JPH10163561A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPH10163561A
JPH10163561A JP31720296A JP31720296A JPH10163561A JP H10163561 A JPH10163561 A JP H10163561A JP 31720296 A JP31720296 A JP 31720296A JP 31720296 A JP31720296 A JP 31720296A JP H10163561 A JPH10163561 A JP H10163561A
Authority
JP
Japan
Prior art keywords
layer
thickness
semiconductor laser
quantum
laser device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31720296A
Other languages
Japanese (ja)
Other versions
JP3572157B2 (en
Inventor
Akihiro Matsumoto
晃広 松本
Takeshi Obayashi
健 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP31720296A priority Critical patent/JP3572157B2/en
Publication of JPH10163561A publication Critical patent/JPH10163561A/en
Application granted granted Critical
Publication of JP3572157B2 publication Critical patent/JP3572157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce operating current of an active layer with specifying layer thickness total of quantum well layers of a self-excited oscillation type semiconductor laser element, having a multiple quantum-well active layers obtained by alternately laminating pluralities of quantum-well layers and quantum-barrier layers. SOLUTION: An MQW active layer is constituted by growing Al0.33 Ga0.67 As lower quantum-barrier layer 120 (thickness of 50Å), alternately repeatedly growing thereon eight Al0.13 Ga0.87 As quantum-well layers 121 (thickness of 110Å) and seven Al0.33 Ga0.67 As quantum-barrier layers 122 (thickness of 50Å) and further laminating thereon Al0.33 Ga0.67 As upper part quantum-barrier layer 123 (thickness of 50Å). The total thickness of the active layer is 1250Å, and the total of the thickness of the well layer is 800Å. The total of the thickness of the well layer is 700 to 1000Å or less. When the active layer thickness is 800Å, operating current of the element having bulk active layer having equal thickness to the total of the thickness of the well layers is 26mA, and hence the current of about 30% or more can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ディスクに用い
られる低雑音特性を有する自励発振型の半導体レーザ素
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-pulsation type semiconductor laser device having low noise characteristics and used for an optical disk.

【0002】[0002]

【従来の技術】光ディスクに用いられる半導体レーザ素
子は、低雑音化のために自励発振型が用いられる。活性
層に多重量子井戸構造を用い、また、電流狭窄兼光吸収
層で光吸収を行わせることにより、低電流駆動を達成し
た自励発振型の半導体レーザ素子が田中等により特開平
2−72688号公報に記載されている。
2. Description of the Related Art As a semiconductor laser device used for an optical disk, a self-excited oscillation type is used to reduce noise. A self-excited oscillation type semiconductor laser device which achieves low current driving by using a multiple quantum well structure for an active layer and performing light absorption by a current confinement and light absorption layer is disclosed in Japanese Patent Application Laid-Open No. 2-72688 by Tanaka. It is described in the gazette.

【0003】図11に、特開平2−72688号公報に
記載の半導体レーザ素子を示す。n−GaAs基板30
1上に、n−GaAsバッファ層302、n−Alx
1-xAsクラッド層303、多重量子井戸 (MQW:
Multi QuantumWell)活性層304、
p−AlxGa1-xAsクラッド層305、p−GaAs
層306を成長し、エッチングによるリッジストライプ
307形成後に、リッジストライプ307の両側に選択
的にn−GaAs電流狭窄兼光吸収層308の成長を行
い、全面にp−GaAs埋め込み層309を成長する。
基板側と成長層表面に電極310、311を形成する。
従来では動作電流35〜40mAであり、通常のバルク
活性層からなるダブルヘテロ(DH)構造の半導体レー
ザ素子に比べて、動作電流を30〜40%低減できる。
FIG. 11 shows a semiconductor laser device described in JP-A-2-72688. n-GaAs substrate 30
1, n-GaAs buffer layer 302, n-Al x G
a 1-x As clad layer 303, multiple quantum well (MQW:
Multi Quantum Well) active layer 304,
p-Al x Ga 1-x As clad layer 305, p-GaAs
After the layer 306 is grown and the ridge stripe 307 is formed by etching, the n-GaAs current confinement and light absorption layer 308 is selectively grown on both sides of the ridge stripe 307, and the p-GaAs buried layer 309 is grown on the entire surface.
Electrodes 310 and 311 are formed on the substrate side and on the surface of the growth layer.
Conventionally, the operating current is 35 to 40 mA, and the operating current can be reduced by 30 to 40% as compared with a semiconductor laser device having a double hetero (DH) structure including a normal bulk active layer.

【0004】[0004]

【発明が解決しようとする課題】特開平2−72688
号公報に記載の半導体レーザ素子では、MQW活性層の
全層厚を規定することにより、低雑音化を達成してい
る。
Problems to be Solved by the Invention
In the semiconductor laser device described in Japanese Patent Application Laid-Open Publication No. H11-107, low noise is achieved by defining the total thickness of the MQW active layer.

【0005】しかし、従来の半導体レーザ素子では、M
QW活性層の量子井戸層の層厚合計を規定していないた
めに、次に述べる問題があった。
However, in a conventional semiconductor laser device, M
Since the total thickness of the quantum well layers of the QW active layer is not specified, there is a problem described below.

【0006】特開平2−72688号公報に記載の半導
体レーザ素子では、量子井戸層の層厚の合計は360Å
から440Åである。このとき、低雑音化を達成するに
はリッジストライプ外部の量子井戸層の可飽和吸収量を
大きくするために、リッジストライプ外部に発光分布を
十分に拡げて、リッジストライプ外部のMQW活性層に
光をしみ出させる必要がある。しかし、発光分布を拡げ
るために、リッジストライプ外部のMQW活性層におけ
る光の波面が曲がり、MQW活性層に平行方向の放射光
のビームウエストがレーザ端面から離れ、一方、垂直方
向の放射光のビームウエストはレーザ端面にあるので半
導体レーザ素子の非点隔差が増大するという問題があっ
た。
In the semiconductor laser device described in JP-A-2-72688, the total thickness of the quantum well layers is 360 °.
From 440 °. At this time, in order to increase the saturable absorption amount of the quantum well layer outside the ridge stripe to achieve low noise, the light emission distribution is sufficiently expanded outside the ridge stripe, and the light is distributed to the MQW active layer outside the ridge stripe. Need to exude. However, in order to broaden the light emission distribution, the wavefront of light in the MQW active layer outside the ridge stripe is bent, and the beam waist of the emitted light in the direction parallel to the MQW active layer is separated from the laser end face, while the beam of the emitted light in the vertical direction is Since the waist is located at the laser end face, there is a problem that the astigmatic difference of the semiconductor laser element increases.

【0007】また、リッジストライプ外部に発光分布が
拡がることによって、MQW活性層に平行方向の放射角
が狭くなって、放射光の楕円率(=活性層に垂直方向放
射角/活性層に平行方向放射角)が増大するという問題
があった。
In addition, the emission distribution in the direction parallel to the MQW active layer is narrowed by the spread of the light emission distribution outside the ridge stripe, and the ellipticity of the emitted light (= radiation angle perpendicular to active layer / radiation angle parallel to active layer) (Radiation angle) increases.

【0008】半導体レーザ素子の非点隔差増大あるいは
放射光の楕円率増大による光学特性の悪化は、半導体レ
ーザ素子を光ディスクの光源に用いる場合に、半導体レ
ーザ素子からの放射光をレンズで微小スポットに集光す
ることを困難にしたり、放射光のレンズへの結合効率低
下により光出力の有効利用を困難にする問題があった。
Deterioration of optical characteristics due to an increase in astigmatic difference of the semiconductor laser element or an increase in the ellipticity of the emitted light is caused by the fact that when the semiconductor laser element is used as a light source for an optical disk, the emitted light from the semiconductor laser element is formed into a minute spot by a lens. There has been a problem that it is difficult to condense the light, and it is difficult to effectively use the optical output due to a reduction in the coupling efficiency of the emitted light to the lens.

