KR100288686B1 - Semiconductor device manufacturing method - Google Patents

Semiconductor device manufacturing method Download PDF

Info

Publication number
KR100288686B1
KR100288686B1 KR1019990013038A KR19990013038A KR100288686B1 KR 100288686 B1 KR100288686 B1 KR 100288686B1 KR 1019990013038 A KR1019990013038 A KR 1019990013038A KR 19990013038 A KR19990013038 A KR 19990013038A KR 100288686 B1 KR100288686 B1 KR 100288686B1
Authority
KR
South Korea
Prior art keywords
source
semiconductor device
drain
silicon wafer
impurities
Prior art date
Application number
KR1019990013038A
Other languages
Korean (ko)
Other versions
KR20000066156A (en
Inventor
김서원
Original Assignee
황인길
아남반도체주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황인길, 아남반도체주식회사 filed Critical 황인길
Priority to KR1019990013038A priority Critical patent/KR100288686B1/en
Publication of KR20000066156A publication Critical patent/KR20000066156A/en
Application granted granted Critical
Publication of KR100288686B1 publication Critical patent/KR100288686B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Abstract

반도체 소자의 미세화에 따른 얇은 게이트 산화막에서의 게이트 페너트레이션을 방지하며, 소스/드레인에서의 불순물 측면 확산을 방지하기 위하여, 소자 분리 영역이 정의된 실리콘웨이퍼에 게이트 전극을 형성하고, 실리콘웨이퍼에 소스/드레인 형성을 위한 불순물을 이온 주입하며, 불순물 이온 주입 이전 또는 이후에 질소 이온을 주입한다. 이후, 급속 열처리 공정에 의해 실리콘웨이퍼를 어닐링하여 소스/드레인의 접합층을 형성하는 것으로, 게이트 산화막의 표면을 질화막으로 형성하여 불순물 확산에 의한 게이트 페너트레이션을 억제시키며, 소스/드레인에서의 불순물의 측면 확산을 억제하여 미세 반도체 소자의 신뢰성을 향상시킬뿐만 아니라 미세 반도체 소자 제조 공정의 수율을 향상시킨다.In order to prevent gate penetration in the thin gate oxide layer due to the miniaturization of semiconductor devices, and to prevent the lateral diffusion of impurities in the source / drain, a gate electrode is formed on a silicon wafer having a device isolation region defined therein, Impurities are implanted to form a source / drain, and nitrogen ions are implanted before or after impurity ion implantation. Then, the silicon wafer is annealed by a rapid heat treatment process to form a source / drain junction layer. The surface of the gate oxide film is formed of a nitride film to suppress gate penetration due to diffusion of impurities, and impurities in the source / drain By suppressing the side diffusion of the not only improves the reliability of the fine semiconductor device but also improves the yield of the fine semiconductor device manufacturing process.

Description

반도체 소자 제조 방법{SEMICONDUCTOR DEVICE MANUFACTURING METHOD}Semiconductor device manufacturing method {SEMICONDUCTOR DEVICE MANUFACTURING METHOD}

본 발명은 반도체 소자를 제조하는 방법에 관한 것으로, 더욱 상세하게는 반도체 소자의 게이트 산화막과 얕은 접합을 형성하는 방법에 관한 것이다.The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a method of forming a shallow junction with a gate oxide film of a semiconductor device.

일반적으로 반도체 소자는 구조적으로 트랜지스터와, 바이폴러 IC(integrated circuit), MOS(metal-oxide-semiconductor) IC로 구분할 수 있다. 이러한 반도체 소자는 기본적으로 실리콘웨이퍼에 베이스/이미터/컬렉터 또는 게이트/소스/드레인과 같은 각 소자의 전극 영역이 형성된 구조를 가진다. 그리고, 반도체 소자는 금속-산화막-반도체의 콘덴서 구조를 사용하는 것으로, 금속 전극과 반도체 기판 사이에 인가된 바이어스에 의해서 반도체 기판 위의 게이트 산화막 바로 밑에 전류의 통로가 되는 채널이 형성되고, 그것이 바이어스 값에 의해 제어되는 것이 기본 원리이다. 이러한 반도체 소자에서 정확한 소자 특성을 얻기 위해서는 바이어스 값을 결정하는 게이트 산화막 막질의 전기적 특성이 우수하여야 한다.In general, semiconductor devices may be structurally divided into transistors, bipolar integrated circuits (ICs), and metal-oxide-semiconductor (MOS) ICs. Such a semiconductor device basically has a structure in which an electrode region of each device, such as a base / emitter / collector or a gate / source / drain, is formed on a silicon wafer. The semiconductor device uses a metal-oxide-semiconductor condenser structure, and a channel that becomes a passage of current just under the gate oxide film on the semiconductor substrate is formed by a bias applied between the metal electrode and the semiconductor substrate, which bias Controlled by value is the basic principle. In order to obtain accurate device characteristics in such a semiconductor device, the electrical characteristics of the gate oxide film to determine the bias value should be excellent.

