JPH11229172A - Method and apparatus for producing high-purity copper - Google Patents

Method and apparatus for producing high-purity copper

Info

Publication number
JPH11229172A
JPH11229172A JP10033150A JP3315098A JPH11229172A JP H11229172 A JPH11229172 A JP H11229172A JP 10033150 A JP10033150 A JP 10033150A JP 3315098 A JP3315098 A JP 3315098A JP H11229172 A JPH11229172 A JP H11229172A
Authority
JP
Japan
Prior art keywords
copper
cathode
purity
hydrochloric acid
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10033150A
Other languages
Japanese (ja)
Inventor
Takayuki Shimamune
孝之 島宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP10033150A priority Critical patent/JPH11229172A/en
Publication of JPH11229172A publication Critical patent/JPH11229172A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the method and apparatus for electrolytically refining copper by suppressing the deposition of the metals other than copper in the electrolytic copper refining and electrodepositing only high-purity copper. SOLUTION: Copper is dissolved in an aq. hydrochloric acid soln. in an oxidizing atmosphere, the precipitate is filtered off, the soln. is sent to an anode compartment of the two-compartment electrolytic cell with a cation-exchange membrane as the diaphragm, the copper ion is electrolytically sent to the cathode compartment and electrolytically reduced by the cathode through which an oxygen-contg. gas is passed to deposit copper on the cathode, and high-purity copper is produced. This high-purity copper producing apparatus is provided with a means for dissolving copper in hydrochloric acid and adjusting the concn., a means for filtering the filtered copper chloride soln., a means for introducing the filtered soln. into an electrolytic cell divided by a cation-exchange membrane into an anode compartment and a cathode compartment and a means for supplying gaseous oxygen on the cathode surface, and electrolytic copper is formed on the cathode surface. A microfilter is preferably used for the filtration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ターゲット材など
主に電子加工分野向けの超高純度金属を必要とする分野
に使用する超高純度金属の製造方法及び製造装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing ultra-high-purity metals used in fields requiring ultra-high-purity metals, mainly for the field of electronic processing, such as target materials.

【0002】[0002]

【従来の技術】銅は、従来から熱化学反応により粗銅を
生産し、それを電解精錬することによって高純度化する
ことが行われてきた。これにより精錬銅の純度は、他の
金属とは異なり、最低でも99.9%から99.99%
程度の純度のものが生産され、従来から最も高純度な金
属を得ていた。これは、銅の主要応用分野である電線
が、銅の純度によってその電気伝導率が大きく異なるた
めに、出来るだけ高純度にするということから行われて
きたものであった。この様な高純度が容易に得られると
言うことから、特別に高純度を必要とする場合もこれを
調製すること、またその中から分析によって高純度の部
分を取り出すなどによっているために、高純度銅を容易
に多量に得る方法はほとんど考えられていなかった。
2. Description of the Related Art Conventionally, copper has been produced in a high purity by producing blister copper by a thermochemical reaction and subjecting it to electrolytic refining. As a result, the purity of wrought copper differs from other metals, at least from 99.9% to 99.99%.
A product of a degree of purity was produced, and the highest-purity metal was conventionally obtained. This has been done because the electrical conductivity of copper, which is a major application field of copper, varies greatly depending on the purity of copper, so that the purity is as high as possible. Since such high purity can be obtained easily, it is necessary to prepare it even when special high purity is required, and to extract high purity parts from it by analysis. A method for easily obtaining a large amount of pure copper has hardly been considered.

【0003】しかしながら、電子分野、電子デバイス用
の配線用などに銅を使うことが考えられるようになりよ
り、高純度の銅を使うことが必要になりつつある。つま
り、PVDなどに使うターゲット用としては、99.9
99%以上の超高純度銅を必要としている。このために
は、電気精錬した銅を再び電気精錬するなどの方法が行
われてきたが、高純度化は困難であった。また、電気銅
を電子ビーム溶解などにより揮発物を取り除くことが行
われていたが、これでも銅中に含まれる銀などの不純物
となる金属の除去は、ほとんど不可能であった。
However, the use of copper in the field of electronics, wiring for electronic devices, and the like has become conceivable, and it has become necessary to use copper of high purity. In other words, for a target used for PVD, etc., 99.9
Ultra-high purity copper of 99% or more is required. For this purpose, methods such as electrorefining copper that has been electrorefined have been performed, but it has been difficult to achieve high purity. Volatile substances have been removed from electrolytic copper by electron beam melting or the like. However, even with this method, it has been almost impossible to remove impurities such as silver contained in copper.

【0004】[0004]

【発明が解決しようとする課題】本発明は、叙上の問題
点を解決するためになされたものであり、銅の電解精錬
において特に銅以外の金属の析出を押さえて、高純度の
銅のみを電着させる電解銅精錬方法及び精錬装置を提供
することを目的とした。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to suppress the deposition of metals other than copper in the electrolytic refining of copper, and to use only high-purity copper. The purpose of the present invention is to provide an electrolytic copper refining method and a refining apparatus for electrodepositing.