【0009】また、従来の半導体レーザ素子では、電流
光閉じ込め手段に電流狭窄兼光吸収層を用いる。この光
閉じ込め手段による光吸収とリッジストライプ外部のM
QW活性層における量子井戸層の可飽和吸収によって、
半導体レーザ素子内部の光吸収損失が過剰に増大するこ
とで、動作電流が増大してしまうという問題があった。
In a conventional semiconductor laser device, a current confinement and light absorption layer is used as current light confinement means. The light absorption by this light confinement means and the M outside the ridge stripe
Due to the saturable absorption of the quantum well layer in the QW active layer,
There is a problem that the operating current increases due to an excessive increase in light absorption loss inside the semiconductor laser element.

【0010】従って、本発明では動作電流、動作電圧を
増大させることなく、また、非点隔差、放射光の楕円率
を増大させることのない低雑音特性を有する半導体レー
ザ素子を提供することを目的とする。
Accordingly, an object of the present invention is to provide a semiconductor laser device having low noise characteristics without increasing the operating current and operating voltage, and without increasing astigmatism and ellipticity of emitted light. And

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
に、本発明のMQW活性層を有する自励発振型の半導体
レーザ素子は、半導体基板上に、第1導電型のクラッド
層と、活性層と、第2導電型のクラッド層を有し、前記
第2導電型のクラッド層はストライプ形状であり、前記
ストライプ形状の両側部に電流光閉じ込め手段を有し、
前記活性層は量子井戸層と量子障壁層とを交互に複数積
層した多重量子井戸活性層からなる自励発振型の半導体
レーザ素子において、前記量子井戸層の層厚の合計が7
00Å以上1000Å以下であることを特徴とする。
In order to solve the above-mentioned problems, a self-pulsation type semiconductor laser device having an MQW active layer according to the present invention is provided on a semiconductor substrate by forming a first conductive type cladding layer and an active layer. A cladding layer of the second conductivity type, the cladding layer of the second conductivity type has a stripe shape, and has current light confinement means on both sides of the stripe shape;
The active layer is a self-pulsation type semiconductor laser device comprising a multiple quantum well active layer in which a plurality of quantum well layers and quantum barrier layers are alternately stacked, and the total thickness of the quantum well layers is 7
It is not less than 00 ° and not more than 1000 °.

【0012】また、前記量子井戸層の層厚が60Å以上
120Å以下であり、前記量子障壁層の層厚が30Å以
上80Å以下であることを特徴とする。
The quantum well layer may have a thickness of not less than 60 ° and not more than 120 °, and the quantum barrier layer may have a thickness of not less than 30 ° and not more than 80 °.

【0013】特に、前記電流光閉じ込め手段に、前記活
性層よりも禁制帯幅の大きい第1導電型の電流光閉じ込
め層を有することが好ましい。
In particular, it is preferable that the current light confinement means has a current light confinement layer of the first conductivity type having a larger forbidden band width than the active layer.

【0014】また、前記活性層は、前記第1導電型のク
ラッド層側に下部量子障壁層を備え、前記第2導電型の
クラッド層側に上部量子障壁層を備え、前記上部量子障
壁層あるいは前記下部量子障壁層の少なくとも一方が他
の前記量子障壁層よりも禁制帯幅が小さくすることを特
徴とする半導体レーザ素子はより低雑音、低動作電圧電
流の半導体レーザ素子となる。
The active layer may include a lower quantum barrier layer on the side of the first conductivity type cladding layer, and an upper quantum barrier layer on the side of the second conductivity type cladding layer. A semiconductor laser device in which at least one of the lower quantum barrier layers has a smaller forbidden band width than the other quantum barrier layers is a semiconductor laser device with lower noise and lower operating voltage and current.

【0015】また、前記ストライプ形状の層厚方向の等
価屈折率n1と、前記電流光閉じ込め手段の層厚方向の
等価屈折率n2との差Δn(=n1−n2)が、3×1
-3≦Δn≦7×10-3とすることが好ましい。
Further, the difference Δn (= n1−n2) between the equivalent refractive index n1 of the stripe shape in the layer thickness direction and the equivalent refractive index n2 of the current light confining means in the layer thickness direction is 3 × 1.
It is preferable that 0 −3 ≦ Δn ≦ 7 × 10 −3 .

【0016】[0016]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。図1に実施の形態1の半導体レーザ素子の断面図
を示す。
Embodiments of the present invention will be described below. FIG. 1 shows a cross-sectional view of the semiconductor laser device of the first embodiment.

【0017】n−GaAs基板101上に、n−GaA
sバッファ層102(層厚0.5μm)、n−Al0.45
Ga0.55As第1クラッド層103(層厚1.3μ
m)、n−Al0.5Ga0.5As低屈折率層104(層厚
0.2μm)、ノンドープのMQW活性層105、p−
Al0.5Ga0.5As第2クラッド層106(層厚0.1
5μm)、p−GaAsエッチング停止層107(層厚
0.003μm)、p−Al0.5Ga0.5As第3クラッ
ド層108(層厚1.2μm)、p−GaAsキャップ
層109(層厚0.8μm)を順次、有機金属気相成長
法(MOCVD法)により成長する。
On an n-GaAs substrate 101, n-GaAs
s buffer layer 102 (layer thickness 0.5 μm), n-Al 0.45
Ga 0.55 As first cladding layer 103 (layer thickness 1.3 μm)
m), n-Al 0.5 Ga 0.5 As low refractive index layer 104 (layer thickness 0.2 μm), non-doped MQW active layer 105, p-
Al 0.5 Ga 0.5 As second cladding layer 106 (layer thickness 0.1
5 μm), p-GaAs etching stop layer 107 (layer thickness 0.003 μm), p-Al 0.5 Ga 0.5 As third cladding layer 108 (layer thickness 1.2 μm), p-GaAs cap layer 109 (layer thickness 0.8 μm) ) Are sequentially grown by metal organic chemical vapor deposition (MOCVD).

【0018】ここで、MQW活性層は、Al0.33Ga
0.67As下部量子障壁層120(層厚50Å)を成長さ
せ、その上にAl0.13Ga0.87As量子井戸層121
(層厚100Å)とAl0.33Ga0.67As量子障壁層1
22(層厚50Å)を量子井戸層を8層とし、量子障壁
層を7層として交互に繰り返し成長させ、さらにその上
にAl0.33Ga0.67As上部量子障壁層123(層厚5
0Å)により構成する。本実施の形態ではMQW活性層
の全層厚は1250Åであり、量子井戸層の層厚の合計
は800Åである。上記に説明した構造でのAl組成比
の分布を図2に示す。
Here, the MQW active layer is made of Al 0.33 Ga
A 0.67 As lower quantum barrier layer 120 (layer thickness: 50 °) is grown, and an Al 0.13 Ga 0.87 As quantum well layer 121 is formed thereon.
(Layer thickness: 100 °) and Al 0.33 Ga 0.67 As quantum barrier layer 1
22 (thickness: 50 °) are alternately and repeatedly grown with eight quantum well layers and seven quantum barrier layers, and further thereon, an Al 0.33 Ga 0.67 As upper quantum barrier layer 123 (layer thickness of 5).
0Å). In the present embodiment, the total thickness of the MQW active layer is 1250 °, and the total thickness of the quantum well layers is 800 °. FIG. 2 shows the distribution of the Al composition ratio in the structure described above.

