JPS6084825A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6084825A
JPS6084825A JP19210983A JP19210983A JPS6084825A JP S6084825 A JPS6084825 A JP S6084825A JP 19210983 A JP19210983 A JP 19210983A JP 19210983 A JP19210983 A JP 19210983A JP S6084825 A JPS6084825 A JP S6084825A
Authority
JP
Japan
Prior art keywords
heat treatment
semiconductor device
manufacturing
annealing
amorphous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19210983A
Other languages
Japanese (ja)
Inventor
Juri Kato
樹理 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP19210983A priority Critical patent/JPS6084825A/en
Publication of JPS6084825A publication Critical patent/JPS6084825A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Abstract

PURPOSE:To realize a highly integrated CMOS.LSI by attaining the annealing technic using an electric oven which is capable of small re-distribution of implanted impurity ions, large activation and small junction leakage by performing a heat treatment with a low temperature within a specified range. CONSTITUTION:After forming gate electrodes on an Si substrate, BF2 and P are selectively implanted in P-channel regions and N-channel regions respectively by gate electrode self aligning ion implantation so as to form an amorphous layer. The shallow amorphous layer of about 0.2mum thick which is formed by implantation of BF2 or P ions is recrystallized by a heat treatment with 700 deg.C for about 30min and with 800 deg.C for about 1sec. As activation and reduction of a leakage current are carried out at the same time as the recrystallization of the amorphous layer, the heat treatment with 700-800 deg.C achieves the formation of good junctions. In addition, in case of the heat treatment with a temperature 800 deg.C or less, diffusion of P and B is small and diffusion due to re-distribution can be ignored so that a fine MOS.FET becomes possible.

Description

【発明の詳細な説明】 本発明は、半導体装置の製造方法に関する。特に、0M
O8VLSIの製造において有効である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device. Especially, 0M
It is effective in manufacturing O8VLSI.

従来、半導体装置の製造において、シリコン基板へのイ
オン注入層のアニールは、900℃以上の温度で行なわ
れるため、注入された不純物が再分布し拡散する。この
ためMO8IICTのソース・ドレイン高濃度注入層に
おいては、ソース・ドレイン間のパンチスルーの原因と
なJ、MOS・FIIfTの微細化を困slCしている
。特に、CMO8LSIの製造においては、従来Pチャ
ンネル領域にB、Nチャンネル領域に八8を注入し、ソ
ース・ドレインを形成したため、Bが活性化するために
必要な熱処理が高温を必要とすること、及び1い原子の
A8注入により生じた欠陥の除去のために高温の熱処理
を必要とすることから1000℃程度の温度で約30分
熱処理するアニール条件が用いられている。Bは拡散係
数が大きく、1ooo℃30分の熱処理では、注入分布
の再分布による拡散が0.3μm程度もあ5、pチャン
ネルMO8FBTの微細化不可能となル、CMOBLS
Iの高集積化を困難にしている。
Conventionally, in the manufacture of semiconductor devices, annealing of an ion-implanted layer into a silicon substrate is performed at a temperature of 900° C. or higher, so that the implanted impurities are redistributed and diffused. Therefore, in the source/drain high concentration implantation layer of MO8IICT, it is difficult to miniaturize the J, MOS/FIIfT, which causes punch-through between the source and drain. In particular, in the manufacture of CMO8LSI, conventionally B was implanted into the P channel region and 88 was implanted into the N channel region to form sources and drains, so the heat treatment required to activate B required high temperatures. Since high-temperature heat treatment is required to remove defects caused by the A8 implantation of single atoms, an annealing condition of heat treatment at a temperature of about 1000° C. for about 30 minutes is used. B has a large diffusion coefficient, and in heat treatment at 100°C for 30 minutes, the diffusion due to redistribution of the implantation distribution is about 0.3 μm5, making it impossible to miniaturize p-channel MO8FBT.
This makes it difficult to achieve high integration.

