JPH032235B2 - - Google Patents

Info

Publication number
JPH032235B2
JPH032235B2 JP58186294A JP18629483A JPH032235B2 JP H032235 B2 JPH032235 B2 JP H032235B2 JP 58186294 A JP58186294 A JP 58186294A JP 18629483 A JP18629483 A JP 18629483A JP H032235 B2 JPH032235 B2 JP H032235B2
Authority
JP
Japan
Prior art keywords
anode
gold
electrolysis
cyanide
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58186294A
Other languages
Japanese (ja)
Other versions
JPS6077981A (en
Inventor
Takao Azusawa
Nobuyasu Ezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP58186294A priority Critical patent/JPS6077981A/en
Publication of JPS6077981A publication Critical patent/JPS6077981A/en
Publication of JPH032235B2 publication Critical patent/JPH032235B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 本発明は、シアン化金カリウムの製造方法の改
良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for producing potassium gold cyanide.

従来、シアン化金カリウムを電解法によつて製
造する場合は、板状の金地金を陽極としていた
が、板状の金地金は電解が進行するにつれて消耗
し、陽極の表面積が減少するので、電解の電流条
件等を消耗に合わせて制御するか、陽極の表面積
が或る一定の面積が減少した処で、板状の金地金
を交換していた。また金の粉、粒等を不溶性の篭
に入れ、垂直に槽中に吊垂して陽極として電解法
によりシアン化金カリウムを製造する方法がある
が、やはり電解が進行するにつれて消耗し、篭内
で金の粉、粒等が沈降して、陽極の表面積が減少
するので、消耗量に応じて金の粉、粒等を補充し
なければならない。
Conventionally, when gold potassium cyanide was produced by electrolysis, a plate-shaped gold ingot was used as an anode, but the plate-shaped gold ingot was consumed as electrolysis progressed, reducing the surface area of the anode. Either the current conditions for electrolysis were controlled according to the depletion, or the plate-shaped gold ingot was replaced when the surface area of the anode decreased to a certain extent. There is also a method of producing gold potassium cyanide by electrolytic method by placing gold powder, grains, etc. in an insoluble basket and hanging it vertically in a tank and using it as an anode, but as the electrolysis progresses, it is consumed and the basket Gold powder, grains, etc. settle within the anode, reducing the surface area of the anode, so gold powder, grains, etc. must be replenished according to the amount of consumption.

本発明は斯かる問題を解決すべくなされたもの
で、金の粉、粒等の陽極が消耗しても、陽極とし
ての実効面積を略一定に保持して、電解の電流条
件を制御することなく、シアン化金カリウムを製
造することのできる方法を提供せんとするもので
ある。
The present invention was made in order to solve this problem, and even if the anode such as gold powder or grains is consumed, the effective area as an anode can be kept approximately constant, and the current conditions for electrolysis can be controlled. The object of the present invention is to provide a method capable of producing potassium gold cyanide without the need for the production of potassium gold cyanide.

本発明のシアン化金カリウムの製造方法は、金
の粉、粒、塊片、棒片、板片のいずれかを槽底の
水平な電極の上に分散して陽極とし、隔膜を存し
てへだてた電極を陰極として、電解法によりシア
ン化金カリウムを作ることを特徴とするものであ
る。
In the method for producing potassium gold cyanide of the present invention, gold powder, grains, lumps, rods, or plates are dispersed on a horizontal electrode at the bottom of the tank to serve as an anode, and a diaphragm is present. This method is characterized by producing potassium gold cyanide by electrolysis using the separated electrode as a cathode.

斯かる本発明のシアン化金カリウムの製造方法
では、電解の進行に伴い水平な電極上に分散され
た陽極としての金の粉、粒等が消耗するが、その
平面積は殆んど変らないので、陽極の実効面積は
略一定に保持でき、電解の電流条件を一定にでき
る。特に電解の進行に合せて金の粉、粒等を電極
上に補充分散するか所定量を供給すれば、継続的
に陽極としての実効面積を略一定に保持でき、し
かも電極上の金の粉、粒等を電解の進行に伴つて
振動を加えるか、又は金の粉、粒等の表面を回転
棒によりならせば、電極上の金の粉、粒等の分布
が均一となり、陽極の実効面積を継続的に一定に
保持でき、電解の電流条件も継続的に一定とな
る。かくして、金の粉、粒等の陽極の消耗があつ
ても電解の電流条件を制御する必要が無くなり、
作業性、生産性が向上する。
In the method for producing potassium gold cyanide of the present invention, as the electrolysis progresses, the gold powder, grains, etc. that serve as the anode dispersed on the horizontal electrode are consumed, but the planar area of the gold powder remains almost unchanged. Therefore, the effective area of the anode can be kept substantially constant, and the current conditions for electrolysis can be kept constant. In particular, if gold powder, grains, etc. are replenished and dispersed on the electrode as electrolysis progresses, or if a predetermined amount is supplied, the effective area as an anode can be continuously maintained at a substantially constant level, and the gold powder on the electrode can be kept constant. By applying vibration to the particles as electrolysis progresses, or by smoothing the surface of the gold powder, particles, etc. with a rotating rod, the distribution of the gold powder, particles, etc. on the electrode will be uniform, and the effective effectiveness of the anode will be improved. The area can be kept constant continuously, and the current conditions for electrolysis can also be kept constant. In this way, even if the anode such as gold powder or grains is consumed, there is no need to control the electrolytic current conditions.
Improves work efficiency and productivity.

次に本発明のシアン化金カリウムの製造方法の
効果を明瞭ならしめる為にその具体的な実施例と
従来例について説明する。
Next, in order to clarify the effects of the method for producing potassium gold cyanide of the present invention, specific examples and conventional examples thereof will be described.

〔実施例〕〔Example〕

直径50cm、深さ44cmの円筒形の電解槽の底の円
盤状の水平なTi電極の上に、直径1〜3mmの金
の粒を10Kg分散して面積20dm2の陽極とし、電極
槽中の中央に半透膜(陽イオン交換膜でも良い)
の篭を配し、この篭内にステンレス鋼の網状電極
を陰極として配し、極間距離を13cmに保つた上、
電解槽中にKCN100g/、液温85℃の電解液80
を注入した。そして電解を250Aの直流電流に
より行い、途中陽極の消耗に伴い電解槽中の底の
Ti電極上に金の粒を補充し、回転棒によりなら
して陽極の実効面積を一定にして連続的にシアン
化金カリウムを製造した。このようにしてシアン
化金カリウムを6時間で200g/得た。この間
電解の電流条件は全く制御しなかつた。
10 kg of gold grains with a diameter of 1 to 3 mm are dispersed on a horizontal Ti electrode in the bottom of a cylindrical electrolytic cell with a diameter of 50 cm and a depth of 44 cm to form an anode with an area of 20 dm2 . Semi-permeable membrane in the center (a cation exchange membrane may also be used)
A stainless steel mesh electrode was placed inside the cage as a cathode, and the distance between the electrodes was kept at 13 cm.
100g of KCN/80% electrolyte at a temperature of 85°C in the electrolytic tank
was injected. Electrolysis is then carried out using a 250A DC current, and as the anode wears out during the process, the bottom of the electrolytic cell
Gold particles were replenished onto the Ti electrode and leveled with a rotating rod to keep the effective area of the anode constant and continuously produce potassium gold cyanide. In this way, 200 g/potassium gold cyanide was obtained in 6 hours. During this time, the current conditions for electrolysis were not controlled at all.

〔従来例〕[Conventional example]

縦25cm、横70cm、深さ50cmの箱状の電解槽に陽
イオン交換膜を配して区画し、一方に厚さ2mm、
幅600mm、高さ450mmの板状の金地金を吊垂して陽
極とし、他方に厚さ1mm、幅650mm、高さ450mmの
ステンレス鋼板を吊垂して陰極とし、極間距離を
13cmに保つた上、電解槽中にKCN100g/、液
温85℃の電解液80を注入した。そして電解を
250Aの直流電流により行つた処、陽極の消耗に
より2時間で当初の250Aの直流電流では電解不
能となつた。
A box-shaped electrolytic cell measuring 25 cm in length, 70 cm in width, and 50 cm in depth is partitioned with a cation exchange membrane.
A metal plate with a width of 600 mm and a height of 450 mm is suspended to serve as the anode, and a stainless steel plate with a thickness of 1 mm, width of 650 mm, and height of 450 mm is suspended to serve as the cathode.
After maintaining the height of 13 cm, 100 g of KCN/80 ml of electrolyte solution with a liquid temperature of 85° C. was injected into the electrolytic cell. and electrolysis
When the electrolysis was carried out using a 250A direct current, the anode became exhausted and electrolysis became impossible within two hours using the original 250A direct current.

以上の説明で判るように本発明のシアン化金カ
リウムの製造方法は、金の粉、粒等を槽底の水平
な電極上に分散して陽極とし、隔膜を存してへだ
てた電極を陰極として電解法によりシアン化金カ
リウムを作るのであるから、電解の進行に伴つて
陽極である金が消耗してもその金の消耗は上面だ
けで、その平面積は殆んど変らないので、陽極と
しての実効面積は略一定に保持され、電解の電流
条件は一定となる。従つて、陽極の消耗にかかわ
らず電解の電流条件を制御する必要が無いので、
シアン化金カリウム製造の作業性、生産性が向上
するという優れた効果がある。
As can be seen from the above explanation, the method for producing potassium gold cyanide of the present invention involves dispersing gold powder, grains, etc. on a horizontal electrode at the bottom of the tank to serve as an anode, and using the separated electrode with a diaphragm as a cathode. Potassium gold cyanide is produced by an electrolytic method, so even if the gold that is the anode is consumed as the electrolysis progresses, the gold is consumed only on the top surface, and its planar area hardly changes, so the anode The effective area as is kept substantially constant, and the current conditions for electrolysis are kept constant. Therefore, there is no need to control the electrolytic current conditions regardless of the consumption of the anode.
This has the excellent effect of improving workability and productivity in producing potassium gold cyanide.

Claims (1)

【特許請求の範囲】[Claims] 1 金の粉、粒、塊片、棒片、板片のいずれかを
槽底の水平な電極の上に分散して陽極とし、隔膜
を存してへだてた電極を陰極として、電解法によ
りシアン化金カリウムを作ることを特徴とするシ
アン化金カリウムの製造方法。
1 Gold powder, grains, lumps, rods, or plates are dispersed on a horizontal electrode at the bottom of the tank to serve as an anode, and the separated electrode with a diaphragm is used as a cathode to generate cyanide by electrolytic method. A method for producing potassium gold cyanide, which is characterized by producing potassium gold cyanide.
JP58186294A 1983-10-05 1983-10-05 Manufacture of potassium gold cyanide Granted JPS6077981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58186294A JPS6077981A (en) 1983-10-05 1983-10-05 Manufacture of potassium gold cyanide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58186294A JPS6077981A (en) 1983-10-05 1983-10-05 Manufacture of potassium gold cyanide

Publications (2)

Publication Number Publication Date
JPS6077981A JPS6077981A (en) 1985-05-02
JPH032235B2 true JPH032235B2 (en) 1991-01-14

Family

ID=16185793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58186294A Granted JPS6077981A (en) 1983-10-05 1983-10-05 Manufacture of potassium gold cyanide

Country Status (1)

Country Link
JP (1) JPS6077981A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893627B1 (en) 2006-10-27 2009-04-21 김명준 Method for smelting pgc
CN109518210A (en) * 2018-11-29 2019-03-26 泰州市欣港电子材料有限公司 A kind of gold potassium cyanide production technology

Also Published As

Publication number Publication date
JPS6077981A (en) 1985-05-02

Similar Documents

Publication Publication Date Title
US2828251A (en) Electrolytic cladding process
US2817631A (en) Refining titanium alloys
JPS6353275B2 (en)
US1945107A (en) Method of making ductile electrolytic iron
US2311257A (en) Electrolytic beryllium and process
JPH032235B2 (en)
US2745800A (en) Electroplating with iron
US2785066A (en) Solid plates of titanium and zirconium
US1449462A (en) Method and apparatus for the electrolytic recovery of copper
JP2015509558A (en) Operation method of anode and electrolytic cell
US2831802A (en) Production of subdivided metals
JPH034629B2 (en)
US3729398A (en) Process and cell for the electrolytic recovery of aluminum
US2731404A (en) Production of titanium metal
US2904477A (en) Electrolytic method for production of refractory metal
US2996446A (en) Apparatus for the electrolytic production of fluorine
Smirnov et al. Electrochemical reduction of As (III) in acid media
JP3202375B2 (en) Method for producing potassium dicyanoaurate
JPS625233B2 (en)
JPH0726221B2 (en) Method for producing electrolytic iron
US2542112A (en) Method of regenerating aluminum anodizing solution
US2245505A (en) Process for replenishing and correcting the electrolyte in the refining of aluminum
US4367128A (en) Energy efficient self-regulating process for winning copper from aqueous solutions
US2750338A (en) Electrolytic manganese
US3251756A (en) Electrolytic process for making phosphine