【0019】p−GaAsキャップ層109表面にフォ
トレジストのストライプマスクを形成し、選択性エッチ
ングによりp−GaAsエッチング停止層107表面で
エッチングを停止させて、底部のストライプ幅2.2μ
mのリッジストライプ114を形成する。リッジストラ
イプ114の両側を埋め込むように、n−Al0.7Ga
0.3As第1電流光閉じ込め層110(層厚0.6μ
m)、n−GaAs第2電流光閉じ込め層111(層厚
0.6μm)、p−GaAs平坦化層112(層厚0.
7μm)を順次、MOCVD法により成長する。p−G
aAsキャップ層109、p−GaAs平坦化層112
を埋め込むように、p−GaAsコンタクト層113
(層厚3μm)をMOCVD法により成長する。n−G
aAs基板101表面とp−GaAsコンタクト層11
3表面にn型電極115とp型電極116を形成する。
共振器長を100〜250μmとするように調整して共
振器端面を形成し、共振器端面の光出射側の端面反射率
が20〜50%、反対側の端面反射率が50%〜95%
となるように共振器端面にAl23膜とSi膜を形成す
る。
A photoresist stripe mask is formed on the surface of the p-GaAs cap layer 109, and the etching is stopped on the surface of the p-GaAs etching stop layer 107 by selective etching to form a stripe width of 2.2 μm at the bottom.
The m ridge stripes 114 are formed. N-Al 0.7 Ga is buried on both sides of the ridge stripe 114.
0.3 As first current confinement layer 110 (layer thickness 0.6 μm)
m), n-GaAs second current / light confinement layer 111 (layer thickness 0.6 μm), p-GaAs planarization layer 112 (layer thickness 0.
7 μm) are sequentially grown by MOCVD. p-G
aAs cap layer 109, p-GaAs planarization layer 112
Embedded in the p-GaAs contact layer 113.
(Thickness: 3 μm) is grown by MOCVD. n-G
aAs substrate 101 surface and p-GaAs contact layer 11
An n-type electrode 115 and a p-type electrode 116 are formed on three surfaces.
The cavity length is adjusted to 100 to 250 μm to form a cavity end face, and the end face reflectivity on the light emission side of the cavity end face is 50% to 50%, and the end face reflectivity on the opposite side is 50% to 95%.
An Al 2 O 3 film and a Si film are formed on the end face of the resonator so that

【0020】本実施の形態の半導体レーザ素子では、n
型電極115とp型電極116の間に順方向電圧を印加
した場合、発振波長0.78μm、発振閾値電流14m
A、電流−光出力特性のスロープ効率0.75W/A、
光出力3mWの動作電流は18mAであった。本実施の
形態の半導体レーザ素子は、MQW活性層105の禁制
帯幅より大きな禁制帯幅を有する第1電流光閉じ込め層
110を用いるので、ストライプ外部にあたる活性層に
よって自励発振できる程度まで光吸収が行われ、第1電
流光閉じ込め層110における半導体レーザ素子による
発光の光吸収を抑制することができる。
In the semiconductor laser device of this embodiment, n
When a forward voltage is applied between the pattern electrode 115 and the p-type electrode 116, the oscillation wavelength is 0.78 μm and the oscillation threshold current is 14 m
A, slope efficiency of current-light output characteristics 0.75 W / A,
The operating current at a light output of 3 mW was 18 mA. Since the semiconductor laser device of the present embodiment uses the first current light confinement layer 110 having a bandgap larger than the bandgap of the MQW active layer 105, the semiconductor laser device absorbs light to such an extent that self-sustained pulsation can be achieved by the active layer outside the stripe. Is performed, and light absorption of light emitted by the semiconductor laser element in the first current / light confinement layer 110 can be suppressed.

【0021】活性層厚が800Åとして量子井戸層の膜
厚の合計と等しくしたバルク活性層を有する自励発振型
半導体レーザ素子の動作電流は26mAであるので、本
実施の形態の量子井戸活性層を有した半導体レーザ素子
では動作電流を約30%以上低減することができた。
The operating current of a self-pulsation type semiconductor laser device having a bulk active layer whose active layer thickness is 800 ° equal to the total thickness of the quantum well layers is 26 mA. In the semiconductor laser device having the above, the operating current could be reduced by about 30% or more.

【0022】また、動作電流低減に伴い800Åのバル
ク活性層を有する半導体レーザ素子に比べて、本実施の
形態の半導体レーザ素子は動作電圧を約5%以上低減す
ることができた。
The operating voltage of the semiconductor laser device according to the present embodiment was reduced by about 5% or more as compared with the semiconductor laser device having a bulk active layer of 800.degree.

【0023】雰囲気温度70℃、一定光出力5mWにお
ける動作電流の変化を調べると、動作電流が初期値より
20%増大するまでの走行時間は10000時間以上で
ある。
Examining the change in operating current at an ambient temperature of 70 ° C. and a constant light output of 5 mW, the running time until the operating current increases by 20% from the initial value is 10,000 hours or more.

【0024】また、本実施の形態の半導体レーザ素子の
放射角の非点隔差は13μmであり、バルク活性層を有
する自励発振型半導体レーザ素子とほぼ同等の値が得ら
れた。
The astigmatic difference in radiation angle of the semiconductor laser device of this embodiment is 13 μm, which is almost the same as that of the self-pulsation type semiconductor laser device having a bulk active layer.

【0025】さらに、本発明の半導体レーザ素子におい
てMQW活性層に平行方向の放射角は12°、垂直方向
の放射角は38°であり、放射光の楕円率においてもバ
ルク活性層を有する自励発振型の半導体レーザ素子と同
等の値が得られた。
Further, in the semiconductor laser device of the present invention, the radiation angle in the direction parallel to the MQW active layer is 12 ° and the radiation angle in the vertical direction is 38 °. A value equivalent to that of the oscillation type semiconductor laser device was obtained.

【0026】本発明の半導体レーザ素子では、活性層1
05とn−第1クラッド層103の間にn−第1クラッ
ド層103より屈折率の小さなn−低屈折率層104を
設けているのは、MQW活性層の層厚の合計の厚膜化に
よる垂直方向の放射角増大を抑制して、膜厚800Åの
バルク活性層を有する自励発振型の半導体レーザ素子と
同等の垂直放射角を得るためである。これによって、n
−低屈折率層104が無い場合に比べて2°程度垂直放
射角増大を抑えることができる。なお、n−低屈折率層
104は、必ずしも必要とするものではない。
In the semiconductor laser device of the present invention, the active layer 1
The reason why the n-low refractive index layer 104 having a smaller refractive index than the n-first cladding layer 103 is provided between the n-type first cladding layer 05 and the n-first cladding layer 103 is that the total thickness of the MQW active layer is increased. Is to suppress a vertical radiation angle increase due to the above, and obtain a vertical radiation angle equivalent to that of a self-pulsation type semiconductor laser device having a bulk active layer having a thickness of 800 °. This gives n
-It is possible to suppress an increase in vertical radiation angle by about 2 ° as compared with the case where the low refractive index layer 104 is not provided. Note that the n-low refractive index layer 104 is not always required.

【0027】本実施の形態の半導体レーザ素子の戻り光
雑音を測定すると、戻り光量0.001%から15%ま
で相対雑音強度−110dB/Hz以下の低雑音特性が
得られた。
When the return light noise of the semiconductor laser device of the present embodiment was measured, a low noise characteristic with a relative noise intensity of −110 dB / Hz or less was obtained from a return light amount of 0.001% to 15%.

【0028】次に、MQW活性層の量子井戸層の層厚の
合計を変化させた場合の非点隔差の変化と、活性層に平
行放射角の変化をそれそれ図3、4に示す。このとき、
自励発振による低雑音特性が得られるように、リッジス
トライプ内部の層厚方向の等価屈折率n1と、リッジス
トライプ両側部の層厚方向の等価屈折率n2との差Δn
(=n1−n2)の調整を行っている。図3より量子井
戸層の膜厚合計が小さくなると、非点隔差が増大するこ
とがわかる。層厚合計が700Åより小さい場合には、
非点隔差は20μmより大きくなる。これは、層厚合計
が小さい場合には、自励発振を起こすためには等価屈折
率の差△nを小さくして、リッジストライプ外部への発
分布光の拡がりを増大する必要があり、そのために非点
隔差増大が生じることによる。
Next, FIGS. 3 and 4 show changes in the astigmatic difference and changes in the parallel radiation angle to the active layer when the total thickness of the quantum well layers of the MQW active layer is changed. At this time,
The difference Δn between the equivalent refractive index n1 in the layer thickness direction inside the ridge stripe and the equivalent refractive index n2 in the layer thickness direction on both sides of the ridge stripe so as to obtain low noise characteristics by self-pulsation.
(= N1-n2) is adjusted. FIG. 3 shows that the astigmatic difference increases as the total thickness of the quantum well layers decreases. If the total thickness is less than 700 °,
The astigmatic difference is greater than 20 μm. This is because, when the total layer thickness is small, in order to cause self-pulsation, it is necessary to reduce the difference Δn in the equivalent refractive index to increase the spread of the emitted light outside the ridge stripe. Is caused by an increase in astigmatism.