本発明は、かかる従来の欠点を除去し、注入不純物イオ
ンの再分布が小さく、活性化が大きく、接合リークの小
さい、電気炉を用いたアニール技術を提供しCMo8 
LSIの高集積化を可能にする仁とを目的とする。本発
明は、700℃から800℃の低温で熱処理するζ七を
特徴とし、CM(JS LSIの製造においては、Pチ
ャンネルソース・ドレイン領域にBF2′t−注入しア
モルファス層を形成すること及びNチャンネル ソース
ドレイン領域に1′を注入しアモルファス層を形成する
仁とを特徴とする。
The present invention eliminates such conventional drawbacks and provides an annealing technique using an electric furnace that has small redistribution of implanted impurity ions, large activation, and small junction leakage.
The purpose is to enable high integration of LSI. The present invention is characterized by heat treatment at a low temperature of 700°C to 800°C. The channel is characterized by implanting 1' into the source and drain regions to form an amorphous layer.

以下、実施例を用いて説明する。表1は、木兄1iKよ
る0MO8LSI製造プロセスの一例の70−・チャー
トである。Si基板上のゲート電極を形成後、ゲート電
極自己整合イオン注入により、Pチャンネル領域にはB
F2. Nチャンネル領域にはPを選択的に注入しアモ
ルファス層を形成する。BF2またはやイオン注入によ
p形成された0、2μm程度の浅いアモルファス層は、
700℃で約30分、800℃で約1秒の熱処理によシ
再結晶化することができる。また、”’2とPの場合、
活性化及びリーク電流の低減は、アモルファス層の再結
晶化と同時に行なわれるため、700℃から800℃の
熱処理によシ良好な接合が形成できる。しかも、800
℃以下の熱処理では、P及びBの拡散も小さく、再分布
による拡散が無視できMOEI Fl!IT(D微細化
が可能になる。第1図には、本発明の熱処理の一例とし
て750℃2分の電気炉アニールのウェーハ温度プロフ
ァイルを示す、霜、気炉内は中に示すように、750℃
に保たれている。ウェーハは、(■)に示すように75
0℃2分の熱処理が行なわれるが、(11)と(IV)
に示すようにウェーハの出し入れにそれぞれ10分の時
間を費やしている。これは、ウェーハを縦に立てて電気
炉内に出し入れする時、急激なウェーハの温度変化が生
じると、ウェーハにスリップ・ラインが生じたp、ウェ
ーハがそり71)するため、ウェーハの昇降温をゆるや
かにするためである。約10公租度で電気炉に出し入れ
したウェーハにスリップ・ラインやそルは生じない。表
1に示した。
This will be explained below using examples. Table 1 is a 70-. chart of an example of the 0MO8LSI manufacturing process by Kinei 1iK. After forming the gate electrode on the Si substrate, B is added to the P channel region by gate electrode self-alignment ion implantation.
F2. P is selectively implanted into the N channel region to form an amorphous layer. A shallow amorphous layer of about 0.2 μm formed by BF2 or ion implantation is
It can be recrystallized by heat treatment at 700°C for about 30 minutes and at 800°C for about 1 second. Also, in the case of ``'2 and P,
Since activation and reduction of leakage current are performed simultaneously with recrystallization of the amorphous layer, a good bond can be formed by heat treatment at 700° C. to 800° C. Moreover, 800
In heat treatment at temperatures below ℃, the diffusion of P and B is small, and diffusion due to redistribution can be ignored, resulting in MOEI Fl! IT (D) miniaturization becomes possible. Figure 1 shows the wafer temperature profile of electric furnace annealing at 750°C for 2 minutes as an example of the heat treatment of the present invention. 750℃
is maintained. The wafer is 75 mm as shown in (■).
Heat treatment is performed for 2 minutes at 0°C, but (11) and (IV)
As shown in the figure, it takes 10 minutes each time to load and unload the wafers. This is because when the wafer is placed vertically and placed in and taken out of the electric furnace, if a sudden change in temperature occurs on the wafer, a slip line will be created on the wafer and the wafer will warp71). This is to make it more relaxed. There are no slip lines or warps on wafers that are taken in and out of the electric furnace at a tolerance of about 10 degrees. It is shown in Table 1.

CMOB LSIの製造においては、B11′2シよび
Pイオン注入アモルファス層のアニールt=t、層間絶
縁膜を、例えば、775℃の高温低圧sho、蓄fjt
を行なうことにより、アニールと層間絶縁膜形成を同時
に行なうことができる。また酸素雰囲気中で熱処理すれ
ば、ゲート電極の薄い酸化膜形成とBP、イオン注入ア
モルファス層とPイオン注入うことできる。従って、従
来必要とした、B及びへ8注入層に必要な高温アニール
(例えば1000℃、30分)を省略することができる
In the manufacture of CMOB LSI, the B11'2 film and the P ion-implanted amorphous layer are annealed at t=t, and the interlayer insulating film is subjected to high-temperature, low-pressure sho and storage fjt at, for example, 775°C.
By performing this, annealing and interlayer insulating film formation can be performed simultaneously. In addition, heat treatment in an oxygen atmosphere allows formation of a thin oxide film of the gate electrode, BP, ion implantation, and ion implantation of the amorphous layer and P ion implantation. Therefore, the high temperature annealing (for example, 1000° C., 30 minutes) required for the B and H8 injection layers, which was conventionally required, can be omitted.

以上、説明したように、本発明による半導体装置のト造
方法を用いれば、MOB ’PETのソース・ドレイン
不純物の拡散が小さく、低シート抵抗で接合リークの夕
ない浅い接合の形成が可能になJ)、0MO8LSIの
製造に適用することによシ、CMO8LSIの高集積化
が可能になる。
As explained above, by using the method for manufacturing a semiconductor device according to the present invention, diffusion of source/drain impurities in MOB'PET is small, and shallow junctions can be formed with low sheet resistance and no junction leakage. J), by applying it to the manufacturing of 0MO8LSI, it becomes possible to increase the integration of CMO8LSI.

表 1Table 1

【図面の簡単な説明】 第1図二本発明による熱処理の昇降温温度プロファイル (1):電気炉内の温度(II)・(lit)・(■)
:ウエーハの温度プロファイル 表に本発明によるCMOB VLB工の製造プロセス・
フロー・チャート。 以 上 出願人 株式会社諏訪精工舎
[Brief explanation of the drawings] Figure 1.2 Temperature profile of temperature rise and fall in heat treatment according to the present invention (1): Temperature in electric furnace (II)・(lit)・(■)
:The wafer temperature profile table shows the manufacturing process of the CMOB VLB process according to the present invention.
flowchart. Applicant: Suwa Seikosha Co., Ltd.

Claims (1)

【特許請求の範囲】 111高濃イオン注入層のアイソ・サーマル熱処理にお
いて、700℃から800℃の温度でアニールすること
を特徴とする半導体装置の製造方法。 【2】電気炉を用いて加分以内のアニールを行なうこと
を特徴とする特許請求の範囲第一項記載の半導体装置の
製造方法。 131 CM (I B V L S工の製造において
Pチャンネルトランジスタ・ソース・ドレイン領域には
BF を5Q K、V以内の加速エネルギーで1 x 
Io” −。 a胃 以上のドーズ1を注入しアモルファスit−形成し、R
チャンネル・トランジスタ・ソース拳ドレイン領域には
Pを40KgV以内の加速エネルギーで、lX ttq
、以上のドープ景を注入しアモルファス層を形成後、7
00℃から800℃の温度でアニールすることを特徴と
する特許請求の範囲あ一項記載の半導体装置の製造方法
。 (4)無理低圧によル層間絶縁sio、膜を蓄積すると
同時に高濃度イオン注入層のアニールを行なうことを特
徴とする特許請求の範囲第−項記厚の半導体装置の製造
方法。 (5)酸素雰囲気中で熱処理することを特徴とする特I
vl′請求の範囲第一項記載の半導体装置の製造方法。
[Claims] 111 A method for manufacturing a semiconductor device, characterized in that in iso-thermal heat treatment of a highly concentrated ion implantation layer, annealing is performed at a temperature of 700° C. to 800° C. (2) The method for manufacturing a semiconductor device according to claim 1, characterized in that an electric furnace is used to perform the annealing within an additional amount. 131 CM (In the manufacture of I B V L S process, BF is applied to the P-channel transistor source/drain region at an acceleration energy of 5 Q K, 1 x
Io”-. Inject a dose of 1 above the stomach to form an amorphous it-, then R
P is applied to the channel, transistor, source and drain regions at an acceleration energy of within 40 KgV, lX ttq.
, after forming an amorphous layer by injecting the above doping pattern, 7
A method for manufacturing a semiconductor device according to claim 1, wherein the annealing is performed at a temperature of 00°C to 800°C. (4) A method for manufacturing a semiconductor device having a thickness as set forth in claim 1, characterized in that the high concentration ion implantation layer is annealed at the same time as the interlayer insulating film is deposited under unreasonably low pressure. (5) Special I characterized by heat treatment in an oxygen atmosphere
vl' A method for manufacturing a semiconductor device according to claim 1.
JP19210983A 1983-10-14 1983-10-14 Manufacture of semiconductor device Pending JPS6084825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19210983A JPS6084825A (en) 1983-10-14 1983-10-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19210983A JPS6084825A (en) 1983-10-14 1983-10-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6084825A true JPS6084825A (en) 1985-05-14

Family

ID=16285807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19210983A Pending JPS6084825A (en) 1983-10-14 1983-10-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6084825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0480178A2 (en) * 1990-09-07 1992-04-15 Canon Kabushiki Kaisha Process for preparing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0480178A2 (en) * 1990-09-07 1992-04-15 Canon Kabushiki Kaisha Process for preparing semiconductor device
EP0480178A3 (en) * 1990-09-07 1992-11-19 Canon Kabushiki Kaisha Process for preparing semiconductor device

Similar Documents

Publication Publication Date Title
DE3475454D1 (en) Fabrication of stacked mos devices
JPS62130522A (en) Manufacture of semiconductor device
KR0144020B1 (en) Method of junction forming
KR20020014095A (en) Method for fabricating gate oxide film
JPS6084825A (en) Manufacture of semiconductor device
JPS62285470A (en) Manufacture of semiconductor device
JPH0366165A (en) Diffusion of impurities to semiconductor substrate
JPH0272634A (en) Semiconductor device
JPH0342868A (en) C-mos thin film transistor device and manufacture thereof
US5646057A (en) Method for a MOS device manufacturing
JPH0719759B2 (en) Method for manufacturing semiconductor device
RU2235388C2 (en) Method for manufacturing mis transistor with local sections of buried insulator
JPH0526343B2 (en)
JPH0434942A (en) Manufacture of semiconductor device
JPH0571189B2 (en)
KR100468695B1 (en) Method for fabricting high performance MOS transistor having channel doping profile to improve short channel effect
KR100288686B1 (en) Semiconductor device manufacturing method
JPH05102471A (en) Manufacture of semiconductor device
JPS6245179A (en) Manufacture of semiconductor device
JPH03200319A (en) Formation of poly-crystalline silicon
JPS6356916A (en) Manufacture of semiconductor device
JP2601209B2 (en) Method for manufacturing semiconductor device
JPH03231456A (en) Manufacture of semiconductor device
JPH01245519A (en) Manufacture of semiconductor device
JPH07130679A (en) Method of fabrication of semiconductor device