그러면, 도 1a 내지 도 1c를 참조하여 종래 반도체 소자를 제조하는 방법을 개략적으로 설명한다.Next, a method of manufacturing a conventional semiconductor device will be described with reference to FIGS. 1A to 1C.

먼저 도 1a에 도시한 바와 같이, 반도체 소자 분리 영역이 정의된 실리콘웨이퍼(1)를 열산화하여 게이트 산화막(2)을 성장시키고, 그 상부에 화학 기상 증착(CVD ; chemical vapor deposition)으로 폴리 실리콘(3)을 증착한 후, 폴리 실리콘(3)과 게이트 산화막(2)을 패터닝하여 게이트 전극을 형성한다. 그리고, 실리콘웨이퍼(1) 전면에 절연막을 두껍게 증착하고, 이방성 식각하여 게이트 전극의 측벽에 스페이서(4)를 형성한다.First, as shown in FIG. 1A, a gate oxide film 2 is grown by thermally oxidizing a silicon wafer 1 in which a semiconductor device isolation region is defined, and then polysilicon is formed by chemical vapor deposition (CVD) thereon. After (3) is deposited, the polysilicon 3 and the gate oxide film 2 are patterned to form a gate electrode. Then, a thick insulating film is deposited on the entire surface of the silicon wafer 1 and anisotropically etched to form the spacers 4 on the sidewalls of the gate electrodes.

그 다음 도 1b에 도시한 바와 같이, 실리콘웨이퍼(1) 전면에 보론(B), 인(P), 비소(As) 등의 P형 또는 N형의 불순물을 이온 주입(I1)하여 소스/드레인(5), 즉 반도체 소자의 얕은 접합을 형성한다.Next, as shown in FIG. 1B, an ion implantation (I1) of P-type or N-type impurities such as boron (B), phosphorus (P), or arsenic (As) is ion-injected (I1) on the entire surface of the silicon wafer 1 to form a source / drain. (5) That is, a shallow junction of semiconductor elements is formed.

그 다음 도 1c에 도시한 바와 같이, 실리콘웨이퍼(1)를 어닐링(annealing)하여, 이온 주입(I1)에 따른 실리콘웨이퍼의 손상 보상 및 이온 주입된 불순물을 활성화시킨 다음, 습식 세정하여 반도체 소자를 완성한다.Then, as illustrated in FIG. 1C, the silicon wafer 1 is annealed to activate damage compensation and ion implanted impurities of the silicon wafer due to the ion implantation I1, and then wet-clean the semiconductor device. Complete

이러한 종래 반도체 소자 제조 공정에서, 반도체 소자의 사이즈가 서브 미크론(sub-micron)으로 축소화가 진행되고 있으며, 이에 대응하는 전계 효과 트랜지스터(FET)에서는 게이트 산화막의 두께가 수십Å이하로 얇아지고 있으며, 채널 길이도 서브 미크론 이하로 축소되고 있다.In the conventional semiconductor device manufacturing process, the size of the semiconductor device is being reduced to sub-micron, and in the corresponding field effect transistor (FET), the thickness of the gate oxide film is reduced to several tens of micrometers or less. Channel lengths have also been reduced to sub-microns.

이와 같이 반도체 소자의 게이트 산화막 두께가 얇아지면, 게이트 전극의 폴리에 도핑된 불순물 특히, P모스에서 보론의 확산에 의한 게이트 페너트레이션(penetration), 30Å대의 게이트 산화막에 나타나는 F-N 터널(Fowler-Nordheim tunnel)에 의한 전류 누설(leakage), 그 이하의 게이트 산화막 두께에서 나타나는 직접적인 터널 현상 등이 발생한다. 이중 보론의 확산에 의한 게이트 페너트레이션은 근본적으로는 산화막 게이트에서는 피할 수 없으며, 필드 효과 트랜지스터에 치명적인 문제를 유발하게 된다.When the thickness of the gate oxide film of the semiconductor device becomes thin in this manner, a gate penetration due to the diffusion of boron in the P-MOS, particularly the doped poly of the gate electrode, and a FN tunnel (Fowler-Nordheim tunnel) appearing in the gate oxide film of 30 kV Current leakage due to the < RTI ID = 0.0 >), < / RTI > a direct tunnel phenomenon appearing at the gate oxide film thickness below it. Gate penetration by diffusion of double boron is fundamentally inevitable in the oxide gate, and causes a fatal problem for the field effect transistor.

그리고, 채널 길이의 축소화에 대응하기 위하여 필드 효과 트랜지스터의 접합 채널은 점점 얕아져 얕은 접합을 형성하여야 하지만, 불순물 이온 주입 후에 실시하는 어닐링 공정에서 접합층에 도핑된 불순물의 측면 확산(lateral diffusion)에 따른 TED(transient enhanced diffusion)(도 1c의 6)에 의해 접합의 열화 및 채널 길이의 변화 등이 발생하여 반도체 소자의 신뢰성을 저하시키게 된다.In order to cope with the reduction of the channel length, the junction channel of the field effect transistor is gradually shallower to form a shallow junction, but in the annealing process performed after the impurity ion implantation, the lateral diffusion of the doped impurities in the junction layer is performed. Due to the TED (transient enhanced diffusion) (6 of FIG. 1C), deterioration of the junction and a change in the channel length occur, thereby lowering the reliability of the semiconductor device.

본 발명은 이와 같은 문제점을 해결하기 위한 것으로, 그 목적은 반도체 소자의 미세화에 따른 얇은 게이트 산화막에서의 게이트 페너트레이션을 방지하며, 불순물의 측면 확산에 의한 TED를 방지할 수 있는 반도체 소자 제조 방법을 제공하는 데 있다.SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and an object thereof is to prevent gate penetration in a thin gate oxide film due to miniaturization of a semiconductor device, and a semiconductor device manufacturing method capable of preventing TED due to side diffusion of impurities. To provide.

도 1a 내지 도 1c는 종래 반도체 소자를 제조하는 방법을 개략적으로 도시한 공정도이고,1A to 1C are process diagrams schematically illustrating a method of manufacturing a conventional semiconductor device.

도 2a 내지 도 2d는 본 발명에 따라 반도체 소자를 제조하는 방법을 개략적으로 도시한 공정도이다.2A through 2D are process diagrams schematically illustrating a method of manufacturing a semiconductor device according to the present invention.

상기와 같은 목적을 달성하기 위하여, 본 발명은 반도체 소자의 소스/드레인 형성을 위한 이온 주입 이전 또는 이후에 질소 이온을 주입하며, 후속 급속 열처리 공정에 의해 소스/드레인의 접합층을 형성함과 동시에 게이트 산화막의 표면을 질화막으로 형성하는 것을 특징으로 한다.In order to achieve the above object, the present invention implants nitrogen ions before or after ion implantation for source / drain formation of a semiconductor device, and at the same time to form a junction layer of the source / drain by a subsequent rapid heat treatment process The surface of the gate oxide film is formed of a nitride film.

이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 일 실시예를 설명한다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.

도 2a 내지 도 2d는 본 발명에 따라 반도체 소자를 제조하는 방법을 개략적으로 도시한 공정도이다.2A through 2D are process diagrams schematically illustrating a method of manufacturing a semiconductor device according to the present invention.