【0029】図4より量子井戸層厚の合計が小さくなる
と、水平放射角が減少することがわかる。層厚合計が7
00Åより小さい場合には、水平放射角は9°より小さ
くなる。これは、層厚合計が小さい場合には、自励発振
を起こすために等価屈折率の差△nを小さくして、スト
ライプ外部への発光分布の拡がりを増大する必要があ
り、そのために平行放射角低減が生じることによる。
FIG. 4 shows that the smaller the total quantum well layer thickness is, the smaller the horizontal radiation angle is. Total thickness 7
If less than 00 °, the horizontal radiation angle will be less than 9 °. This is because when the total thickness of the layers is small, it is necessary to reduce the difference Δn in the equivalent refractive index in order to cause self-pulsation and to increase the spread of the light emission distribution outside the stripe. Angle reduction occurs.

【0030】非点隔差が20μm以上に増大すると、放
射光をレンズで集光するとき、集光スポットサイズの増
大を生じ、光ディスク等のシステムで使用することが困
難となる。また、平行放射角が9°以下に低減すると、
放射光の楕円率(=垂直放射角/平行放射角)が増大す
るために、レンズとの結合効率が低下して、光ディスク
等のシステムで使用することが困難となる。このよう
に、半導体レーザ素子の光学特性悪化を防止するには、
MQW活性層の量子井戸層の層厚合計を700Åより大
きくすることが重要となる。
When the astigmatism is increased to 20 μm or more, when the emitted light is focused by a lens, the size of the focused spot increases, and it is difficult to use the system in a system such as an optical disk. When the parallel radiation angle is reduced to 9 ° or less,
Since the ellipticity of emitted light (= vertical emission angle / parallel emission angle) increases, the coupling efficiency with the lens decreases, and it becomes difficult to use the system in a system such as an optical disk. Thus, in order to prevent the deterioration of the optical characteristics of the semiconductor laser device,
It is important to make the total thickness of the quantum well layers of the MQW active layer larger than 700 °.

【0031】さらに、量子井戸層の層厚合計を変化した
場合の光出力3mWにおける動作電流の変化、及び動作
電圧の変化を各々図5、6に示す。層厚合計が1000
Åより大きくなると、動作電流は25mAより増大す
る。これは層厚合計の増大に伴い、半導体レーザ素子発
振に必要な電流値が増大することによる。また、層厚合
計が1000Åより大きくなると、動作電圧は2.0V
以上に増大する。これは、MQW活性層の量子井戸層へ
のキャリヤ注入が不均一になることに伴う、立ち上がり
電圧の増大と素子抵抗の増大によるものである。このよ
うに、動作電流の増大と動作電圧の増大を防止するに
は、量子井戸層の層厚合計は1000Åより小さくする
必要がある。
FIGS. 5 and 6 show a change in operating current and a change in operating voltage at an optical output of 3 mW when the total thickness of the quantum well layers is changed. Total thickness 1000
Above Å, the operating current increases above 25 mA. This is because the current value required for the oscillation of the semiconductor laser element increases with an increase in the total layer thickness. When the total thickness exceeds 1000 °, the operating voltage becomes 2.0V.
It increases above. This is because the carrier injection into the MQW active layer into the quantum well layer becomes non-uniform, and the rise voltage and the device resistance increase. As described above, in order to prevent an increase in the operating current and the operating voltage, the total thickness of the quantum well layers needs to be smaller than 1000 °.

【0032】また、量子井戸層の厚さが60Åより薄く
なると、井戸数が多くなりすぎるために、キャリヤの注
入が均一に行われなくなって、動作電圧の増大を引き起
こす。これに対して、量子井戸層の厚さが120Åより
厚くなると、量子効果が低下するために動作電流の低減
が困難となる。そこで、量子井戸層は60Å以上120
Å以下が適当である。
If the thickness of the quantum well layer is less than 60 °, the number of wells becomes too large, so that carrier injection is not performed uniformly and the operating voltage is increased. On the other hand, when the thickness of the quantum well layer is larger than 120 °, the quantum effect is reduced, so that it is difficult to reduce the operating current. Therefore, the quantum well layer should be at least
Å The following is appropriate.

【0033】量子障壁層の厚さが30Åより薄くなる
と、成長層の界面だれの影響を受けて、設計通りの量子
障壁層を得るのが困難となる。これに対して、量子障壁
層の厚さが80Åより厚くなると、量子井戸間のキャリ
ヤ注入に支障をきたし、全ての量子井戸層に均一にキャ
リヤを注入するのが困難となる。そこで、量子障壁層は
30Å以上80Å以下が適当である。
When the thickness of the quantum barrier layer is smaller than 30 °, it is difficult to obtain a designed quantum barrier layer due to the influence of the interface of the growth layer. On the other hand, if the thickness of the quantum barrier layer is more than 80 °, carrier injection between quantum wells is hindered, and it becomes difficult to uniformly inject carriers into all quantum well layers. Therefore, it is appropriate that the quantum barrier layer has a thickness of 30 ° or more and 80 ° or less.

【0034】ここで、量子井戸活性層の全量子井戸層に
キャリヤを均一に注入して動作電流の増大となる素子抵
抗の増大を抑制するためには、量子井戸活性層のp型不
純物濃度Npを5×1016cm-3≦Np≦2×1018
-3に設定することにより、キャリアの不均一注入によ
り生じる動作電圧の増大を抑制できる。Npが2×10
18cm-3より大きくなると積層膜を形成中にp型不純物
の拡散が増大して、MQW活性層中の量子井戸層に混晶
化が生じ、MQW活性層の量子効果が低減し、動作電流
が増大する問題がある。Npが5×1016cm-3より小
さくなると不純物を添加する効果がほとんどなくなり、
動作電圧が増大する。
Here, in order to uniformly inject carriers into all the quantum well layers of the quantum well active layer and to suppress an increase in the device resistance which causes an increase in the operating current, the p-type impurity concentration Np To 5 × 10 16 cm −3 ≦ Np ≦ 2 × 10 18 c
By setting m −3 , an increase in operating voltage caused by uneven injection of carriers can be suppressed. Np is 2 × 10
If it is larger than 18 cm -3, the diffusion of the p-type impurity increases during the formation of the stacked film, and a mixed crystal occurs in the quantum well layer in the MQW active layer, the quantum effect of the MQW active layer decreases, and the operating current increases. There is a problem that increases. When Np is less than 5 × 10 16 cm −3 , the effect of adding impurities is almost eliminated,
The operating voltage increases.

【0035】さらに、本発明の半導体レーザ素子では、
電流光閉じ込め層で光吸収をしないため、リッジストラ
イプ内部と外部との等価屈折率差△nを4×10-3以上
の比較的大きな値として、リッジストライプ外部への発
光分布の広がりを抑制できる。リッジストライプの内部
と外部の層厚方向の等価屈折率差(Δn(=n1−n
2))が小さくなると、リッジストライプ外部の活性層
の過剰な可飽和吸収が起こるために、光学特性の悪化と
動作電流の増大が生じる。等価屈折率差Δnが7×10
-3より大きくなると、リッジストライプ外部の活性層の
可飽和吸収が少なくなるために、自励発振が起こりにく
くなって、雑音が増大する。そこで、屈折率差は、4×
10-3≦Δn≦7×10-3に設定するのが適当である。
Further, in the semiconductor laser device of the present invention,
Since light is not absorbed by the current light confinement layer, the equivalent refractive index difference Δn between the inside and the outside of the ridge stripe can be set to a relatively large value of 4 × 10 −3 or more to suppress the spread of the light emission distribution outside the ridge stripe. . The equivalent refractive index difference (Δn (= n1-n) in the thickness direction of the layer inside and outside the ridge stripe
When 2)) is small, excessive saturable absorption of the active layer outside the ridge stripe occurs, so that the optical characteristics deteriorate and the operating current increases. Equivalent refractive index difference Δn is 7 × 10
If the value is larger than -3, the saturable absorption of the active layer outside the ridge stripe decreases, so that self-sustained pulsation hardly occurs and noise increases. Therefore, the refractive index difference is 4 ×
It is appropriate to set 10 −3 ≦ Δn ≦ 7 × 10 −3 .

【0036】また、リッジストライプの底部の幅(W
s)が狭くなると、リッジストライプ外部の活性層の過
剰な可飽和吸収が起こるために、光学特性の悪化と動作
電流の増大が生じる。リッジストライプ幅が広くなる
と、リッジストライプ外部の活性層の可飽和吸収が少な
くなるために、自励発振が起こりにくくなって、雑音が
増大する。そこで、リッジストライプ幅は、1μm≦W
s≦4μmに設定するのが適当である。
The width of the bottom of the ridge stripe (W
When s) becomes narrow, excessive saturable absorption occurs in the active layer outside the ridge stripe, so that the optical characteristics deteriorate and the operating current increases. When the width of the ridge stripe is increased, saturable absorption of the active layer outside the ridge stripe is reduced, so that self-sustained pulsation is less likely to occur and noise increases. Therefore, the ridge stripe width is 1 μm ≦ W
It is appropriate to set s ≦ 4 μm.

【0037】本実施の形態の半導体レーザ素子は、自励
発振型の実屈折率導波型半導体レーザ素子であるため
に、ストライプ外部のMQW活性層における可飽和吸収
効果を用いている。バルク活性層を有する通常の半導体
レーザ素子では、TM偏光モードの方がTE偏光モード
よりも可飽和吸収の影響を受けにくいために、通常の発
振モードであるTE偏光モードにTM偏光モードが混在
して発振する現象が見られた。これに対して、本実施の
形態の素子では、活性層に量子井戸構造を用いるため
に、半導体レーザ素子発振利得のTE偏光モード増大効
果を用いることができ、十分にモード選択比の高いTE
偏光モードによる単一モード発振が得られる。
Since the semiconductor laser device of this embodiment is a self-excited oscillation type real refractive index guided semiconductor laser device, the saturable absorption effect in the MQW active layer outside the stripe is used. In a normal semiconductor laser device having a bulk active layer, the TM polarization mode is less susceptible to saturable absorption than the TE polarization mode. Oscillation was observed. On the other hand, in the device of the present embodiment, the effect of increasing the TE polarization mode of the semiconductor laser device oscillation gain can be used because the quantum well structure is used for the active layer, and the TE having a sufficiently high mode selection ratio can be used.
Single mode oscillation by the polarization mode is obtained.

【0038】本実施の形態の素子のように偏光モードが
単一の半導体レーザ素子はディスクの光源に用いるのに
適している。
A semiconductor laser device having a single polarization mode like the device of this embodiment is suitable for use as a light source for a disk.

【0039】(実施の形態2)実施の形態2として、図
1に記載の半導体レーザ素子の構造と同一であり、MQ
W活性層のみ異なる半導体レーザ素子のAl組成比の分
布を図7に示す。
(Embodiment 2) As Embodiment 2, the structure of the semiconductor laser device shown in FIG.
FIG. 7 shows the distribution of the Al composition ratio of the semiconductor laser device different only in the W active layer.

【0040】AlxGa1-xAs下部量子障壁層130
(層厚50Å)を成長させ、その上にAl0.13Ga0.87
As量子井戸層131(層厚100Å)とAl0.33Ga
0.67As量子障壁層132(層厚50Å)を交互に繰り
返し成長させて量子井戸層を8層と量子障壁層を7層形
成し、さらにその上にAlxGa1-xAs上部量子障壁層
133(層厚50Å)を成長させることにより構成され
ている。本実施の形態もMQW活性層の全層厚は125
0Åであり、量子井戸層の層厚の合計は800Åとし
た。
Al x Ga 1 -x As lower quantum barrier layer 130
(Layer thickness: 50 °), and Al 0.13 Ga 0.87
As quantum well layer 131 (layer thickness 100 Å) and Al 0.33 Ga
0.67 As quantum barrier layers 132 (layer thickness: 50 °) are alternately and repeatedly grown to form eight quantum well layers and seven quantum barrier layers, and further thereon, an Al x Ga 1 -x As upper quantum barrier layer 133. (Layer thickness of 50 °). Also in this embodiment, the total thickness of the MQW active layer is 125
0 °, and the total thickness of the quantum well layers was 800 °.

【0041】図8、9に、下部及び上部量子障壁層のA
l組成比に対する半導体レーザの相対雑音強度あるいは
動作電流との相関を示す。
FIGS. 8 and 9 show A of the lower and upper quantum barrier layers.
4 shows the correlation between the 1 composition ratio and the relative noise intensity or operating current of a semiconductor laser.

【0042】相対雑音強度は半導体レーザ素子を光ディ
スクで使用した場合の光ディスクからの戻り光による雑
音であり、実用上少なくとも相対雑音強度−110dB
/Hz以下、望ましくは−120dB/Hz以下が要求
されている。図8によると、下部及び上部量子障壁層の
Al組成比が量子障壁層のAl組成比より小さくなると
相対雑音強度は減少し、図9によると動作電流が増大す
る。量子障壁層のAl組成比が0.33の場合には0.
23≦x≦0.3のAl組成比とした下部、上部量子障
壁層を有する半導体レーザ素子の特性が良好であるよう
にAl組成比を他の量子障壁層より10%〜30%低減
させた下部及び上部量子障壁層とすることが好ましい。
この理由は、下部及び上部量子障壁層のAl組成比が量
子障壁層のAl組成比よりも小さい場合には、下部及び
上部量子障壁層の禁制帯幅が小さくなるため、下部及び
上部量子障壁層の光吸収が増大することで活性層全体で
の可飽和吸収量が増大し、従って自励発振が強くなり相
対雑音強度が減少する。本実施の形態のように、リッジ
ストライプ外部の可飽和吸収量を増大するには、下部及
び上部量子障壁層のAl組成比を調整し、下部及び上部
量子障壁層の禁制帯幅を他の量子障壁層より小さくする
ことで行える。
The relative noise intensity is the noise due to the return light from the optical disk when the semiconductor laser element is used for the optical disk, and is at least the relative noise intensity minus 110 dB in practical use.
/ Hz or less, preferably -120 dB / Hz or less. According to FIG. 8, when the Al composition ratio of the lower and upper quantum barrier layers becomes smaller than the Al composition ratio of the quantum barrier layer, the relative noise intensity decreases, and according to FIG. 9, the operating current increases. In the case where the Al composition ratio of the quantum barrier layer is 0.33, 0.1 is used.
The Al composition ratio was reduced by 10% to 30% compared to the other quantum barrier layers so that the characteristics of the semiconductor laser device having the lower and upper quantum barrier layers having an Al composition ratio of 23 ≦ x ≦ 0.3 were good. It is preferred to have lower and upper quantum barrier layers.
The reason is that, when the Al composition ratio of the lower and upper quantum barrier layers is smaller than the Al composition ratio of the quantum barrier layer, the bandgap of the lower and upper quantum barrier layers becomes smaller. Increases the amount of saturable absorption in the entire active layer, thereby increasing the self-sustained pulsation and decreasing the relative noise intensity. To increase the saturable absorption outside the ridge stripe as in this embodiment, the Al composition ratio of the lower and upper quantum barrier layers is adjusted, and the forbidden band width of the lower and upper quantum barrier layers is changed to other quantum barrier layers. This can be achieved by making the barrier layer smaller than the barrier layer.

【0043】本実施の形態では下部及び上部量子障壁層
のAl組成比の両方とも量子障壁層132のAl組成比
が小さい場合について述べたが、片方だけ小さい場合に
も同様の効果が得られる。
In this embodiment, the case where the Al composition ratio of the quantum barrier layer 132 is small in both the Al composition ratio of the lower and upper quantum barrier layers has been described. However, the same effect can be obtained when only one of them is smaller.

【0044】(実施の形態3)図10に実施の形態3の
GaInP系の半導体レーザ素子の断面図を示す。
Third Embodiment FIG. 10 is a sectional view of a GaInP-based semiconductor laser device according to a third embodiment.

【0045】n−GaAs基板201上に、n−Ga
0.5In0.5Pバッファ層202、n−(Al0.7
0.30.5In0.5P第1クラッド層203(層厚1.
5μm)、p−ドープ多重量子井戸活性層204、p−
(Al0.7Ga0.30.5In0.5P第2クラッド層205
(層厚1.5μm)、p−Ga0.5In0.5Pキャップ層
206(層厚0.3μm)を順次、分子線エピタキシャ
ル成長法(MBE法)により成長し、エッチングにより
p−(Al0.7Ga0.30.5In0.5P第2クラッド層の
平坦部の残し厚さが0.3μmとなるように、エッチン
グを停止させて、幅2.5μmのリッジストライプ20
7を形成する。MQW活性層は、図示していないが、
(Al0.5Ga0.50.5In0.5P下部量子障壁層(層厚
200Å)、GaInP量子井戸層(層厚80Å)と
(Al0.5Ga0.50.5In0.5P量子障壁層(層厚40
Å)を交互に繰り返し成長させて量子井戸層9層と量子
障壁層8層を積層し、(Al0.5Ga0.50.5In0.5
上部量子障壁層(層厚200Å)をその上に積層するこ
とにより構成されている。本実施の形態ではMQW活性
層の全層厚は1440Åであり、量子井戸層の層厚合計
は720Å、量子井戸の層数は9層である。
On an n-GaAs substrate 201, n-Ga
0.5 In 0.5 P buffer layer 202, n- (Al 0.7 G
a 0.3 ) 0.5 In 0.5 P first cladding layer 203 (layer thickness 1.
5 μm), p-doped multiple quantum well active layer 204, p-
(Al 0.7 Ga 0.3 ) 0.5 In 0.5 P second cladding layer 205
(Layer thickness 1.5 μm) and p-Ga 0.5 In 0.5 P cap layer 206 (Layer thickness 0.3 μm) are sequentially grown by molecular beam epitaxy (MBE) and etched to form p- (Al 0.7 Ga 0.3 ). The etching is stopped so that the remaining thickness of the flat portion of the 0.5 In 0.5 P second cladding layer becomes 0.3 μm, and the ridge stripe 20 having a width of 2.5 μm is formed.
7 is formed. Although the MQW active layer is not shown,
(Al 0.5 Ga 0.5 ) 0.5 In 0.5 P lower quantum barrier layer (layer thickness 200 Å), GaInP quantum well layer (layer thickness 80 Å) and (Al 0.5 Ga 0.5 ) 0.5 In 0.5 P quantum barrier layer (layer thickness 40)
Å) are alternately and repeatedly grown, and nine quantum well layers and eight quantum barrier layers are laminated to form (Al 0.5 Ga 0.5 ) 0.5 In 0.5 P
It is constituted by laminating an upper quantum barrier layer (layer thickness 200 Å) thereon. In this embodiment, the total thickness of the MQW active layer is 1440 °, the total thickness of the quantum well layers is 720 °, and the number of quantum well layers is nine.

【0046】リッジストライプ207の外側を埋め込む
ように、n−Al0.5Ga0.5P第1電流光閉じ込め層2
08(層厚0.3μm)、n−GaAs第2電流光閉じ
込め層209(層厚1.2μm)を順次、MBE法によ
り成長する。p−Ga0.5In0.5Pキャップ層206と
n−GaAs第2電流光閉じ込め層209の表面にp−
GaAsコンタクト層210をMBE法により成長す
る。
The n-Al 0.5 Ga 0.5 P first current light confinement layer 2 is buried outside the ridge stripe 207.
08 (layer thickness 0.3 μm) and an n-GaAs second current / light confinement layer 209 (layer thickness 1.2 μm) are sequentially grown by MBE. The surfaces of the p-Ga 0.5 In 0.5 P cap layer 206 and the n-GaAs second current / light confinement layer 209 are p-
A GaAs contact layer 210 is grown by MBE.

【0047】n−GaAs基板201表面とp−GaA
sコンタクト層210表面にn型電極211とp型電極
212を形成する。へき開法により共振器長を300〜
700μmに調整して共振器端面を形成し、共振器端面
の光出射側端面の反射率が30〜50%、後側の反射率
が70〜95%となるようにAl23膜とSi膜を形成
する。
The surface of the n-GaAs substrate 201 and the p-GaAs
An n-type electrode 211 and a p-type electrode 212 are formed on the surface of the s-contact layer 210. Resonator length 300 ~ by cleavage method
The resonator end face is formed by adjusting the thickness to 700 μm, and the Al 2 O 3 film and the Si are formed so that the reflectance of the light emission side end face of the resonator end face becomes 30 to 50% and the reflectance of the rear side becomes 70 to 95%. Form a film.

【0048】本実施の形態の素子で、n型電極211と
p型電極212の間に順方向電圧を印加した場合、発振
波長0.65μm、発振閾値電流20mA、電流−光出
力特性のスロープ効率0.75W/A、光出力3mWの
動作電流は24mAである。本実施の形態の素子は、第
1電流光閉じ込め層に活性層の禁制帯幅より大きな禁制
帯幅を有しする自励発振型の半導体レーザ素子であり、
過剰な光吸収がないため低動作電流で駆動できる。
In the device of the present embodiment, when a forward voltage is applied between the n-type electrode 211 and the p-type electrode 212, the oscillation wavelength is 0.65 μm, the oscillation threshold current is 20 mA, and the slope efficiency of the current-light output characteristics is obtained. The operating current at 0.75 W / A and light output of 3 mW is 24 mA. The device of the present embodiment is a self-pulsation type semiconductor laser device having a bandgap larger than the bandgap of the active layer in the first current light confinement layer,
Since there is no excessive light absorption, it can be driven with a low operating current.

【0049】膜厚720Åのバルク活性層を有する自励
発振型の半導体レーザ素子の動作電流は34mAである
ので、本実施の形態の半導体レーザ素子では動作電流を
約30%以上低減することが可能となった。
Since the operating current of a self-pulsation type semiconductor laser device having a bulk active layer with a thickness of 720 ° is 34 mA, the operating current can be reduced by about 30% or more in the semiconductor laser device of this embodiment. It became.

【0050】また、動作電流低減に伴い膜厚720Åの
バルク活性層を有する半導体レーザ素子に比べて、本実
施の形態の素子は動作電圧を約5%以上低減することが
できた。雰囲気温度70℃、一定光出力5mWにおける
動作電流の変化を調べると、動作電流が初期値より20
%増大するまでの走行時間は5000時間以上である。
The operating voltage of the device of this embodiment was reduced by about 5% or more as compared with a semiconductor laser device having a bulk active layer having a thickness of 720 ° due to a reduction in operating current. When the change in operating current at an ambient temperature of 70 ° C. and a constant light output of 5 mW is examined, the operating current is 20
The running time to increase by% is 5000 hours or more.

【0051】また、本実施の形態の素子の放射角の非点
隔差は15μmであり、バルク活性層を有する自励発振
型の半導体レーザ素子とほぼ同等の値が得られた。さら
に、本半導体レーザ素子においてMQW活性層に平行方
向の放射角は10度、垂直方向の放射角は30度であ
り、放射光の楕円率においてもバルク活性層の活性層を
有する自励発振型の半導体レーザ素子と同等の値が得ら
れた。
The astigmatic difference of the radiation angle of the device of this embodiment was 15 μm, which was almost the same as that of the self-pulsation type semiconductor laser device having a bulk active layer. Further, in this semiconductor laser device, the radiation angle in the direction parallel to the MQW active layer is 10 degrees and the radiation angle in the vertical direction is 30 degrees, and the ellipticity of the emitted light is a self-pulsation type having the bulk active layer active layer. A value equivalent to that of the semiconductor laser device of No. 1 was obtained.

【0052】本実施の形態の半導体レーザ素子の戻り光
雑音を測定すると、戻り光量0.001%から15%ま
で相対雑音強度−110dB/Hz以下の低雑音特性が
得られた。
When the return light noise of the semiconductor laser device of the present embodiment was measured, a low noise characteristic with a relative noise intensity of -110 dB / Hz or less was obtained from a return light amount of 0.001% to 15%.

【0053】このように、本実施の形態の半導体レーザ
素子は光学特性の良好な低電流低電圧駆動の自励発振型
の半導体レーザ素子を実現できた。
As described above, the semiconductor laser device of the present embodiment was able to realize a self-pulsation type semiconductor laser device with good optical characteristics and low current and low voltage driving.

【0054】なお、本発明は、以上述べた実施の形態に
限定されるものではなく、実施の形態以外の層厚、Al
組成比、キャリア濃度においても、本発明の効果を有す
る限り適用可能である。実施の形態では、電流光閉じ込
め構造について、第2クラッド層近傍にリッジストライ
プを有する構造について述べたが、それ以外に第2クラ
ッド層近傍に溝埋め込みを有する構造においても、本発
明の効果を有する限り適用可能である。
It should be noted that the present invention is not limited to the above-described embodiment, and the layer thickness, Al
The composition ratio and the carrier concentration are applicable as long as the effects of the present invention are obtained. In the embodiment, the current light confinement structure has been described with respect to a structure having a ridge stripe near the second cladding layer. However, a structure having a trench filling near the second cladding layer also has the effect of the present invention. As long as it is applicable.

【0055】また、成長法については、MOCVD法及
びMBE法以外に、LPE法、ガスソースMBE法、A
LE(原子線エピタキシー)法においても、本発明の効
果を有する限り適用可能である。
As for the growth method, in addition to the MOCVD method and the MBE method, LPE method, gas source MBE method, A
The present invention is applicable to the LE (atomic beam epitaxy) method as long as the effects of the present invention are obtained.

【0056】[0056]

【発明の効果】上記課題を解決するために、本発明のM
QW活性層を有する自励発振型の半導体レーザ素子は、
MQW活性層の量子井戸層の層厚の合計を700Åより
大きくすることにより、ストライプ外部の量子井戸層の
可飽和吸収効果を増大させて、ストライプ外部への発光
分布の拡がりの増大を抑制することができる。その結
果、半導体レーザ素子の放射光の非点隔差増大及び楕円
率増大を抑制することができる。また、量子井戸層の層
厚の合計を1000Åより小さくすることにより、スト
ライプ外部の量子井戸層の可飽和吸収効果の増大に伴う
動作電流増大を抑制でき、全量子井戸層へのキャリヤ注
入不均一に伴う動作電圧の増大を抑制できる。
According to the present invention, in order to solve the above-mentioned problems, M
A self-excited oscillation type semiconductor laser device having a QW active layer
By increasing the total thickness of the quantum well layer of the MQW active layer to more than 700 °, the saturable absorption effect of the quantum well layer outside the stripe is increased, and the spread of the light emission distribution outside the stripe is suppressed. Can be. As a result, an increase in the astigmatic difference and an increase in the ellipticity of the emitted light of the semiconductor laser device can be suppressed. Further, by making the total thickness of the quantum well layers less than 1000 °, it is possible to suppress an increase in operating current due to an increase in the saturable absorption effect of the quantum well layers outside the stripe, and to make carrier injection into all quantum well layers non-uniform. , The increase in the operating voltage associated with the operation can be suppressed.

【0057】以上より、本発明の半導体レーザ素子は、
量子井戸層の層厚の合計を700Åより大きくし、10
00Åより小さくすることにより、非点隔差増大及び楕
円率増大に伴う光学特性悪化を防止でき、さらに動作電
流増大及び動作電圧増大を抑制でき、光学特性の良好な
低電流低電圧駆動の自励発振型MQW半導体レーザ素子
を実現することができる。
As described above, the semiconductor laser device of the present invention
The total thickness of the quantum well layers is greater than 700 °
By making it smaller than 00 °, deterioration of optical characteristics due to increase of astigmatism and increase of ellipticity can be prevented, and increase in operating current and operating voltage can be suppressed. A type MQW semiconductor laser device can be realized.

【0058】また、本発明の半導体レーザ素子は、電流
光閉じ込め手段に活性層より禁制帯幅が大きく、半導体
レーザ素子光の吸収の少ない電流光閉じ込め層を用い
る。それにより、光吸収はストライプ外部の可飽和吸収
が主体となるので、MQW活性層における利得飽和が起
こりにくくなり、動作電流の増大を抑制でき、低電流動
作が実現できる。
In the semiconductor laser device of the present invention, a current light confinement layer having a larger forbidden band width than the active layer and less absorption of light from the semiconductor laser device is used for the current light confinement means. Accordingly, light absorption is mainly performed by saturable absorption outside the stripe, so that gain saturation in the MQW active layer hardly occurs, an increase in operating current can be suppressed, and low current operation can be realized.

【0059】また、本発明の下部及び上部量子井戸層を
他の量子障壁層の禁制帯よりも小さくすることによっ
て、活性層における光吸収効率を高め、更に自励発振の
強度を強くして低雑音効果を実現することができる。
Further, by making the lower and upper quantum well layers of the present invention smaller than the forbidden band of the other quantum barrier layers, the light absorption efficiency in the active layer is increased, and the intensity of self-excited oscillation is further increased to lower the quantum efficiency. A noise effect can be realized.

【0060】また、ストライプ構造の外部と内部との等
価屈折率差を所定の値とすることによって、さらに光学
特性の改善と低雑音の両立を実現することができる。
Further, by setting the equivalent refractive index difference between the outside and the inside of the stripe structure to a predetermined value, it is possible to further improve optical characteristics and achieve both low noise.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1の半導体レーザ素子を示
す図である。
FIG. 1 is a diagram showing a semiconductor laser device according to a first embodiment of the present invention.

【図2】本発明の実施の形態1の半導体レーザ素子の活
性層のAl組成を示す図である。
FIG. 2 is a diagram showing an Al composition of an active layer of the semiconductor laser device according to the first embodiment of the present invention.

【図3】非点隔差の量子井戸層の層厚合計に対する関係
を示す図である。
FIG. 3 is a diagram showing the relationship between astigmatic difference and the total thickness of quantum well layers.

【図4】平行放射角の量子井戸層の層厚合計に対する関
係を示す図である。
FIG. 4 is a diagram showing the relationship between the parallel radiation angle and the total thickness of the quantum well layer.

【図5】動作電流の量子井戸層の層厚合計に対する関係
を示す図である。
FIG. 5 is a diagram showing the relationship between the operating current and the total thickness of the quantum well layer.

【図6】動作電圧の量子井戸層の層厚合計に対する関係
を示す図である。
FIG. 6 is a diagram showing a relationship between an operating voltage and a total thickness of a quantum well layer.

【図7】本発明の実施の形態2の半導体レーザ素子を示
す図である。
FIG. 7 is a diagram showing a semiconductor laser device according to a second embodiment of the present invention.

【図8】相対雑音強度のAl組成比に対する関係を示す
図である。
FIG. 8 is a diagram showing a relationship between relative noise intensity and Al composition ratio.

【図9】動作電流のAl組成比に対する関係を示す図で
ある。
FIG. 9 is a diagram showing a relationship between an operating current and an Al composition ratio.

【図10】本発明の実施の形態2の半導体レーザ素子の
活性層のAl組成を示す図である。
FIG. 10 is a diagram showing the Al composition of the active layer of the semiconductor laser device according to the second embodiment of the present invention.

【図11】従来の半導体レーザ素子を示す図である。FIG. 11 is a view showing a conventional semiconductor laser device.

【符号の説明】[Explanation of symbols]

101、201 n−GaAs基板 102、202 n−GaAsバッファ層 103、203 n−第1クラッド層 104 n−低屈折率層 105、204 MQW活性層 106、205 p−第2クラッド層 107 p−GaAsエッチング停止層 108 p−第3クラッド層 109、206 p−キャップ層 114、207 リッジストライプ 110、208 n−第1電流光閉じ込め層 111、209 n−第2電流光閉じ込め層 112 p−平坦化層 113、210 p−コンタクト層 115、116、211、212 電極 101, 201 n-GaAs substrate 102, 202 n-GaAs buffer layer 103, 203 n-first cladding layer 104 n-low refractive index layer 105, 204 MQW active layer 106, 205 p-second cladding layer 107 p-GaAs Etching stop layer 108 p-third cladding layer 109,206 p-cap layer 114,207 ridge stripe 110,208 n-first current light confinement layer 111,209 n-second current light confinement layer 112 p-planarization layer 113, 210 p-contact layer 115, 116, 211, 212 electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に、第1導電型のクラッド
層と、活性層と、第2導電型のクラッド層を有し、 前記第2導電型のクラッド層はストライプ形状を有し、 前記ストライプ形状の両側部に電流光閉じ込め手段を有
し、 前記活性層は量子井戸層と量子障壁層とを交互に複数積
層した多重量子井戸活性層からなる自励発振型の半導体
レーザ素子において、 前記量子井戸層の層厚の合計が700Å以上1000Å
以下であることを特徴とする半導体レーザ素子。
A first conductive type clad layer, an active layer, and a second conductive type clad layer on a semiconductor substrate, wherein the second conductive type clad layer has a stripe shape; A self-pulsation type semiconductor laser device comprising a multiple quantum well active layer in which a plurality of quantum well layers and quantum barrier layers are alternately stacked, wherein the active layer has current light confinement means on both sides of the stripe shape; The total thickness of the quantum well layers is 700 to 1000
A semiconductor laser device characterized by the following.
【請求項2】 前記量子井戸層の層厚が60Å以上12
0Å以下であり、前記量子障壁層の層厚が30Å以上8
0Å以下であることを特徴とする請求項1に記載の半導
体レーザ素子。
2. The quantum well layer according to claim 1, wherein said quantum well layer has a thickness of not less than 60 ° and not more than 12 °.
0 ° or less, and the thickness of the quantum barrier layer is 30 ° or more and 8
2. The semiconductor laser device according to claim 1, wherein the angle is 0 [deg.] Or less.
【請求項3】 前記電流光閉じ込め手段は、前記活性層
よりも禁制帯幅の大きい第1導電型の電流光閉じ込め層
を有することを特徴とする請求項1乃至2に記載の半導
体レーザ素子。
3. The semiconductor laser device according to claim 1, wherein said current light confinement means has a first conductivity type current light confinement layer having a larger forbidden band width than said active layer.
【請求項4】 前記活性層は、前記第1導電型のクラッ
ド層側に下部量子障壁層を備え、前記第2導電型のクラ
ッド層側に上部量子障壁層を備え、 前記上部量子障壁層あるいは前記下部量子障壁層の少な
くとも一方が他の前記量子障壁層よりも禁制帯幅が小さ
いことを特徴とする請求項1乃至3に記載の半導体レー
ザ素子。
4. The active layer includes a lower quantum barrier layer on the side of the first conductivity type clad layer, an upper quantum barrier layer on the side of the second conductivity type clad layer, 4. The semiconductor laser device according to claim 1, wherein at least one of the lower quantum barrier layers has a smaller forbidden band width than the other quantum barrier layers. 5.
【請求項5】 前記ストライプ形状の層厚方向の等価屈
折率n1と、前記電流光閉じ込め手段の層厚方向の等価
屈折率n2との差Δn(=n1−n2)が、 3×10-3≦Δn≦7×10-3 であることを特徴とする請求項1乃至4に記載の半導体
レーザ素子。
5. The difference Δn (= n1−n2) between the equivalent refractive index n1 of the stripe shape in the layer thickness direction and the equivalent refractive index n2 of the current light confining means in the layer thickness direction is 3 × 10 −3. 5. The semiconductor laser device according to claim 1, wherein ≦ Δn ≦ 7 × 10 −3 .
JP31720296A 1996-11-28 1996-11-28 Semiconductor laser device Expired - Fee Related JP3572157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31720296A JP3572157B2 (en) 1996-11-28 1996-11-28 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31720296A JP3572157B2 (en) 1996-11-28 1996-11-28 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH10163561A true JPH10163561A (en) 1998-06-19
JP3572157B2 JP3572157B2 (en) 2004-09-29

Family

ID=18085609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31720296A Expired - Fee Related JP3572157B2 (en) 1996-11-28 1996-11-28 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP3572157B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563850B1 (en) 1997-10-06 2003-05-13 Sharp Kabushiki Kaisha Light-emitting device and fabricating method thereof
JP2008021705A (en) * 2006-07-11 2008-01-31 Nec Electronics Corp Self-pulsating semiconductor laser and its manufacturing method
US7358522B2 (en) 2001-11-05 2008-04-15 Nichia Corporation Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6563850B1 (en) 1997-10-06 2003-05-13 Sharp Kabushiki Kaisha Light-emitting device and fabricating method thereof
US7358522B2 (en) 2001-11-05 2008-04-15 Nichia Corporation Semiconductor device
US7667226B2 (en) 2001-11-05 2010-02-23 Nichia Corporation Semiconductor device
JP2008021705A (en) * 2006-07-11 2008-01-31 Nec Electronics Corp Self-pulsating semiconductor laser and its manufacturing method

Also Published As

Publication number Publication date
JP3572157B2 (en) 2004-09-29

Similar Documents

Publication Publication Date Title
JPH11274635A (en) Semiconductor light emitting device
US5556804A (en) Method of manufacturing semiconductor laser
EP0579244B1 (en) A semiconductor laser and a method for producing the same
JPH09199803A (en) Semiconductor laser and its manufacture method
JP3555727B2 (en) Semiconductor laser device
JPH06302908A (en) Semiconductor laser
JP2003142774A (en) Semiconductor laser and its manufacturing method
JP3572157B2 (en) Semiconductor laser device
JP2001057459A (en) Semiconductor laser
JP2001015864A (en) Semiconductor laser device and its manufacture
JP3876023B2 (en) Semiconductor laser element
JPH10256647A (en) Semiconductor laser element and fabrication thereof
JPH07240560A (en) Semiconductor laser
JP2000277856A (en) Self oscillation semiconductor laser system
JP2679974B2 (en) Semiconductor laser device
JPH0945986A (en) Semiconductor laser element
JP3071021B2 (en) Method of manufacturing semiconductor laser device
JPH10209553A (en) Semiconductor laser element
JP3503715B2 (en) Semiconductor laser device
JP3204969B2 (en) Semiconductor laser and optical communication system
JPH0278290A (en) Semiconductor laser device
JP3648357B2 (en) Manufacturing method of semiconductor laser device
JP3189900B2 (en) Semiconductor laser device
JP3258990B2 (en) Semiconductor laser device and crystal growth method
JP2558767B2 (en) Semiconductor laser device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040414

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040414

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040628

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070702

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees