく、ほぼ一致することも含む。以下の構
造においても同様である。第5図bは3層日14
だけにイオン打ち込みをおこなつている。3層目
で成長を止めて、イオン打ち込みを行つて、その
上に成長を行つてもよいし、4層目15まで成長
してからイオン打ち込みを行つてもよい。又イオ
ン打ち込みの他に3層目で成長をとめて、選択拡
散してもよい。イオンはその打ちこむときの加速
エネルギーによつて、材料へ入りこむ深さがほぼ
決まり、平均深さを中心に深さ方向に対してほぼ
ガウス分布してちらばる。もちろん打ち込むイオ
ンと打ちこまれる材料によつてその深さはかわ
る。軽い原子イオンを高エネルギーをもたせて打
ちこむと深い所に打ち込むことができる。
However, if the position of the resonator end face deviates from the position corresponding to the antinode of the standing wave, no current will flow at the antinode of the standing wave. In extreme cases, a large amount of current may flow at the nodes of the standing wave. In this case, the efficiency becomes worse than when the current flows uniformly over the entire surface, the threshold current increases, and characteristics such as light emission mode deteriorate. Therefore, the position of the resonator end face is extremely important, and the position of the antinode of the standing wave must match the cleavage surface. However, matching includes not only exact matching but also almost matching. The same applies to the following structures. Figure 5b is the 3rd layer day 14
We perform ion implantation only for this reason. Growth may be stopped at the third layer, ion implantation may be performed, and growth may be performed thereon, or ion implantation may be performed after growth up to the fourth layer 15. In addition to ion implantation, growth may be stopped at the third layer and selective diffusion may be performed. The depth at which ions penetrate into the material is approximately determined by the acceleration energy when they are implanted, and the ions are scattered in an approximately Gaussian distribution in the depth direction centered on the average depth. Of course, the depth will vary depending on the ions being implanted and the material being implanted. When light atomic ions are implanted with high energy, they can be implanted into deep places.

第5図cは、最上部の層15のみをイオンミリ
ングプラズマエツチングあるいは化学エツチング
等により周期的に除いて、周期的に、第3層14
を露出させて、その上に、金属を蒸着して抵抗性
接触をつくる。しかし、ここで使用しているの
は、第3層14はp−Ga1-xAlxAsで第4層15
がp−GaAsであるので、両方の接触抵抗にはほ
ぼ2桁の差があり、第3層14に接触している部
分は抵抗が高くなり、電流が流れない。第4層1
5に接触している所は抵抗が低くなり電流が流れ
る。このようにして材料による接触抵抗差により
周期的高抵抗領域をつくり、周期電流を流す。他
の材料においても同様のことができる。逆に層1
4の所を接触抵抗の小さい材料を使えば前記と逆
の電流分布になる。
FIG. 5c shows that only the top layer 15 is periodically removed by ion milling plasma etching or chemical etching, and then the third layer 14 is etched periodically.
A resistive contact is made by depositing metal on top of the exposed surface. However, what is used here is that the third layer 14 is p-Ga 1-x Al x As and the fourth layer 15 is p-Ga 1-x Al x As.
Since it is p-GaAs, there is a difference of approximately two orders of magnitude in the contact resistance between the two, and the portion in contact with the third layer 14 has a high resistance and no current flows. 4th layer 1
Where it is in contact with 5, the resistance is low and current flows. In this way, periodic high resistance regions are created due to the contact resistance difference between the materials, and a periodic current is caused to flow. Similar things can be done with other materials. On the contrary, layer 1
If a material with low contact resistance is used at point 4, the current distribution will be opposite to the above.

第5図dは、第3層p−Ga1-xAlxAs14に周
期性をもたせる。p−GaAs15はp−
Ga1-xAlxAs14より抵抗が低いため第3層14
がでている所は抵抗が高くなり電流は流れにくく
なる。本構造は、第2図とよくにているが、第2
図の24はAlAsの含有量が少く(y<x)、光の
導波路になつているが、第5図dではAlAsの含
有量が多いため(x≒0.3)光の導波路にはなら
ず、それによる光のブラツグ反射はなく、周期構
造によつて周期的に高抵抗領域と低抵抗領域を配
置することにより電流の大小を制御して、周期的
利得分布を得ることができる。
In FIG. 5d, the third layer p-Ga 1-x Al x As 14 is given periodicity. p-GaAs15 is p-
Ga 1-x Al x As the resistance is lower than that of As14, the third layer14
Where it appears, the resistance is high and it becomes difficult for current to flow. This structure is similar to Fig. 2, but
24 in the figure has a small AlAs content (y < x) and is used as an optical waveguide, but in Fig. 5 d, the AlAs content is large (x≒0.3), so it cannot be used as an optical waveguide. First, there is no blur reflection of light due to this, and by periodically arranging high-resistance regions and low-resistance regions using the periodic structure, it is possible to control the magnitude of the current and obtain a periodic gain distribution.

以下(GaAs、GaAlAs)材料を使つて製造方
法について簡単にのべる。
I will briefly explain the manufacturing method using the following materials (GaAs, GaAlAs).

結晶成長は、例えば液相エピタキシヤル法によ
りTe添加(1018〜1019cm-3)のGaAs基板上に第1
層目〜5×1017cm-3Te添加で、Ga0.7Al0.3As(3
〜5μm厚さ)、第2層、故意には何も添加しな
いGaAs(0.1μm〜0.5μm)層。第3層、Geな
どを〜5×1017cm-3ほど添加したGa0.7Al0.3As層
(〜1μm)第4層はGe〜1018cm-3ほど添加した
GaAs層(0.5μm〜1μm)を成長する。第5図
dのみが、途中に、周期構造を入れるために、第
3層までで一度成長をやめて、周期構造をつくつ
てから、再び成長する必要がある。その他は全部
成長してから、周期構造をつくればよい。
Crystal growth is carried out by, for example, using a liquid phase epitaxial method to grow a first crystal on a Te-doped (10 18 - 10 19 cm -3 ) GaAs substrate.
Layer 5 × 10 17 cm -3 With addition of Te, Ga 0.7 Al 0.3 As (3
~5 μm thick), second layer, GaAs (0.1 μm ~ 0.5 μm) layer with no intentional additions. The third layer is a Ga 0.7 Al 0.3 As layer ( ~1 μm) to which Ge is added to approximately 5×10 17 cm -3.The fourth layer is a Ga 0.7 Al 0.3 As layer (~1 μm) to which Ge is added to approximately 10 18 cm -3 .
Grow a GaAs layer (0.5 μm to 1 μm). Only in FIG. 5D, in order to insert a periodic structure in the middle, it is necessary to stop the growth once up to the third layer, create the periodic structure, and then grow again. You can create a periodic structure after all the others have grown.

成長したGaAsに、フオトレジスト(例えば
AZ1350)をぬり6000回転/分で回転させて、膜
厚を3000Åぐらいにする。これを125℃で2.5分焼
いて、密着させる。その後、単一周波数のAr+
ーザ(例えば、4579Å)を等しい強さの2つの光
にわけてから、10μm幅のスリツトを通してから
約40゜くらいの角度で、フオトレジスト上に干渉
させると、干渉縞の周期がほぼ3600Åくらいにな
る。約2.5mW/cm2で12秒間露光する。希釈しな
いAZの現像剤で1〜2分ひたすことによつて、
周期的な縞ができる。このようにして、フオトレ
ジストのマスクをつくる。目的によつてフオトレ
ジストの厚さをかえるなどの条件をかえることは
勿論、縞の間隔も簡単にかえることができる。こ
の後は各構造によつて異なり、第5図a,bの場
合はこれをマスクとしてイオン打ちこみや選択拡
散を行なう。
A photoresist (e.g.
AZ1350) and rotate at 6000 rpm to make a film thickness of about 3000 Å. Bake this at 125℃ for 2.5 minutes to make it stick. After that, a single-frequency Ar + laser (for example, 4579 Å) is split into two beams of equal intensity, and when they are passed through a 10 μm wide slit and made to interfere on the photoresist at an angle of about 40 degrees, interference occurs. The period of the stripes is approximately 3600 Å. Expose for 12 seconds at approximately 2.5 mW/cm 2 . By soaking it in undiluted AZ developer for 1 to 2 minutes,
Periodic stripes are formed. In this way, a photoresist mask is created. Depending on the purpose, conditions such as the thickness of the photoresist can be changed, and the spacing between stripes can also be easily changed. The subsequent steps differ depending on each structure, and in the case of FIGS. 5a and 5b, ion implantation and selective diffusion are performed using this as a mask.

第5図cはイオンミリングか、化学エツチング
によつてこれを行なうことができる。後は電極を
つけるのみである。
FIG. 5c, this can be done by ion milling or chemical etching. All that remains is to attach the electrodes.

以上、ダブルヘテロ構造をもつた半導体注入レ
ーザについて、主に述べてきたが、ヘテロ接合
が、1つしかないシングルヘテロ構造やヘテロ接
合を有しないホモ接合構造の半導体注入レーザに
もこの構造を適用できる。
Above, we have mainly talked about semiconductor injection lasers with a double heterostructure, but this structure can also be applied to semiconductor injection lasers with a single heterostructure with only one heterojunction and a homojunction structure with no heterojunction. can.

又、半導体注入レーザとして以上述べてきた
が、閾値以下の電流を流して、光集積回路あるい
は光伝送途中での増幅素子、変調素子やパラメト
リツクアンプなどとしても使用できる。このとき
は、周期構造より決つた波長のみしか増巾しない
から、選択増巾素子あるいは選択波長の変調素子
として作用でき光導波路上で種々の半導体光装置
として使用できる。その他、本発明の主旨を損わ
ざる限りに於て適用可能なものを含むのは言うま
でもない。
Although the laser has been described above as a semiconductor injection laser, it can also be used as an amplification element, modulation element, parametric amplifier, etc. in an optical integrated circuit or during optical transmission by passing a current below a threshold value. In this case, since only the wavelength determined by the periodic structure is amplified, it can function as a selective amplification element or a modulation element for a selective wavelength, and can be used as various semiconductor optical devices on an optical waveguide. Needless to say, the present invention includes other applicable methods as long as they do not deviate from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2,3図は従来の半導体光装置の例、第
4図は共振器中での光の定在波の図、第5図a乃
至dは本発明の光の進行方向に抵抗の周期的分布
をもたせた実施例、である。
1, 2, and 3 are examples of conventional semiconductor optical devices, FIG. 4 is a diagram of a standing wave of light in a resonator, and FIGS. This is an example with periodic distribution.

Claims (1)

【特許請求の範囲】 1 少なくとも第1導電型の半導体基板上に、第
1導電型の第1半導体層、第1導電型あるいは第
1導電型と反対の導電型の第2導電型の活性層、
第2導電型の第2、第3の半導体層をほぼ平行に
重ね、第1、第2半導体層の禁制帯幅は活性層の
禁制帯幅より大きい半導体層である第2半導体層
だけか、第2、第3半導体層の中に、反対導電型
の第1導電型の領域が光の伝搬方向に光の半波長
の整数倍の周期で配置された半導体光装置におい
て半導体層に対し、垂直かつ光伝搬方向に垂直な
1対の光共振器端面が、前記周期で配置された第
2半導体層だけか、第2、第3半導体層の中の反
対導電型の第1の導電型の領域の中間の第2の導
電型を有する半導体層のほぼ中央に形成されてい
ることを特徴とする半導体光装置。 2 少なくとも第1導電型の半導体基板上に第1
導電型の第1半導体層、第1導電型あるいは第1
導電型と反対の導電型の第2導電型の活性層、第
2導電型の第2、第3の半導体層をほぼ平行に重
ね、第1、第2半導体層の禁制帯幅は活性層の禁
制帯幅より大きい半導体層であり第3の半導体層
が光の伝搬方向に光の半波長の整数倍の周期で除
去された半導体光装置において、半導体層に対
し、垂直かつ光伝搬方向に垂直な1対の光共振器
端面が、前記周期で除去された第3の半導体層の
残つた領域のほぼ中央に形成されていることを特
徴とする半導体光装置。 3 少なくとも第1導電型の半導体基板上に第1
導電型の第1半導体層、第1導電型あるいは第1
導電型と反対の導電型の第2の導電型の活性層、
第2導電型の第2、第3の半導体層をほぼ平行に
重ね、第1、第2半導体層の禁制帯幅は活性層の
禁制帯幅より大きい半導体層であり、第2の半導
体層が、光の伝搬方向に光の半波長の整数倍の周
期で一部を厚くして凹凸構造である半導体光装置
において、半導体層に対し垂直かつ光伝搬方向に
垂直な1対の光共振器端面が、第2の半導体層の
前記周期の凸部のほぼ中央に形成されていること
を特徴とする半導体光装置。
[Claims] 1. On at least a semiconductor substrate of a first conductivity type, a first semiconductor layer of a first conductivity type, an active layer of a first conductivity type or a second conductivity type of a conductivity type opposite to the first conductivity type. ,
Only the second semiconductor layer is a semiconductor layer in which second and third semiconductor layers of the second conductivity type are stacked substantially in parallel, and the forbidden band width of the first and second semiconductor layers is larger than the forbidden band width of the active layer; In a semiconductor optical device, regions of a first conductivity type of opposite conductivity type are arranged in the second and third semiconductor layers at a period of an integral multiple of a half wavelength of light in the direction of propagation of light. and a pair of optical resonator end faces perpendicular to the light propagation direction are regions of the first conductivity type of the opposite conductivity type in only the second semiconductor layer arranged at the period or in the second and third semiconductor layers. 1. A semiconductor optical device characterized in that the semiconductor optical device is formed approximately at the center of a semiconductor layer having a second conductivity type intermediate between . 2. At least a first
a first conductivity type semiconductor layer, a first conductivity type or a first conductivity type semiconductor layer;
An active layer of a second conductivity type opposite to the conductivity type, and second and third semiconductor layers of the second conductivity type are stacked almost in parallel, and the forbidden band width of the first and second semiconductor layers is equal to that of the active layer. In a semiconductor optical device in which the third semiconductor layer is a semiconductor layer larger than the forbidden band width and is removed in the light propagation direction at a period that is an integral multiple of the half wavelength of light, the third semiconductor layer is perpendicular to the semiconductor layer and perpendicular to the light propagation direction. A semiconductor optical device characterized in that a pair of optical resonator end faces are formed substantially in the center of a remaining region of the third semiconductor layer removed at the period. 3 At least a first
a first conductivity type semiconductor layer, a first conductivity type or a first conductivity type semiconductor layer;
an active layer of a second conductivity type opposite the conductivity type;
The second and third semiconductor layers of the second conductivity type are stacked almost in parallel, and the forbidden band width of the first and second semiconductor layers is larger than that of the active layer. In a semiconductor optical device that has a concave-convex structure with a part thickened in the light propagation direction at a period of an integral multiple of the half wavelength of the light, a pair of optical resonator end faces perpendicular to the semiconductor layer and perpendicular to the light propagation direction are used. is formed substantially at the center of the periodic convex portion of the second semiconductor layer.
JP3176277A 1977-03-23 1977-03-23 High efficiency semiconductor light device Granted JPS53116793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3176277A JPS53116793A (en) 1977-03-23 1977-03-23 High efficiency semiconductor light device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3176277A JPS53116793A (en) 1977-03-23 1977-03-23 High efficiency semiconductor light device

Publications (2)

Publication Number Publication Date
JPS53116793A JPS53116793A (en) 1978-10-12
JPS6216035B2 true JPS6216035B2 (en) 1987-04-10

Family

ID=12340031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3176277A Granted JPS53116793A (en) 1977-03-23 1977-03-23 High efficiency semiconductor light device

Country Status (1)

Country Link
JP (1) JPS53116793A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5967677A (en) * 1982-07-01 1984-04-17 Semiconductor Res Found Photo integrated circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074388A (en) * 1973-11-01 1975-06-19
JPS50159984A (en) * 1974-06-14 1975-12-24
JPS5171684A (en) * 1974-12-18 1976-06-21 Nippon Telegraph & Telephone BUNPUKI KANGATA HANDOT AIREEZA

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5074388A (en) * 1973-11-01 1975-06-19
JPS50159984A (en) * 1974-06-14 1975-12-24
JPS5171684A (en) * 1974-12-18 1976-06-21 Nippon Telegraph & Telephone BUNPUKI KANGATA HANDOT AIREEZA

Also Published As

Publication number Publication date
JPS53116793A (en) 1978-10-12

Similar Documents

Publication Publication Date Title
JPH0217944B2 (en)
US4321556A (en) Semiconductor laser
JPS6180882A (en) Semiconductor laser device
JPH07101768B2 (en) Semiconductor laser device and manufacturing method thereof
US4340967A (en) Semiconductor lasers with stable higher-order modes parallel to the junction plane
US3969686A (en) Beam collimation using multiple coupled elements
US4514896A (en) Method of forming current confinement channels in semiconductor devices
JPH1022579A (en) Light waveguide path structure, and semiconductor laser, modulator, and integrated semiconductor laser device using this light waveguide structure
JPS597237B2 (en) Injection type semiconductor laser device
US4377865A (en) Semiconductor laser
JPS61168981A (en) Semiconductor laser device
JPS6216035B2 (en)
JP3336981B2 (en) Semiconductor laminated structure
US6977424B1 (en) Electrically pumped semiconductor active region with a backward diode, for enhancing optical signals
JPS6124839B2 (en)
JPH01186688A (en) Semiconductor laser device
JPH03104292A (en) Semiconductor laser
EP0610777B1 (en) Semiconductor laser with low threshold current and related manufacturing process
JP2865325B2 (en) Semiconductor laser device
JP2538613B2 (en) Semiconductor laser and manufacturing method thereof
JPH10163561A (en) Semiconductor laser element
JPS6355878B2 (en)
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JPH0559594B2 (en)
JPH0430758B2 (en)