먼저 도 2a에 도시한 바와 같이, 반도체 소자 분리 영역이 정의된 실리콘웨이퍼(11)를 열산화하여 게이트 산화막(12)을 성장시키고, 그 상부에 화학 기상 증착으로 폴리 실리콘(13)을 증착한 후, 폴리 실리콘(13)과 게이트 산화막(12)을 패터닝하여 게이트 전극을 형성한다. 그리고, 실리콘웨이퍼(11) 전면에 절연막을 두껍게 증착하고, 이방성 식각하여 게이트 전극의 측벽에 스페이서(14)를 형성한다.First, as shown in FIG. 2A, the gate oxide film 12 is grown by thermally oxidizing a silicon wafer 11 having a semiconductor device isolation region, and thereafter, polysilicon 13 is deposited by chemical vapor deposition. The polysilicon 13 and the gate oxide film 12 are patterned to form a gate electrode. A thick insulating film is deposited on the entire surface of the silicon wafer 11 and anisotropically etched to form the spacers 14 on the sidewalls of the gate electrodes.

그 다음 도 2b에 도시한 바와 같이, 실리콘웨이퍼(11) 전면에 보론, 인, 비소 등의 P형 또는 N형 불순물을 이온 주입(I11)하여 반도체 소자의 소스/드레인인 얕은 접합층(15)을 형성한다.Next, as shown in FIG. 2B, a shallow junction layer 15, which is a source / drain of a semiconductor device, is implanted (I11) by implanting P-type or N-type impurities such as boron, phosphorus, arsenic, and the like onto the entire surface of the silicon wafer 11. To form.

그 다음 도 2c에 도시한 바와 같이, 실리콘웨이퍼(11) 전면에 질소(N) 이온을 주입(I12)하여, P형 또는 N형 불순물이 도핑된 실리콘웨이퍼(11)의 접합층(15)과 게이트 전극의 폴리 실리콘(13)에 질소 이온을 추가로 도핑한다. 이때, 이온 주입(I12)하는 질소의 이온 양은 1.0×10-11cm-2내지 1.0×10-14cm-2로 하며, 이온 주입 에너지는 10KeV 내지 30KeV로 하는 것이 바람직하다.Next, as shown in FIG. 2C, nitrogen (N) ions are implanted (I12) on the entire surface of the silicon wafer 11 to form a junction layer 15 of the silicon wafer 11 doped with P-type or N-type impurities. Nitrogen ions are further doped into the polysilicon 13 of the gate electrode. At this time, the ion amount of nitrogen to be ion implanted (I12) is preferably 1.0 × 10 −11 cm −2 to 1.0 × 10 −14 cm −2 , and the ion implantation energy is preferably 10 KeV to 30 KeV.

그 다음 도 2d에 도시한 바와 같이, 실리콘웨이퍼(11)를 어닐링, 바람직하게는 급속 열처리 공정(RTA ; rapid thermal annealing)에 의해 1000℃ 내지 1100℃의 온도에서 5초 내지 15초 동안 실시하여 이온 주입(I11)(I12)에 따른 실리콘웨이퍼의 손상을 보상함과 동시에 이온 주입(I11)된 불순물을 활성화시키고, 습식 세정함으로써 반도체 소자를 완성한다. 이때, 게이트 전극의 폴리 실리콘(13)에 도핑된 질소 이온은 게이트 산화막(12) 표면으로 파일 업(file-up)되며, 게이트 산화막(12) 계면에서의 반응에 의해 질화막을 형성하게 된다. 따라서, 폴리 실리콘(13)에 도핑된 불순물, 특히 P모스에서의 보론 확산에 의한 게이트 페너트레이션을 억제시키게 된다. 그리고, 실리콘웨이퍼(11)의 접합층(15)인 소스/드레인에서는 P형 또는 N형의 불순물 주위에 질소 이온이 존재하여, 급속 열처리 공정에 의해 P형 또는 N형 불순물은 활성화가 이루어지지만, 불순물 주위의 질소 이온에 의해 측면 확산이 억제되어 불순물이 채널 영역으로 침투하는 TED 현상을 억제시키게 되어 낮은 에너지의 이온 주입에 의한 얕은 접합을 형성 가능케 된다. 더욱이, 필드 효과 트랜지스터에 있어서 소스/드레인 영역간의 실제 채널에는 질소 이온이 존재하지 않으므로 채널에서의 기생 저항 문제를 발생시키지는 않는다.Then, as shown in Fig. 2d, the silicon wafer 11 is annealed, preferably subjected to rapid thermal annealing (RTA) at a temperature of 1000 ° C to 1100 ° C for 5 seconds to 15 seconds to obtain ions. The semiconductor device is completed by compensating for damage to the silicon wafer due to the implantation (I11) and at the same time as the implantation (I12), activating the impurities implanted in the ion implantation (I11), and wet cleaning. At this time, the nitrogen ions doped in the polysilicon 13 of the gate electrode are piled up to the surface of the gate oxide film 12, and the nitride film is formed by the reaction at the interface of the gate oxide film 12. Therefore, the gate penetration due to the doped impurities in the polysilicon 13, in particular, the boron diffusion in the P-MOS is suppressed. In the source / drain which is the bonding layer 15 of the silicon wafer 11, nitrogen ions are present around the P-type or N-type impurities, and P-type or N-type impurities are activated by a rapid heat treatment process. Lateral diffusion is suppressed by nitrogen ions around the impurity to suppress the TED phenomenon in which the impurity penetrates into the channel region, thereby forming a shallow junction by ion implantation of low energy. Moreover, in field effect transistors, there are no nitrogen ions in the actual channel between the source / drain regions, which does not cause the parasitic resistance problem in the channel.

상기의 실시예에서는 질소 이온 주입(I12)을 소스/드레인 형성을 위한 불순물 이온 주입(I11) 이후에 실시하였지만, 이와는 달리 질소 이온 주입(I12)을 소스/드레인 형성을 위한 불순물 이온 주입(I11) 이전에 실시하여도 무방하다.In the above embodiment, the nitrogen ion implantation (I12) is performed after the impurity ion implantation (I11) for source / drain formation. Alternatively, the nitrogen ion implantation (I12) is performed after the impurity ion implantation (I11) for source / drain formation. It may be carried out before.

이와 같이 본 발명은 반도체 소자를 제조하는 공정에서 소스/드레인의 얕은 접합을 형성하는 어닐링 이전에 질소 이온을 주입함으로써, 어닐링에 의해 게이트 산화막의 표면을 질화막으로 형성하여 불순물 확산에 의한 게이트 페너트레이션을 억제시키며, 소스/드레인에서의 TED를 억제하여 얕은 접합을 형성할 수 있으므로 미세 반도체 소자의 신뢰성을 향상시킬 수 있을 뿐만 아니라 미세 반도체 소자 제조 공정의 수율을 향상시킬 수 있다.As described above, in the process of fabricating a semiconductor device, by injecting nitrogen ions prior to annealing to form a shallow junction of a source / drain, the surface of the gate oxide film is formed as a nitride film by annealing, thereby performing gate penetration by diffusion of impurities. In addition, since the shallow junction can be formed by suppressing the TED at the source / drain, the reliability of the fine semiconductor device can be improved and the yield of the fine semiconductor device manufacturing process can be improved.

Claims (5)

소자 분리 영역이 정의된 실리콘웨이퍼에 게이트 전극을 형성하는 단계와;Forming a gate electrode on a silicon wafer in which device isolation regions are defined; 상기 실리콘웨이퍼에 소스/드레인 형성을 위한 불순물을 이온 주입하는 단계와;Ion implanting impurities into the silicon wafer for source / drain formation; 상기 실리콘웨이퍼를 어닐링하여 소스/드레인의 접합층을 형성하는 단계를 포함하되,Annealing the silicon wafer to form a junction layer of a source / drain, 상기 실리콘웨이퍼에 소스/드레인 형성을 위한 불순물을 이온 주입하는 단계는 질소 이온을 주입하는 단계를 더 포함하는 것을 특징으로 반도체 소자 제조 방법.And implanting impurities for source / drain formation into the silicon wafer further comprises implanting nitrogen ions. 제 1 항에 있어서, 상기 질소 이온 주입을 상기 소스/드레인 형성을 위한 불순물 이온 주입 이전 또는 이후에 실시하는 것을 특징으로 하는 반도체 소자 제조 방법.The method of claim 1, wherein the nitrogen ion implantation is performed before or after the impurity ion implantation for forming the source / drain. 제 2 항에 있어서, 상기 질소 이온의 주입은, 1.0×10-11cm-2내지 1.0×10-14cm-2의 이온 양으로 10KeV 내지 30KeV의 에너지로 주입하는 것을 특징으로 하는 반도체 소자 제조 방법.The method of manufacturing a semiconductor device according to claim 2, wherein the nitrogen ion is implanted with an energy of 10KeV to 30KeV in an ion amount of 1.0 × 10 −11 cm −2 to 1.0 × 10 −14 cm −2 . . 제 1 항 내지 3 항중 어느 한 항에 있어서, 상기 실리콘웨이퍼를 어닐링하여 소스/드레인의 접합층을 형성하는 단계에서, 어닐링은 급속 열처리 공정에 의해 실시하는 것을 특징으로 하는 반도체 소자 제조 방법.The method of manufacturing a semiconductor device according to any one of claims 1 to 3, wherein in the step of annealing the silicon wafer to form a junction layer of a source / drain, the annealing is performed by a rapid heat treatment process. 제 4 항에 있어서, 상기 급속 열처리 공정은 1000℃ 내지 1100℃의 온도로 5초 내지 15초 동안 실시하는 것을 특징으로 하는 반도체 소자 제조 방법.The method of claim 4, wherein the rapid heat treatment is performed at a temperature of 1000 ° C. to 1100 ° C. for 5 seconds to 15 seconds.
KR1019990013038A 1999-04-13 1999-04-13 Semiconductor device manufacturing method KR100288686B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990013038A KR100288686B1 (en) 1999-04-13 1999-04-13 Semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990013038A KR100288686B1 (en) 1999-04-13 1999-04-13 Semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
KR20000066156A KR20000066156A (en) 2000-11-15
KR100288686B1 true KR100288686B1 (en) 2001-04-16

Family

ID=19579830

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990013038A KR100288686B1 (en) 1999-04-13 1999-04-13 Semiconductor device manufacturing method

Country Status (1)

Country Link
KR (1) KR100288686B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101050602B1 (en) 2005-11-07 2011-07-19 텍사스 인스트루먼츠 인코포레이티드 Semiconductor Device Formation Method, Transistor Formation Method, and Semiconductor Device of Nitrogen Implantation for Defect Reduction in Strained Silicon

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100382556B1 (en) * 2001-06-27 2003-05-09 주식회사 하이닉스반도체 Method for manufacturing isolation of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101050602B1 (en) 2005-11-07 2011-07-19 텍사스 인스트루먼츠 인코포레이티드 Semiconductor Device Formation Method, Transistor Formation Method, and Semiconductor Device of Nitrogen Implantation for Defect Reduction in Strained Silicon

Also Published As

Publication number Publication date
KR20000066156A (en) 2000-11-15

Similar Documents

Publication Publication Date Title
US6512258B2 (en) Semiconductor device and method of manufacturing same
US6255152B1 (en) Method of fabricating CMOS using Si-B layer to form source/drain extension junction
US20030127689A1 (en) High voltage MOS transistor with up-retro well
US6566208B2 (en) Method to form elevated source/drain using poly spacer
US7163878B2 (en) Ultra-shallow arsenic junction formation in silicon germanium
US5504024A (en) Method for fabricating MOS transistors
KR100574172B1 (en) Method for fabricating semiconductor device
US5747371A (en) Method of manufacturing vertical MOSFET
JP3123465B2 (en) Method for manufacturing MIS transistor
US6162694A (en) Method of forming a metal gate electrode using replaced polysilicon structure
KR100288686B1 (en) Semiconductor device manufacturing method
JP2002518827A (en) Method of manufacturing semiconductor device including MOS transistor
US6638829B1 (en) Semiconductor structure having a metal gate electrode and elevated salicided source/drain regions and a method for manufacture
US20060024929A1 (en) Method of forming a well in a substrate of a transistor of a semiconductor device
TW426972B (en) Method of forming the extending junction of source/drain by using Si-B layer in fabricating complementary metal oxide semiconductor field effect transistor
JP2781989B2 (en) Method for manufacturing semiconductor device
KR100618313B1 (en) Cmos having elevated source/drain and method of fabricating thereof
KR100677774B1 (en) Method for manufacturing semiconductor device
JPH0616559B2 (en) Method for manufacturing semiconductor device
JP2953915B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
KR101128699B1 (en) Method for manufacturing a semiconductor device
KR940006672B1 (en) Fabricating method of mos transistor
KR100567030B1 (en) Methood for manufacturing Transistor
KR100622812B1 (en) Method for fabricating the gate structure of semiconductor device
KR970005147B1 (en) Semiconductor memory device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120119

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee