JPH034629B2 - - Google Patents

Info

Publication number
JPH034629B2
JPH034629B2 JP62034434A JP3443487A JPH034629B2 JP H034629 B2 JPH034629 B2 JP H034629B2 JP 62034434 A JP62034434 A JP 62034434A JP 3443487 A JP3443487 A JP 3443487A JP H034629 B2 JPH034629 B2 JP H034629B2
Authority
JP
Japan
Prior art keywords
copper
electrolytic copper
desilvering
anode
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62034434A
Other languages
Japanese (ja)
Other versions
JPS63203784A (en
Inventor
Yoshio Kawasumi
Takashi Ogata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP62034434A priority Critical patent/JPS63203784A/en
Priority to US07/080,336 priority patent/US4792369A/en
Publication of JPS63203784A publication Critical patent/JPS63203784A/en
Priority to US07/237,492 priority patent/US4874436A/en
Publication of JPH034629B2 publication Critical patent/JPH034629B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の技術分野 本発明は高純度電気銅の製造方法に関する。 発明の従来技術 従来、高純度銅の製法としては、例えば、銀が
8〜14ppm、イオウが5〜15ppm含む電気銅を硝
酸浴で電気分解し、イオウ分の少ない電気銅を得
る方法である。 この方法によれば、通常の電気銅中のイオウが
5〜9ppmあるものがかなり低下するのであるが、
最も高い銀については、好ましく除去することが
できない。 更に塩素源を添加し、電解浴温を規制して、銀
含有量を低下させる方法等が行われているが好ま
しく除去することができていない。 発明の構成 そこで発明者等が鋭意検討した結果、以下の発
明をなした。 即ち、本発明は、予め電気分解により得られた
電気銅及び又は相当品を硝酸浴中で再電解する方
法において、陽、陰極室を隔膜で区別し、陽極室
排出液を金属銅を脱銀剤として用いて、脱銀した
後、該処理液を陰極室に給液することを特徴とす
る高純度電気銅の製造方法を提供する。 発明の具体的説明 本発明で用いる電解浴は硝酸酸性浴である。硝
酸の濃度はPHが3以下に保持されるように調整さ
れる。好ましくはPH=1.5〜2.0に調整される。ア
ノードは電気銅、無酸素銅等を用いる。これらの
品位は、銀が8〜14ppm、イオウが5〜15ppm、
砒素0.2〜1ppm、アンチモン0.1〜0.6ppm、ビス
マス0.1〜0.5ppm、鉛0.3〜1.0ppm含むものが、
通常である。 これらの不純物を効率的に除くためには、陽、
陰極室を隔膜で区分することが不可欠である。即
ち、隔膜の主目的は陽極の溶解によつて生ずる不
純物と陰極との隔離である。上記不純物は沈降す
る固形物、懸濁する固形物及び溶存物とに大別さ
れる。溶存不純物は電気泳動によつて、陰極室に
到達しようとするので、隔膜を通過する陰極室液
で押し戻し排除しなければならない。従つて、隔
膜の選定に当たつては通液性、給液量、溶存不純
物の電気泳動度等を考慮しなければならない。し
かしながら通常の隔膜材の場合、有孔度、孔径と
もに不明の場合が多く、実験結果によつて選定す
る例が多い。隔膜材としてはイオン交換膜、布
地、セラミツク等があるが耐酸性の布地、例えば
テビロン、テトロン等の化繊布が好ましい。 更に、本発明の方法においては陽極排出液の脱
銀が不可欠である。脱銀方法としては、金属銅片
充填等を通過させる方法である。 又、塩素の添加は脱銀効率を高める。 塩素源としては塩酸、塩素ガス、塩化銅等があ
る。これらの塩素量としてはフリーの塩素が20
mg/〜20g/あると好ましく、より好ましく
は、0.1g/〜1.0g/である。 又、脱銀後液を孔径0.1μ〜2μの材(孔径は小
さいほど好ましい)で過することによつて不純
物がより好ましく除去できることを把握した。 電流密度は0.8〜1.5A/dm2で実施される。 実施例 1 電気銅(成分品位 Ag:13.9 S:11.0 As:
0.5 Sb:0.3 Bi:0.3 Pb:0.7ppm)を陽極とし、
Ti板を陰極として、陽、陰極間にテトロン
(TR84501 商品名、北村製布(株)製)を配し両極
液を区分する隔膜とした。電解浴の流れは、陽極
室より排出された不純電解液が脱銀処理され引き
続き陰極室に給液されるようにした。脱銀処理は
特願(61−262670号)の方法とし、金属銅に接触
する脱銀時間即ち脱銀工程での滞留時間は4.0hと
し、隔膜面当たりの給液量は1.65cm/hとした。 電気浴は、銅50g/(10日間電解後は54g/
となつた。)硝酸浴とし、PHは1.7-190.1とした。
電解浴温は特に調整はしなかつた(22〜27℃であ
つた)。 電流密度は1.0A/dm2とし、陽、陰極面間距
離40mmで行つた。連続10日間通電後、引き上げ
Ti板から剥がし洗浄乾燥を行つて高純度電気銅
を得た。得られた電気銅の品位は表1の如くであ
つた。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for producing high purity electrolytic copper. Prior Art of the Invention Conventionally, as a method for producing high purity copper, for example, electrolytic copper containing 8 to 14 ppm of silver and 5 to 15 ppm of sulfur is electrolyzed in a nitric acid bath to obtain electrolytic copper with a low sulfur content. According to this method, the sulfur content in ordinary electrolytic copper, which has 5 to 9 ppm, is significantly reduced.
For the highest silvers, it cannot be removed favorably. Furthermore, methods have been used to reduce the silver content by adding a chlorine source and regulating the temperature of the electrolytic bath, but these methods have not been able to remove the silver satisfactorily. Structure of the Invention As a result of intensive study, the inventors made the following invention. That is, the present invention is a method of re-electrolyzing electrolytic copper and/or equivalent products previously obtained by electrolysis in a nitric acid bath, in which the anode and cathode chambers are separated by a diaphragm, and the anode chamber discharge liquid is used to desilver metal copper. Provided is a method for producing high-purity electrolytic copper, which comprises supplying the treatment solution to a cathode chamber after desilvering. DETAILED DESCRIPTION OF THE INVENTION The electrolytic bath used in the present invention is a nitric acid bath. The concentration of nitric acid is adjusted so that the pH is kept below 3. Preferably, the pH is adjusted to 1.5 to 2.0. Electrolytic copper, oxygen-free copper, etc. are used for the anode. The quality of these is 8 to 14 ppm for silver, 5 to 15 ppm for sulfur,
Those containing arsenic 0.2-1ppm, antimony 0.1-0.6ppm, bismuth 0.1-0.5ppm, lead 0.3-1.0ppm,
Normal. In order to efficiently remove these impurities, positive,
It is essential to separate the cathode chamber with a diaphragm. That is, the main purpose of the diaphragm is to separate impurities generated by dissolution of the anode from the cathode. The above impurities are broadly classified into precipitated solids, suspended solids, and dissolved substances. Dissolved impurities try to reach the cathode chamber through electrophoresis, so they must be pushed back and removed by the cathode chamber fluid passing through the diaphragm. Therefore, when selecting a diaphragm, consideration must be given to liquid permeability, amount of liquid supplied, electrophoretic mobility of dissolved impurities, etc. However, in the case of ordinary diaphragm materials, both the porosity and the pore diameter are often unknown, and selection is often made based on experimental results. Examples of the diaphragm material include ion exchange membranes, fabrics, ceramics, etc., but acid-resistant fabrics, such as synthetic fibers such as Teviron and Tetron, are preferable. Furthermore, in the method of the present invention, desilvering of the anode effluent is essential. The desilvering method is a method of passing through a metal copper piece filling or the like. Also, addition of chlorine increases desilvering efficiency. Chlorine sources include hydrochloric acid, chlorine gas, and copper chloride. The amount of chlorine in these is 20% free chlorine.
mg/~20g/, more preferably 0.1g/~1.0g/. It has also been found that impurities can be more preferably removed by passing the desilvering solution through a material with a pore diameter of 0.1 to 2 microns (the smaller the pore diameter is, the better). The current density is carried out at 0.8-1.5 A/ dm2 . Example 1 Electrolytic copper (component quality Ag: 13.9 S: 11.0 As:
0.5 Sb: 0.3 Bi: 0.3 Pb: 0.7 ppm) as the anode,
A Ti plate was used as a cathode, and a Tetron (TR84501 trade name, manufactured by Kitamura Seifu Co., Ltd.) was placed between the anode and cathode to serve as a diaphragm to separate the two electrolytes. The flow of the electrolytic bath was such that the impure electrolyte discharged from the anode chamber was desilvered and then supplied to the cathode chamber. The desilvering treatment was carried out using the method described in the patent application (No. 61-262670), and the desilvering time in contact with metallic copper, that is, the residence time in the desilvering process, was 4.0 h, and the amount of liquid supplied per diaphragm surface was 1.65 cm/h. did. The electric bath contains 50 g of copper (54 g after 10 days of electrolysis)
It became. ) A nitric acid bath was used, and the pH was set to 1.7 -19 0.1.
The electrolytic bath temperature was not particularly adjusted (it was 22 to 27°C). The current density was 1.0 A/dm 2 and the distance between the positive and cathode surfaces was 40 mm. After energizing for 10 consecutive days, withdraw
High purity electrolytic copper was obtained by peeling it off from the Ti plate, washing and drying it. The quality of the obtained electrolytic copper was as shown in Table 1.

【表】 実施例 2 循環する電解浴中の塩素温度を塩素添加で
100-1910mg/とした以外は全く実施例1同様に
行つて高純度電気銅を得た。銀が実施例1より多
く除去でき0.20ppmであつた。他の成分は変化は
なかつた。 実施例 3 実施例2の方法において、脱銀処理後液を孔径
0.2μのミリポアーフイルター(商品名 ミリポア
ー社製)で過し、陰極室に給液する方法を実施
した結果、銀が0.08ppmと極めて低い値を示しよ
り好ましい高純度電気銅が得られた。 発明の効果 以上のように本発明を実施することにより以下
の効果を得る。 (1) 99.9999%以上の高純度の銅が得られる。 (2) これにより得られた銅は、オーデイオ用、ビ
デオ配線用等に用いられ、音色あるいは画像の
美しい映像を可能とし得る。
[Table] Example 2 Changing the chlorine temperature in the circulating electrolytic bath by adding chlorine
100 -19 High purity electrolytic copper was obtained in the same manner as in Example 1 except that the amount was 10 mg/. More silver than in Example 1 could be removed to 0.20 ppm. There were no changes in other components. Example 3 In the method of Example 2, the solution after desilvering treatment was
As a result of passing through a 0.2μ Millipore filter (trade name, manufactured by Millipore) and supplying the liquid to the cathode chamber, more preferable high-purity electrolytic copper with a very low silver content of 0.08 ppm was obtained. Effects of the Invention By implementing the present invention as described above, the following effects can be obtained. (1) High purity copper of 99.9999% or higher can be obtained. (2) The copper thus obtained can be used for audio and video wiring, etc., and can produce beautiful tones and images.

Claims (1)

【特許請求の範囲】 1 予め電気分解により得られた電気銅及び又は
相当品を硝酸浴中で再電解する方法において、
陽、陰極室を隔膜で区別し、陽極室排出液を金属
銅を脱銀剤として用いて、脱銀した後、該処理液
を陰極室に給液することを特徴とする高純度電気
銅の製造方法。 2 脱銀後液を孔径0.1μ〜2μの材で過するこ
とを特徴とする第1項記載の高純度銅の製造方
法。 3 遊離塩素が20mg/〜20g/溶存する電解
液を用いることを特徴とする特許請求の範囲第1
項記載の高純度電気銅の製造方法。
[Claims] 1. A method of re-electrolyzing electrolytic copper and/or an equivalent product previously obtained by electrolysis in a nitric acid bath,
High-purity electrolytic copper, characterized in that the anode and cathode chambers are separated by a diaphragm, and the anode chamber discharge liquid is desilvered using metallic copper as a desilvering agent, and then the treated solution is supplied to the cathode chamber. Production method. 2. The method for producing high-purity copper according to item 1, characterized in that the solution after desilvering is passed through a material with a pore size of 0.1 μm to 2 μm. 3. Claim 1, characterized in that an electrolytic solution containing 20 mg/~20 g/dissolved free chlorine is used.
A method for producing high-purity electrolytic copper as described in Section 1.
JP62034434A 1987-02-19 1987-02-19 Production of high purity electrolytic copper Granted JPS63203784A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62034434A JPS63203784A (en) 1987-02-19 1987-02-19 Production of high purity electrolytic copper
US07/080,336 US4792369A (en) 1987-02-19 1987-07-30 Copper wires used for transmitting sounds or images
US07/237,492 US4874436A (en) 1987-02-19 1988-08-26 Method for producing high purity electrolytic copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62034434A JPS63203784A (en) 1987-02-19 1987-02-19 Production of high purity electrolytic copper

Publications (2)

Publication Number Publication Date
JPS63203784A JPS63203784A (en) 1988-08-23
JPH034629B2 true JPH034629B2 (en) 1991-01-23

Family

ID=12414115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62034434A Granted JPS63203784A (en) 1987-02-19 1987-02-19 Production of high purity electrolytic copper

Country Status (1)

Country Link
JP (1) JPS63203784A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9783904B2 (en) 2012-06-14 2017-10-10 Mitsubishi Materials Corporation High-purity electrolytic copper and electrolytic refining method thereof
KR20210023678A (en) * 2019-08-23 2021-03-04 광저우 인스티튜트 오브 에너지 콘버전, 차이니즈 아카데미 오브 사이언시즈 Novel organic solid waste pyrolysis gasifier

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134724A1 (en) * 2005-06-15 2006-12-21 Nippon Mining & Metals Co., Ltd. Ultrahigh-purity copper and process for producing the same, and bonding wire comprising ultrahigh-purity copper
JP5016410B2 (en) * 2007-08-03 2012-09-05 Dowaメタルマイン株式会社 Copper solution purification method and copper production method
JP7454329B2 (en) * 2017-06-01 2024-03-22 三菱マテリアル株式会社 High purity electrical copper plate
CN110678582B (en) 2017-06-01 2021-10-29 三菱综合材料株式会社 Method for producing high-purity electrolytic copper
WO2018221734A1 (en) * 2017-06-01 2018-12-06 三菱マテリアル株式会社 Method for producing high-purity electrolytic copper
CN114293227A (en) * 2021-12-16 2022-04-08 虹华科技股份有限公司 Processing technology of high-purity copper product for aerospace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9783904B2 (en) 2012-06-14 2017-10-10 Mitsubishi Materials Corporation High-purity electrolytic copper and electrolytic refining method thereof
KR20210023678A (en) * 2019-08-23 2021-03-04 광저우 인스티튜트 오브 에너지 콘버전, 차이니즈 아카데미 오브 사이언시즈 Novel organic solid waste pyrolysis gasifier

Also Published As

Publication number Publication date
JPS63203784A (en) 1988-08-23

Similar Documents

Publication Publication Date Title
JPH034629B2 (en)
JPS6353275B2 (en)
US4612093A (en) Method and apparatus for purification of gold
RU2020192C1 (en) Method of gold refining
US3406108A (en) Regeneration of spent ammonium persulfate etching solutions
JP2685755B2 (en) Gold refining equipment
JP4232088B2 (en) Manufacturing method of high purity electrolytic copper
US2404453A (en) Removal of chlorate from caustic soda
JP2777955B2 (en) Desilvering or silver recovery method
JP2561862B2 (en) Purification and electrolysis method for obtaining ultra high purity copper
JPS6270589A (en) Manufacture of high purity electrolytic copper
JP2622559B2 (en) Manufacturing method of high purity copper
JPH0222489A (en) Method for electrolytically refining high purity copper
JPH11229172A (en) Method and apparatus for producing high-purity copper
EP0028158A1 (en) Methods and systems of removal of metals from solution and of purification of metals and purified solutions and metals so obtained
KR100349445B1 (en) Cementation apparatus of high purity copper
US1587438A (en) Electrolytic recovery of metals from solutions
JPH0711075B2 (en) Indium purification method
US2907703A (en) Method for the production of cysteine hydrochloride
US3824162A (en) Method for electrorefining crude copper having high antimony contents
EP0136786B1 (en) Purifying mixed-cation electrolyte
US2796394A (en) Separating and recovering nonferrous alloys from ferrous materials coated therewith
JP3380262B2 (en) Waste catalyst treatment method
JP2570076B2 (en) Manufacturing method of high purity nickel
JPS63307291A (en) Manufacture of high-purity copper

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term