【0005】[0005]

【課題を解決するための手段】本発明は、銅を電解精錬
するために、地金の銅を酸に溶解する際に、塩酸によっ
て高電位で析出する銀を予め取り除き、その電解電位を
ゼロ以上に保持することによってニッケルや鉄などの金
属の析出を押さえることによって高純度の銅のみを得る
ことができるようにしたものである。すなわち、本発明
は、下記の手段により前記の課題を解決した。 (1)銅を酸化性雰囲気下で塩酸水溶液に溶解した後、
濾過により沈殿物を取り除き、陽イオン交換膜を隔膜と
する二室法電解槽の陽極室に送り、電解的に銅イオンを
陰極室側に送ると共に、酸素含有ガスを通じた陰極で電
解的に還元し、陰極上に銅を析出することを特徴とする
高純度銅の製造方法。 (2)塩酸水溶液の濃度が1から5モルであることを特
徴とする前記(1)記載の高純度銅の製造方法。
SUMMARY OF THE INVENTION In order to electrolytically refine copper, the present invention removes silver deposited at a high potential with hydrochloric acid before dissolving copper in a base metal in an acid, and reduces the electrolytic potential to zero. By holding as described above, it is possible to obtain only high-purity copper by suppressing precipitation of metals such as nickel and iron. That is, the present invention has solved the above-mentioned problems by the following means. (1) After dissolving copper in an aqueous hydrochloric acid solution in an oxidizing atmosphere,
The precipitate is removed by filtration and sent to the anode chamber of a two-chamber electrolytic cell using a cation exchange membrane as a diaphragm, and copper ions are electrolytically sent to the cathode chamber side, and electrolytically reduced at the cathode through an oxygen-containing gas. And depositing copper on the cathode. (2) The method for producing high-purity copper according to (1), wherein the concentration of the aqueous hydrochloric acid solution is 1 to 5 mol.

【0006】(3)銅を塩酸に溶解して銅濃度を調整す
る手段と、溶解によって出来た塩化銅溶液を濾過する手
段と、濾過した塩化銅溶液を陽イオン交換膜で陽極室と
陰極室に分離された電解槽へ送る手段と、該電解槽の陰
極表面に酸素ガスを供給する手段とを有し、電解によっ
て陰極面に電解銅を形成することを特徴とする高純度銅
の製造装置。 (4)銅の溶解には塩素ガスとの接触によることを特徴
とする前記(3)記載の高純度銅の製造装置。 (5)電解槽の陽極室には塩酸を循環させ、電解によっ
て発生する塩素を銅の溶解槽へ送るようにしたことを特
徴とする前記(3)又は(4)記載の高純度銅の製造装
置。 (6)銅の溶解を、銅地金を陽極として塩酸水溶液中で
電解的に行うことを特徴とする前記(3)記載の高純度
銅の製造装置。 (7)溶解槽で溶解し塩化銅にしたものをマイクロフィ
ルターを通した後、電解槽の陽極室側に供給するように
したことを特徴とする前記(3)記載の高純度銅の製造
装置。
(3) A means for adjusting the copper concentration by dissolving copper in hydrochloric acid, a means for filtering a copper chloride solution produced by the dissolution, and an anode chamber and a cathode chamber using the filtered copper chloride solution with a cation exchange membrane. A high-purity copper producing apparatus, comprising: means for feeding to a separated electrolytic cell; means for supplying oxygen gas to the cathode surface of the electrolytic cell; and forming electrolytic copper on the cathode surface by electrolysis. . (4) The apparatus for producing high-purity copper according to (3), wherein the dissolution of copper is by contact with chlorine gas. (5) The production of high-purity copper as described in (3) or (4) above, wherein hydrochloric acid is circulated in the anode chamber of the electrolytic cell, and chlorine generated by the electrolysis is sent to a copper dissolving tank. apparatus. (6) The apparatus for producing high-purity copper according to the above (3), wherein the copper is dissolved electrolytically in a hydrochloric acid aqueous solution using a copper ingot as an anode. (7) The apparatus for producing high-purity copper as described in (3) above, wherein the material dissolved in the dissolving tank and converted into copper chloride is passed through a microfilter and then supplied to the anode chamber side of the electrolytic tank. .

