JPS6077981A - Manufacture of potassium gold cyanide - Google Patents

Manufacture of potassium gold cyanide

Info

Publication number
JPS6077981A
JPS6077981A JP58186294A JP18629483A JPS6077981A JP S6077981 A JPS6077981 A JP S6077981A JP 58186294 A JP58186294 A JP 58186294A JP 18629483 A JP18629483 A JP 18629483A JP S6077981 A JPS6077981 A JP S6077981A
Authority
JP
Japan
Prior art keywords
anode
electrolysis
gold
electrode
cyanide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58186294A
Other languages
Japanese (ja)
Other versions
JPH032235B2 (en
Inventor
Takao Azusawa
小豆沢 孝夫
Nobuyasu Ezawa
信泰 江澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP58186294A priority Critical patent/JPS6077981A/en
Publication of JPS6077981A publication Critical patent/JPS6077981A/en
Publication of JPH032235B2 publication Critical patent/JPH032235B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To manufacture efficiently potassium gold cyanide without controlling conditions of electric current during electrolysis by dispersing gold dust or grains on a horizontal electrode on the bottom of an electrolytic cell to form an anode, placing an electrode as a cathode at a distance from the anode with a diaphragm in-between, and carrying out electrolysis. CONSTITUTION:When potassium gold cyanide is manufactured by electrolysis, gold dust, grains, lumps, rods or chips are dispersed on a horizontal electrode of Ti or the like on the bottom of an electrolytic cell to form an anode, and an electrode of stainless steel or the like put in a basket of a semipermeable membrane is placed as a cathode at the center of the cell at a prescribed distance from the anode. Electrolysis is carried out by applying DC to the electrodes in a KCN soln. as an electrolytic soln. The surface area of the gold dust or the like is hardly changed only by supplying a prescribed amount of gold dust or the like in accordance with the progress of the electrolysis, and the available area of the anode can be kept almost uniform, so the control of conditions of electric current during electrolysis is not required to improve the work efficiency and productivity.

Description

【発明の詳細な説明】 本発明は、シアン化金カリウムの製造方法の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for producing potassium gold cyanide.

従来、シアン化金カリウムを電解法によって製造する場
合は、板状の金地金を陽極としていたが、板状の金地金
は電解が進行するにつれて消耗し、陽極の表面積が減少
するので、電解の電流条件等を消耗に合わせて制御する
か、陽極の表面積が成る一定の面積が減少した処で、板
状の金地金を交換していた。また金の粉2粒等を不溶性
の籠に入れ、垂直に槽中に吊型して陽極として電解法に
よリシアン化金カリウムを製造する方法があるが、やは
り電解が進行するにつれて消耗し、部内で金の粉2粒等
が沈降して、陽極の表面積が減少するので、消耗量に応
じC金の粉1粒等を補充しなければならない。
Conventionally, when gold potassium cyanide was produced by electrolysis, a plate-shaped gold ingot was used as an anode, but the plate-shaped gold ingot was consumed as electrolysis progressed, reducing the surface area of the anode. The current conditions and other conditions were controlled according to consumption, or the plate-shaped gold ingot was replaced when the surface area of the anode decreased by a certain amount. Another method is to put two grains of gold powder in an insoluble basket, hang it vertically in a tank, and use it as an anode to produce potassium gold ricyanide by electrolysis, but as the electrolysis progresses, it is consumed. Two grains of gold powder, etc., settle inside the anode, reducing the surface area of the anode, so it is necessary to replenish one grain of C gold powder, etc., depending on the amount of consumption.

本発明は斯かる問題を解消すべくなされたもので、金の
粉1粒等の陽極が消耗しても、陽極としての実効面積を
略一定に保持して、電解の電流条件を制御することなく
、シアン化金カリウムを製造することのできる方法を提
供せんとするものである。
The present invention was made to solve this problem, and even if an anode such as a single grain of gold powder is consumed, the effective area as an anode can be kept approximately constant and the current conditions for electrolysis can be controlled. The object of the present invention is to provide a method capable of producing potassium gold cyanide without the need for the production of potassium gold cyanide.

本発明のシアン化金カリウムの製造方法は、金の粉9粒
、塊片、棒片、板片のいずれかを槽底の水平な電極の上
に分散して陽極とし、隔膜を存してへだてだ電極を陰極
として、電解法によりシアン化金カリウムを作ることを
特徴とするものである。
In the method for producing potassium gold cyanide of the present invention, nine gold powder particles, lumps, rods, or plates are dispersed on a horizontal electrode at the bottom of the tank to serve as an anode, and a diaphragm is present. This method is characterized by producing potassium gold cyanide using an electrolytic method using an isolated electrode as a cathode.

斯かる本発明のシアン化金カリウムの製造方法では、電
解の進行に伴い水平な電極上に分散された陽極としての
金の粉2粒等が消耗するが、その平面積は殆んど変らな
いので、陽極の実効面積は略一定に保持でき、電解の電
流条件を一定にできる。特に電解の進行に合せて金の粉
1粒等を電極上に補充分散するか所定量を供給すれば、
継続的に陽極としての実効面積を略一定に保持でき、し
かも電極上の金の粉1粒等を電解の進行に伴って振動を
加えるか、又は金の粉1粒等の表面を回転棒によりなら
せば、電極上の金の粉2粒等の分布が均一となり、陽極
の実効面積を継続的に一定に保持でき、電解の電流条件
も継続的に一定となる。
In the method for producing potassium gold cyanide of the present invention, as the electrolysis progresses, the two particles of gold powder, etc., which serve as an anode and are dispersed on a horizontal electrode, are consumed, but the planar area thereof remains almost unchanged. Therefore, the effective area of the anode can be kept substantially constant, and the current conditions for electrolysis can be kept constant. In particular, if one particle of gold powder or the like is replenished and dispersed on the electrode as electrolysis progresses, or if a predetermined amount is supplied,
The effective area as an anode can be maintained approximately constant continuously, and a single grain of gold powder, etc. on the electrode can be vibrated as electrolysis progresses, or the surface of a single grain of gold powder, etc. can be touched with a rotating rod. If this happens, the distribution of the two gold powder particles etc. on the electrode will be uniform, the effective area of the anode can be kept constant continuously, and the current conditions for electrolysis can also be kept constant.

かくして、金の粉2粒等の陽極の消耗があっても電解の
電流条件を制御する必要が無くなり、作業性、生産性が
向上する。
In this way, even if the anode, such as two gold powder particles, is consumed, there is no need to control the electrolytic current conditions, improving workability and productivity.

次に本発明のシアン化金カリウムの製造方法の効果を明
瞭ならしめる為にその具体的な実施例と従来例について
説明する。
Next, in order to clarify the effects of the method for producing potassium gold cyanide of the present invention, specific examples and conventional examples thereof will be described.

〔実施例〕〔Example〕

直径50印、深さ44印の円筒形の電解槽の底の円盤状
の水平なTi電極の上に、直径1〜3龍の金の粒を10
kg分散して面積20dm2の陽極とし、電極槽中の中
央に半透膜(陽イオン交換膜でも良い)の籠を配し、こ
の筋肉にステンレス鋼の網状電極を陰極として配し、極
間距離を13cmに保った上、電解槽中にKCN 10
0g/N、液温85℃の電解液807!を注入した。そ
して電解を25OAの直流電流により行い、途中陽極の
消耗に伴い電解槽中の底のTi電極上に金の粒を補充し
、回転棒によりならして陽極の実効面積を一定にして連
続的にシアン化金カリウムを製造した。このようにして
シアン化金カリウムを6時間で200g / 7!得た
。この間電解の電流条件は全く制御しなかった。
10 gold grains with a diameter of 1 to 3 dragons were placed on the disk-shaped horizontal Ti electrode at the bottom of a cylindrical electrolytic cell with a diameter of 50 marks and a depth of 44 marks.
kg is dispersed to form an anode with an area of 20 dm2, a cage of semipermeable membrane (a cation exchange membrane may also be used) is arranged in the center of the electrode tank, and a stainless steel mesh electrode is arranged as a cathode on this muscle, and the distance between the electrodes is was kept at 13 cm, and KCN 10 was placed in the electrolytic bath.
Electrolyte 807 with 0g/N and liquid temperature of 85℃! was injected. Electrolysis is then carried out using a direct current of 25 OA, and as the anode wears out, gold particles are replenished onto the Ti electrode at the bottom of the electrolytic cell, and the effective area of the anode is kept constant by a rotating rod and continuously. Potassium gold cyanide was produced. In this way, 200g/7 of gold potassium cyanide in 6 hours! Obtained. During this time, the current conditions for electrolysis were not controlled at all.

〔従来例〕[Conventional example]

縦25cm、横70cm、深さ50cmの箱状の電解槽
に陽イオン交換膜を配して区画し、一方に厚さ2朋。
A box-shaped electrolytic cell measuring 25 cm long, 70 cm wide, and 50 cm deep is partitioned with a cation exchange membrane, and one side is 2 mm thick.

幅600mm、高さ4501の板状の金地金を吊垂して
陽極とし、他方に厚さ1龍1幅650+u、高さ450
絹のステンレス鋼板を吊垂して陰極とし、極間距離を1
3cIlに保った上、電解槽中にKCN 100g/l
液温85℃の電解液804を注入した。そして電解を2
50への直流電流により行った処、陽極の消耗により2
時間で当初の250Aの直流電流では電解不能となった
A plate-shaped gold bullion with a width of 600 mm and a height of 450 mm is suspended to serve as an anode, and on the other side is a metal plate with a thickness of 1 dragon 1 width of 650 + u and a height of 450 mm.
A silk stainless steel plate is suspended as a cathode, and the distance between the poles is 1.
KCN was kept at 3 cIl and 100g/l of KCN was added in the electrolytic bath.
Electrolyte solution 804 with a liquid temperature of 85° C. was injected. And electrolysis 2
50, due to consumption of the anode, 2
In time, it became impossible to perform electrolysis with the original 250A DC current.

以上の説明で判るように本発明のシアン化金カリウムの
製造方法は、金の粉1粒等を槽底の水平な電極」二に分
散して陽極とし、隔膜を存してへだてた電極を陰極とし
て電解法によりシアン化金カリウムを作るのであるから
、電解の進行に伴って陽極である金が消耗してもその金
の消耗は上面だけで、その平面積は殆んど変らないので
、陽極としての実効面積ば略一定に保持され、電解の電
流条件は一定となる。従って、陽極の消耗にかかわらず
電解の電流条件を制御する必要が無いので、シアン化金
カリウム製造の作業性、生産性が向上するという優れた
効果がある。
As can be seen from the above explanation, the method for producing potassium gold cyanide of the present invention involves dispersing a grain of gold powder or the like into a horizontal electrode at the bottom of the tank to form an anode, and then using a diaphragm to separate the electrodes. Since gold potassium cyanide is made as the cathode by electrolysis, even if the gold that is the anode is consumed as the electrolysis progresses, the gold is consumed only on the top surface, and its planar area hardly changes. The effective area as an anode is kept approximately constant, and the current conditions for electrolysis are constant. Therefore, there is no need to control the current conditions for electrolysis regardless of the consumption of the anode, which has the excellent effect of improving the workability and productivity of gold potassium cyanide production.

出願人 田中貴金属工業株式会社Applicant Tanaka Kikinzoku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 金の粉1粒、塊片、棒片、板片のいずれかを槽底の水平
な電極の上に分散して陽極とし、隔膜を存してへだてた
電極を陰極として、電解法によりシアン化金カリウムを
作ることを特徴とするシアン化金カリウムの製造方法。
A grain of gold powder, a lump, a bar, or a plate is dispersed on a horizontal electrode at the bottom of the tank to serve as an anode, and the separated electrode with a diaphragm is used as a cathode to produce cyanide using an electrolytic method. A method for producing potassium gold cyanide, characterized by producing potassium gold.
JP58186294A 1983-10-05 1983-10-05 Manufacture of potassium gold cyanide Granted JPS6077981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58186294A JPS6077981A (en) 1983-10-05 1983-10-05 Manufacture of potassium gold cyanide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58186294A JPS6077981A (en) 1983-10-05 1983-10-05 Manufacture of potassium gold cyanide

Publications (2)

Publication Number Publication Date
JPS6077981A true JPS6077981A (en) 1985-05-02
JPH032235B2 JPH032235B2 (en) 1991-01-14

Family

ID=16185793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58186294A Granted JPS6077981A (en) 1983-10-05 1983-10-05 Manufacture of potassium gold cyanide

Country Status (1)

Country Link
JP (1) JPS6077981A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893627B1 (en) 2006-10-27 2009-04-21 김명준 Method for smelting pgc
CN109518210A (en) * 2018-11-29 2019-03-26 泰州市欣港电子材料有限公司 A kind of gold potassium cyanide production technology

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893627B1 (en) 2006-10-27 2009-04-21 김명준 Method for smelting pgc
CN109518210A (en) * 2018-11-29 2019-03-26 泰州市欣港电子材料有限公司 A kind of gold potassium cyanide production technology

Also Published As

Publication number Publication date
JPH032235B2 (en) 1991-01-14

Similar Documents

Publication Publication Date Title
CN104114750B (en) Method for industrial copper electrolyzing refining
CA1072055A (en) Electrolytic cell and circulating method for electrolyte
JPS6077981A (en) Manufacture of potassium gold cyanide
CA2865989C (en) Anode and method of operating an electrolysis cell
CA1126684A (en) Bipolar refining of lead
JP3097824B2 (en) Long-period pulse electrolysis operation method in copper electrorefining
US1449462A (en) Method and apparatus for the electrolytic recovery of copper
JPS6332873B2 (en)
JP3202375B2 (en) Method for producing potassium dicyanoaurate
US2985569A (en) Electrolytic method and means for production of refractory metal
JPS625233B2 (en)
Smirnov et al. Electrochemical reduction of As (III) in acid media
JPS63307291A (en) Manufacture of high-purity copper
JPH0860391A (en) Insoluble metallic anode
JP5711063B2 (en) Method for producing indium hydroxide
US3251756A (en) Electrolytic process for making phosphine
CN108977835B (en) Electrochemical dissolution method of platinum powder
JP2767699B2 (en) Electrolytic treatment equipment
JPH0356315B2 (en)
JPH0726221B2 (en) Method for producing electrolytic iron
SU846601A1 (en) Cathode cell for electrolytic deposition of metals
JPH1143794A (en) Production of electrolytic copper
JPH1112777A (en) Method for electrolytically refining copper
SU939597A1 (en) Method for electrically depositing cadmium
JPH06192900A (en) Electrolytic device of metallic material