【0007】[0007]

【発明の実施の形態】以下、本発明を詳細に説明する。
銅が電解的に析出する電位は、25℃標準条件で、Cu
2+/Cu(E0 =0.345V)であり、Cu+ /Cu
(E0 =0.522V)である。この様にプラス側の電
位で金属が析出するのは、ここで示した銅のほかにビス
マス、銀、白金族金属、金などである。ビスマスの場合
はBi3+/Bi(E0 =0.2V)であり、銀の場合は
Ag+ /Ag(E0 =0.799V)である。通常の電
解で銅を析出させるには、陰極電位として0.345V
以下とすれば良く、実際には銅イオンが十分にある場合
は、印加電流密度、電解液条件などによっても異なる
が、0.2〜0.25V程度の電位が保持される。この
電位では、可能性としてビスマスの析出並びに析出電位
の極めて高い銀などの金属が同時にでてくることが考え
られる。本発明は、これらの現象を考慮して実際の電解
実験を交え、電解電圧が銅の析出電位に自動的に保持さ
れるように、電解方法に工夫を凝らしたものである。こ
れによって銅以外の金属の析出は実質的になくなり、極
めて高純度の銅のみが得られるようになった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The potential at which copper is electrolytically deposited is Cu at 25 ° C standard conditions.
2+ / Cu (E 0 = 0.345 V) and Cu + / Cu
(E 0 = 0.522 V). In this manner, the metal deposited at the positive potential is bismuth, silver, a platinum group metal, gold, and the like in addition to the copper shown here. Bismuth is Bi 3+ / Bi (E 0 = 0.2 V), and silver is Ag + / Ag (E 0 = 0.799 V). To deposit copper by ordinary electrolysis, a cathode potential of 0.345 V
In practice, when there are sufficient copper ions, the potential is maintained at about 0.2 to 0.25 V, although it varies depending on the applied current density, electrolyte conditions, and the like. At this potential, it is conceivable that bismuth deposition and a metal such as silver having a very high deposition potential may occur simultaneously. The present invention has been devised in the electrolysis method so that the electrolysis voltage is automatically maintained at the deposition potential of copper by conducting an actual electrolysis experiment in consideration of these phenomena. As a result, deposition of metals other than copper was substantially eliminated, and only extremely high-purity copper was obtained.

【0008】すなわち、銅地金のような原料銅を塩酸を
溶媒として溶解する。塩酸は還元性であるので溶解しに
くいが、酸化剤である塩素を加えることによりほとんど
化学量論的に金属を溶解することが出来る。ここの溶解
した金属では、銀は不溶性の塩化銀として沈殿するの
で、これをマイクロフィルターで取り除く。また、塩酸
濃度が5モル程度以下の場合は、ビスマス、金、その他
の白金族金属は、裸のイオンではなくて、錯イオンを形
成して存在していることが知られている。つまり、イオ
ン状態ではプラスではなくマイナスイオンとなってい
る。このため、この錯イオンを含有する液では陽イオン
交換膜を使用すれば錯イオンがほとんどが通過しない
で、陽イオンとは分離できるという特徴を有している。
また、電位がマイナス側に行かなければ、他の金属の析
出は起こらない。電位をマイナス側に持っていかないた
めには十分な銅イオンが存在すればよいことになるが、
その他に銅の析出以外の副反応が起こるとした場合の対
策として酸素を還元させることによって電位を低く行か
ないようにした。
That is, raw copper such as copper ingot is dissolved in hydrochloric acid as a solvent. Hydrochloric acid is reducing and thus hardly dissolves, but by adding chlorine as an oxidizing agent, it can dissolve metals almost stoichiometrically. In the dissolved metal, silver precipitates as insoluble silver chloride, which is removed by a microfilter. When the hydrochloric acid concentration is about 5 mol or less, it is known that bismuth, gold, and other platinum group metals are not formed as bare ions but formed as complex ions. That is, in the ion state, the ions are not positive but negative ions. For this reason, in the liquid containing this complex ion, if a cation exchange membrane is used, the complex ion hardly passes, and has the characteristic that it can be separated from the cation.
If the potential does not go to the negative side, no other metal is deposited. In order not to bring the potential to the negative side, it is sufficient that enough copper ions exist,
In addition, as a countermeasure against the occurrence of a side reaction other than the precipitation of copper, oxygen was reduced so that the potential was not lowered.

【0009】すなわち、酸素の還元O2 +2H2 O+4
- →4OH- (E0 =0.401V)を利用した。こ
の反応は、通常過電圧が大きいことで知られており、実
用電流密度である10A/dm2 以上では、見かけ上
0.4V程度あることが知られている。また0.1から
1A/dm2 では0.2V位である。これを利用すれば
陰極電位はゼロ以下になることはないので、その他の金
属の析出は起こらなくなるので、高純度の銅のみが得ら
れることになる。ここではこれらの性質を全て使って、
99.9999%以上の高純度の銅を得ることに成功し
た。
That is, reduction of oxygen O 2 + 2H 2 O + 4
e → 4OH (E 0 = 0.401 V) was used. This reaction is generally known to have a large overvoltage, and apparently has a voltage of about 0.4 V at a practical current density of 10 A / dm 2 or more. In addition, it is about 0.2 V at 0.1 to 1 A / dm 2 . If this is used, the cathode potential does not fall below zero, so that precipitation of other metals does not occur, so that only high-purity copper can be obtained. Here we use all these properties,
We succeeded in obtaining copper with a high purity of 99.9999% or more.

【0010】先ず、銅地金を3から5モルの塩酸中にお
き、塩素ガスをこの液中に加える。そうすると、液がわ
ずかに黄色みを帯びた後、ほぼ化学量論的に塩素注入量
に応じて銅が銅イオンとして溶解する。このとき地金中
に含まれる他の金属の一部は、そのまま溶解しないで沈
殿する。また、銀は塩化銀となるが、塩化銀の溶解度は
ほとんどゼロであり、やはり塩化銀として沈殿する。ビ
スマスは塩化ビスマスイオンとして、また一部は未溶解
の沈殿になる。ルテニウムやイリジウム又は白金など
は、やはり一部は沈殿に、一部は塩化物イオンになる。
これらの塩化物イオンは、当然マイナスの電荷を持って
いる。少ないものの存在する他の金属、例えば鉄やコバ
ルト、ニッケルなどは、そのままマイナスイオンとして
存在するが、これらは析出電位がマイナスである。
First, a copper ingot is placed in 3 to 5 mol of hydrochloric acid, and chlorine gas is added to the solution. Then, after the liquid has a slight yellow tint, copper dissolves as copper ions almost stoichiometrically in accordance with the chlorine injection amount. At this time, some of the other metals contained in the base metal precipitate without being dissolved. In addition, silver becomes silver chloride, but the solubility of silver chloride is almost zero, and also precipitates as silver chloride. Bismuth is formed as bismuth chloride ions and partly as undissolved precipitate. Ruthenium, iridium, platinum and the like are also partially converted into precipitates and partially converted into chloride ions.
These chloride ions naturally have a negative charge. Other metals, such as iron, cobalt, and nickel, which are present in small amounts, exist as negative ions as they are, but have a negative deposition potential.

【0011】このほかに、銅の溶解に当たっては、金属
を陽極として電解的に溶解することが出来る。また、塩
素による溶解と電解による溶解を組み合わせても良いこ
とは当然である。この様にして銅を主体とする金属を溶
解した塩酸液を先ずフィルターで沈殿物を取り除き、つ
いで陽イオン交換膜で陽極室と陰極室に分割された電解
槽の陽極室側に送り込む。ここでは、通電と共に陽イオ
ンが陽イオン交換膜を通って陰極室側に移動する。白金
族金属などの錯イオンを形成しているものは陽極室に残
る。また、陽極室には陽極があるが、この陽極としては
白金族金属酸化物をチタンなどのいわゆる弁金属表面に
被覆したDSE又はDSAと呼ばれる電極を使用する。
これらの電極は、ほとんど電極物質が溶解しないことで
知られているが、これらが溶解しても上記に示したとお
り陰イオンとなるので、陰極室への移動は陽イオン交換
膜で遮られるので、陰極室には電位的にプラス側で析出
するような金属イオンは、ほとんど存在しないことにな
る。もちろん予め電解液中にこの様なマイナスイオンの
存在がないこと、また存在しても目的の純度の銅が得ら
れることがわかっている場合は、溶解槽からの電解液を
直接陰極室に供給しても良い。この場合でも電解槽は陽
イオン交換膜で陽極と陰極室に分割されたものを使用
し、陽極の溶出の影響を最小限にすることが必要であ
る。
In addition, when dissolving copper, it is possible to electrolytically dissolve copper using a metal as an anode. Also, it goes without saying that dissolution by chlorine and dissolution by electrolysis may be combined. In this way, the hydrochloric acid solution in which the metal mainly composed of copper is dissolved is firstly filtered to remove the precipitate, and then sent to the anode chamber side of the electrolytic cell divided into an anode chamber and a cathode chamber by a cation exchange membrane. Here, the cations move to the cathode chamber side through the cation exchange membrane with energization. Those forming complex ions such as platinum group metals remain in the anode compartment. The anode chamber has an anode. As the anode, an electrode called DSE or DSA in which a so-called valve metal surface such as titanium is coated with a platinum group metal oxide is used.
These electrodes are known to have little dissolution of the electrode material.However, even if they dissolve, they become anions as shown above, so their movement to the cathode compartment is blocked by the cation exchange membrane. In the cathode chamber, almost no metal ions are deposited on the positive potential side. Of course, if it is known in advance that there is no such anion in the electrolyte and that copper of the desired purity can be obtained even if it exists, the electrolyte from the dissolution tank is supplied directly to the cathode chamber. You may. Even in this case, it is necessary to minimize the influence of the elution of the anode by using a cation exchange membrane divided into an anode and a cathode compartment.

【0012】陰極側には陰極として純銅板を使用する事
を標準とするが、非金属系のガス拡散電極を使用するこ
ともできる。すなわち、通常の炭素とPTFE樹脂から
なる半疎水型ガス拡散電極でも良い。ただ、電極物質と
して金属を使用するとそれが不純物の原因となるので使
わず、電極物質としてせいぜい銅を使うか、又は炭素の
みとしておくようにする。このガス拡散電極に酸素を流
しながら、又は、銅電極表面に酸素を吹き付けながら電
解を行うと、陰極電位はほぼ0.15から0.25Vに
保持され、陰極表面に銅が析出する。金属銅を陰極とし
た場合は、銅表面に針状の銅が析出するし、またガス拡
散電極ではその表面に析出した銅が電極近傍の下部に沈
殿として貯まっていく。これらの金属を取り除きながら
電解を継続する。ここで得られた沈殿は、99.999
%以上の純度を有する金属銅である。
Although it is standard to use a pure copper plate as the cathode on the cathode side, a non-metallic gas diffusion electrode can also be used. That is, a semi-hydrophobic gas diffusion electrode made of ordinary carbon and PTFE resin may be used. However, if a metal is used as the electrode material, it causes impurities, so that no metal is used, and at most copper or only carbon is used as the electrode material. When electrolysis is performed while flowing oxygen to the gas diffusion electrode or blowing oxygen to the surface of the copper electrode, the cathode potential is maintained at approximately 0.15 to 0.25 V, and copper is deposited on the surface of the cathode. When metallic copper is used as the cathode, needle-like copper precipitates on the copper surface, and copper deposited on the surface of the gas diffusion electrode accumulates as a precipitate in a lower portion near the electrode. The electrolysis is continued while removing these metals. The precipitate obtained here is 99.999
% Of metallic copper.

【0013】この様にして超高純度の金属銅を析出させ
た電解液を再び調整槽に送り、そこで銅濃度を調整する
と共に、過剰となった塩化物錯イオンを取り除き、電解
液として再び電解槽に送り込むようにする。この電解
は、バッチでも良いし連続でも良いが、電解電流密度を
上げすぎると、金属銅中に他の金属イオンを巻き込むこ
とがあるので、電流密度40A/dm 2 以下で、また電
流密度が1A/dm2 以下ではガス拡散電極の作用が優
勢になって、銅の析出効率が極端に悪くなることがある
ので、電流を最適に選択する事が必要である。なお、酸
素の供給をせずに電流密度を10A/dm2 以上にする
と、電解液純度によるが、わずかにニッケルなどの金属
の混入が起こることがある。これは酸素を供給すること
で完全に防ぐことが出来る。なお、電解温度は通常40
℃から80℃程度であることが、特には指定されない。
In this way, ultra-high-purity metallic copper is deposited.
Sent electrolyte to the adjustment tank again, where the copper concentration is adjusted
At the same time, remove excess chloride complex ions
The solution is sent again to the electrolytic cell. This electrolysis
May be batch or continuous, but the electrolytic current density
Setting too high may entrap other metal ions in the copper metal.
And the current density is 40 A / dm TwoBelow,
Flow density 1A / dmTwoIn the following, the function of the gas diffusion electrode is excellent.
The deposition efficiency of copper may be extremely poor
Therefore, it is necessary to select the current optimally. In addition, acid
Current density of 10 A / dm without supply of elementTwoDo more
And depending on the purity of the electrolyte, slightly
Contamination may occur. This is to supply oxygen
Can be completely prevented. The electrolysis temperature is usually 40
It is not particularly specified that the temperature is in the range of about 80 ° C. to about 80 ° C.

【0014】[0014]

【実施例】以下、本発明を実施例で具体的に説明する
が、本発明はこれらに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.

【0015】実施例1 銅地金として、電気銅を基としてこれに各1000pp
m相当の銀、ニッケル、コバルト、鉄を加えて電子ビー
ム溶解した合金を作成した。この地金の見掛け粒径1m
mの粒をチタンバスケットに入れ、3モルの塩酸水溶液
中に入れた。これを40℃に暖め、バスケットの底部か
ら塩素ガスを送って地金を溶解した。これにより100
g/リットルの銅を含有する塩酸水溶液を得た。この水
溶液には黒色の沈殿が生成したので、これを目開き0.
2μmのマイクロフィルター(メンブランフィルター)
を通して濾過した。この液を電解液として、陽イオン交
換膜を隔膜とする電解槽の陽極室へ送った。この電解槽
は、PTFE製であり、イオン交換膜としてDupon
t社製Nafion115を使用した。これに密着する
ように陽極として、チタンのエクスパンドメッシュに酸
化ルテニウムと酸化チタンの重量比45(ルテニウ
ム):55(チタン)の複合酸化物皮膜を形成した商品
名DSEの電極を設置した。陰極には銅板の見掛け開口
率70%のパンチドプレートを用意し、このイオン交換
膜側の面に酸素ガスを送るようにしたものである。
Example 1 As a copper ingot, based on electrolytic copper, 1000 pp
An electron beam melted alloy was prepared by adding silver, nickel, cobalt, and iron equivalent to m. The apparent particle size of this metal is 1m
m particles were placed in a titanium basket and placed in a 3 molar aqueous hydrochloric acid solution. This was heated to 40 ° C., and chlorine gas was sent from the bottom of the basket to dissolve the metal. This gives 100
An aqueous hydrochloric acid solution containing g / liter of copper was obtained. Since a black precipitate was formed in the aqueous solution, the black precipitate was opened.
2μm micro filter (membrane filter)
And filtered through. This solution was used as an electrolytic solution and sent to an anode chamber of an electrolytic cell using a cation exchange membrane as a diaphragm. This electrolytic cell is made of PTFE, and is made of Dupont as an ion exchange membrane.
Nafion 115 manufactured by Company t was used. An electrode having a trade name of DSE in which a composite oxide film having a weight ratio of ruthenium oxide and titanium oxide of 45 (ruthenium): 55 (titanium) was formed on an expanded mesh of titanium as an anode so as to be in close contact with the electrode. A punched plate having an apparent aperture ratio of a copper plate of 70% was prepared for the cathode, and oxygen gas was sent to the surface on the side of the ion exchange membrane.

【0016】前記の電解液をこの電解槽の陽極室に送り
こんだ。2A/dm2 の電流密度で電解を行ったとこ
ろ、最初は陰極に何も析出しなかったが、15分程度の
初期電解後には陰極液が緑色になり銅の析出が始まっ
た。析出は、デンドライト状の結晶を含む板状に行わ
れ、陰極への密着力はあまり強くなかった。なお、陽極
側には塩素の発生があったが、この塩素ガスは銅の溶解
槽に送るようにした。また、この発生塩素のみでは金属
の溶解としては不足するので、不足分は小型の塩酸電解
装置からの塩素で補うようにした。この様にして析出し
た金属について純水で十分に洗浄した後、分析を行った
ところ、金属分としては銅99.9999%を有するこ
とがわかった。
The above-mentioned electrolytic solution was sent to the anode chamber of the electrolytic cell. When electrolysis was performed at a current density of 2 A / dm 2 , nothing was deposited on the cathode at first, but after the initial electrolysis for about 15 minutes, the catholyte became green and the precipitation of copper started. The deposition was performed in a plate shape containing dendrite-like crystals, and the adhesion to the cathode was not very strong. Although chlorine was generated on the anode side, this chlorine gas was sent to a copper dissolving tank. Further, since the generated chlorine alone is insufficient for dissolving the metal, the shortage was compensated for by chlorine from a small-sized hydrochloric acid electrolyzer. After the metal thus deposited was sufficiently washed with pure water and analyzed, it was found that the metal content was 99.9999% of copper.

【0017】実施例2 実施例1と同様に銅地金を用い、地金の溶解を、それを
陽極として用い、炭素をPTFE樹脂をバインダーとし
て固めたものを陰極として用いて、電解を行い、金属の
溶解を行った。電流密度は陰極側で1A/dm2 とし
た。前記の溶解により得た溶液を目開き0.2μmのP
TFE樹脂フィルターで濾過後、電解槽の陰極室に送
り、電解を行った。電解における電流密度は、陰極面で
10A/dm2 であった。なお、陰極は、カーボンブラ
ックとPTFE樹脂からなる多孔性ガス拡散電極を用い
た。ガス拡散電極の心材は、高純度銅製のメッシュであ
り、酸素ガスをガス拡散電極の反対側から供給した。こ
の様にして電解を行ったところ、ガス拡散電極表面に金
属粒子が析出し、それが電極近傍に析出していった。こ
の電極近傍に析出した金属を取り出し、純水で洗浄後、
更に超純水で洗浄し、それを分析したところ純度99.
999%以上で高純度銅であることがわかった。
Example 2 In the same manner as in Example 1, electrolysis was performed using copper ingot, dissolving the ingot, using it as an anode, and using carbon solidified with PTFE resin as a binder as a cathode. Dissolution of the metal was performed. The current density was 1 A / dm 2 on the cathode side. The solution obtained by the above-mentioned dissolution is treated with a 0.2 μm mesh P
After filtration with a TFE resin filter, the mixture was sent to the cathode chamber of the electrolytic cell to perform electrolysis. The current density in the electrolysis was 10 A / dm 2 on the cathode surface. The cathode used was a porous gas diffusion electrode composed of carbon black and PTFE resin. The core material of the gas diffusion electrode was a mesh made of high-purity copper, and oxygen gas was supplied from the opposite side of the gas diffusion electrode. When electrolysis was performed in this manner, metal particles were deposited on the surface of the gas diffusion electrode and deposited near the electrode. The metal deposited near this electrode is taken out, washed with pure water,
Further, the resultant was washed with ultrapure water, and was analyzed.
It turned out that it was high purity copper at 999% or more.

【0018】[0018]

【発明の効果】本発明によれば次の効果が得られる。 (1)比較的簡単な操作により、容易に99.999%
以上の高純度銅が得られる。 (2)通常の高純度銅の製造では銅地金が既に高純度で
あることを必要としたが、本発明では通常の銅地金でも
十分に高純度の銅が得られる。 (3)電解的に析出するが、その電流密度は比較的高い
ために析出速度が速く、小型の装置で、多量の高純度銅
が得られる。 (4)電解条件の幅が広いため容易に高純度銅の製造が
出来る。
According to the present invention, the following effects can be obtained. (1) 99.999% easily with relatively simple operation
The above high purity copper is obtained. (2) The production of ordinary high-purity copper required that the copper ingot be already of high purity. In the present invention, however, ordinary copper ingot can provide sufficiently pure copper. (3) Electrolytic deposition occurs, but the current density is relatively high, so the deposition rate is high, and a large amount of high-purity copper can be obtained with a small device. (4) Since the range of electrolysis conditions is wide, high-purity copper can be easily produced.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 銅を酸化性雰囲気下で塩酸水溶液に溶解
した後、濾過により沈殿物を取り除き、陽イオン交換膜
を隔膜とする二室法電解槽の陽極室に送り、電解的に銅
イオンを陰極室側に送ると共に、酸素含有ガスを通じた
陰極で電解的に還元し、陰極上に銅を析出することを特
徴とする高純度銅の製造方法。
After dissolving copper in an aqueous hydrochloric acid solution in an oxidizing atmosphere, a precipitate is removed by filtration, and the solution is sent to an anode chamber of a two-chamber electrolytic cell having a cation exchange membrane as a membrane, and the copper ion is electrolyzed. A high purity copper is deposited on the cathode while electrolytic reduction is carried out by feeding the oxygen to the cathode chamber side and electrolytically reducing at the cathode through an oxygen-containing gas.
【請求項2】 塩酸水溶液の濃度が1から5モルである
ことを特徴とする請求項1記載の高純度銅の製造方法。
2. The method according to claim 1, wherein the concentration of the aqueous hydrochloric acid solution is 1 to 5 mol.
【請求項3】 銅を塩酸に溶解して銅濃度を調整する手
段と、溶解によって出来た塩化銅溶液を濾過する手段
と、濾過した塩化銅溶液を陽イオン交換膜で陽極室と陰
極室に分離された電解槽へ送る手段と、該電解槽の陰極
表面に酸素ガスを供給する手段とを有し、電解によって
陰極面に電解銅を形成することを特徴とする高純度銅の
製造装置。
3. A means for adjusting the copper concentration by dissolving copper in hydrochloric acid, a means for filtering a copper chloride solution formed by the dissolution, and a step of applying the filtered copper chloride solution to an anode chamber and a cathode chamber with a cation exchange membrane. An apparatus for producing high-purity copper, comprising: means for feeding to a separated electrolytic cell; and means for supplying oxygen gas to the cathode surface of the electrolytic cell, wherein electrolytic copper is formed on the cathode surface by electrolysis.
【請求項4】 銅の溶解には塩素ガスとの接触によるこ
とを特徴とする請求項3記載の高純度銅の製造装置。
4. The apparatus for producing high-purity copper according to claim 3, wherein the copper is dissolved by contact with chlorine gas.
【請求項5】 電解槽の陽極室には塩酸を循環させ電解
によってでてきた塩素を銅の溶解槽へ送るようにしたこ
とを特徴とする請求項3又は請求項4記載の高純度銅の
製造装置。
5. The high-purity copper as claimed in claim 3, wherein hydrochloric acid is circulated in the anode chamber of the electrolytic cell and chlorine generated by electrolysis is sent to a copper dissolving tank. Manufacturing equipment.
【請求項6】 銅の溶解を、銅地金を陽極として塩酸水
溶液中で電解的に行うことを特徴とする請求項3記載の
高純度銅の製造装置。
6. The apparatus for producing high-purity copper according to claim 3, wherein the copper is dissolved in a hydrochloric acid aqueous solution using the copper ingot as an anode.
【請求項7】 溶解槽で溶解し塩化銅にしたものをマイ
クロフィルターを通した後、電解槽の陽極室側に供給す
るようにしたことを特徴とする請求項3記載の高純度銅
の製造装置。
7. The production of high-purity copper according to claim 3, characterized in that the copper chloride dissolved in the dissolving tank is supplied to the anode chamber side of the electrolytic tank after passing through a microfilter. apparatus.
JP10033150A 1998-02-16 1998-02-16 Method and apparatus for producing high-purity copper Pending JPH11229172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10033150A JPH11229172A (en) 1998-02-16 1998-02-16 Method and apparatus for producing high-purity copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10033150A JPH11229172A (en) 1998-02-16 1998-02-16 Method and apparatus for producing high-purity copper

Publications (1)

Publication Number Publication Date
JPH11229172A true JPH11229172A (en) 1999-08-24

Family

ID=12378562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10033150A Pending JPH11229172A (en) 1998-02-16 1998-02-16 Method and apparatus for producing high-purity copper

Country Status (1)

Country Link
JP (1) JPH11229172A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1043408A3 (en) * 1999-04-07 2001-01-10 Shipley Company LLC Processes and apparatus for recovery and removal of copper from fluids
WO2001051683A1 (en) * 2000-01-07 2001-07-19 Huntsman Petrochemical Corporation Galvanic methods of accelerating copper dissolution into solutions containing nitrogen compounds
US8192596B2 (en) 2004-01-29 2012-06-05 Jx Nippon Mining & Metals Corporation Ultrahigh-purity copper and process for producing the same
US9441289B2 (en) 2008-09-30 2016-09-13 Jx Nippon Mining & Metals Corporation High-purity copper or high-purity copper alloy sputtering target, process for manufacturing the sputtering target, and high-purity copper or high-purity copper alloy sputtered film
US9476134B2 (en) 2008-09-30 2016-10-25 Jx Nippon Mining & Metals Corporation High purity copper and method of producing high purity copper based on electrolysis
TWI557074B (en) * 2014-06-05 2016-11-11 Jx Nippon Mining & Metals Corp Copper chloride, CVD raw material, copper wiring film, and copper chloride manufacturing method
CN109592822A (en) * 2018-12-01 2019-04-09 六盘水中联工贸实业有限公司 One kind is based on magnetic field electrolysis processing iron content cobalt method for waste water

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1043408A3 (en) * 1999-04-07 2001-01-10 Shipley Company LLC Processes and apparatus for recovery and removal of copper from fluids
US6391188B1 (en) 1999-04-07 2002-05-21 Shipley Company, L.L.C. Processes and apparatus for recovery and removal of copper from fluids
SG104920A1 (en) * 1999-04-07 2004-07-30 Shipley Co Llc Processes and apparatus for recovery and removal of copper from fluids
WO2001051683A1 (en) * 2000-01-07 2001-07-19 Huntsman Petrochemical Corporation Galvanic methods of accelerating copper dissolution into solutions containing nitrogen compounds
US6294071B1 (en) 2000-01-07 2001-09-25 Huntsman Petrochemical Corporation Methods of forming copper solutions
US8192596B2 (en) 2004-01-29 2012-06-05 Jx Nippon Mining & Metals Corporation Ultrahigh-purity copper and process for producing the same
US9441289B2 (en) 2008-09-30 2016-09-13 Jx Nippon Mining & Metals Corporation High-purity copper or high-purity copper alloy sputtering target, process for manufacturing the sputtering target, and high-purity copper or high-purity copper alloy sputtered film
US9476134B2 (en) 2008-09-30 2016-10-25 Jx Nippon Mining & Metals Corporation High purity copper and method of producing high purity copper based on electrolysis
TWI557074B (en) * 2014-06-05 2016-11-11 Jx Nippon Mining & Metals Corp Copper chloride, CVD raw material, copper wiring film, and copper chloride manufacturing method
CN109592822A (en) * 2018-12-01 2019-04-09 六盘水中联工贸实业有限公司 One kind is based on magnetic field electrolysis processing iron content cobalt method for waste water

Similar Documents

Publication Publication Date Title
US6818119B2 (en) Method for processing metals
US4560453A (en) Efficient, safe method for decoppering copper refinery electrolyte
JPH11229172A (en) Method and apparatus for producing high-purity copper
CA1064856A (en) Purification of nickel electrolyte by electrolytic oxidation
JP2561862B2 (en) Purification and electrolysis method for obtaining ultra high purity copper
KR100348022B1 (en) Method for Producing Sputtering Target Material
JP2003073889A (en) Electrolytic copper plating method for semiconductor wafer, apparatus therefor and semiconductor wafer plated by using these and having little adhering particle
US11280011B2 (en) Electrolytic method for extracting tin and/or lead contained in an electrically conductive mixture
JPH06192874A (en) Refining method for cobalt
JP2622019B2 (en) Method for producing granular copper fine powder
JPH06240475A (en) Treatment of iron chloride based etchant containing nickel
JP7180039B1 (en) Method for separating tin and nickel from mixtures containing tin and nickel
JP2571591B2 (en) Precious metal recovery method
JP2570076B2 (en) Manufacturing method of high purity nickel
JP2003105581A (en) Method and apparatus for electrolytic deposition of tin alloy
RU2393943C2 (en) METHOD OF PRODUCING SILVER POWDERS "ПСр1" AND "ПСр2"
KR100349445B1 (en) Cementation apparatus of high purity copper
JP2010007133A (en) Method and device for producing metal indium
JPS62161982A (en) Manufacture of electrolytic iron
JPH02254188A (en) Method for electrolyzing copper chloride solution
US4115220A (en) Process for the preparation of high purity antimony
US3496078A (en) Electrolytic method of manufacturing monocrystalline iron
JPH05295467A (en) Method for removing copper ion from nickel chloride solution
JPH0770769A (en) Regenerating method of iron chloride based waste liquid containing nickel
JP2959772B2 (en) Adjustment of electrogalvanizing bath