JP3380262B2 - Waste catalyst treatment method - Google Patents

Waste catalyst treatment method

Info

Publication number
JP3380262B2
JP3380262B2 JP11400391A JP11400391A JP3380262B2 JP 3380262 B2 JP3380262 B2 JP 3380262B2 JP 11400391 A JP11400391 A JP 11400391A JP 11400391 A JP11400391 A JP 11400391A JP 3380262 B2 JP3380262 B2 JP 3380262B2
Authority
JP
Japan
Prior art keywords
anode
metal
base metal
cathode
pgm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11400391A
Other languages
Japanese (ja)
Other versions
JPH04318128A (en
Inventor
洋 井上
恵二 小倉
正栄 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Dowa Holdings Co Ltd
Original Assignee
Tanaka Kikinzoku Kogyo KK
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP11400391A priority Critical patent/JP3380262B2/en
Publication of JPH04318128A publication Critical patent/JPH04318128A/en
Application granted granted Critical
Publication of JP3380262B2 publication Critical patent/JP3380262B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、貴金属を含む廃触媒、
特に、自動車工業または石油化学工業において発生する
廃触媒中に含有されるPt、Pd、Rh等の貴金属の回
収に関するもので、さらに詳しくは溶融、電解を特定条
件で行うことを特徴とする廃触媒の処理方法に関する。 【0002】 【従来の技術】従来、自動車または石油化学工業におい
て発生する貴金属を含む廃触媒からの貴金属(主として
Pt、Pd、Rhであり、以下PGMという)の回収手
段として以下の方法が知られている。 【0003】廃触媒を溶錬炉(電気炉、反射炉、自溶炉
等)に入れて溶融し、銅あるいは鉛等の卑金属中にPG
Mを濃縮した金属板をつくり、この金属板をアノードに
用いて電解を行って、陰極に電着金属を析出させると共
に、陽極の下方にPGMを含有するアノードスライムを
発生させ、電解終了後このアノードスライムを電槽底か
ら回収し、別途処理することにより貴金属を回収してい
た。 【0004】この方法では、通常、陰極に良質の電着金
属を得ることを目指しているために、陰極電流密度を 1
70〜260A/m2 の範囲内にして操業を行うことが不可欠で
あると同時に、PGMを濃縮した陽極中のPGM品位も
5,000ppm以下に制御する必要があった。また、アノード
中へのPGM濃縮品位に上述のごとく制限があり、スラ
イムの連続的排出もできなかったため、採算ベースの貴
金属回収を行うためには、電槽数もかなり多くする必要
があり、このため初期設備費が莫大なものとなるばかり
でなく、貴金属の濃縮度が低いため陽極の電解ライフを
長く取らなければならないという技術上の問題もあり、
PGMの電槽内滞留期間を短かくすることが困難であっ
た。これにより滞留金利アップなどの経済上の大きな問
題を抱えていた。 【0005】 【発明が解決しようとする課題】上述のように、従来法
によるPGMの回収は大がかりな設備投資を必要とする
上に、短期間での回収は難しく実収率も高いものとは言
えなかった。したがって従来法に比べコスト的にも安
く、短期間に高実収率で回収できる新規なPGM回収法
の開発が望まれていた。 【0006】 【課題を解決するための手段】本発明者らは斯る課題を
解決するために鋭意研究した結果、隔膜電解槽を用いて
高電流密度電解を行うことで上記目的を達成できること
を見い出し本発明法を開発することができた。 【0007】 すなわち本発明は、Pt、PdおよびR
hのうちから選ばれる少なくとも1種の貴金属を含む廃
触媒を溶錬炉において貴金属濃縮用の銅または鉛からな
る卑金属原料と共に処理することにより、該卑金属中に
前記貴金属を濃縮して10mmφ以下のメタルショット
とする第1工程;得られたメタルショットをアノードに
用いて隔膜電解槽中にて610〜1020A/mの高
電流密度で電解して陰極に卑金属粒を電着析出させると
共に、陽極区画に貴金属含有アノードスライムを発生沈
積させる第2工程;陰極に析出した前記卑金属粒と陽極
で発生した前記アノードスライムとをそれぞれ循環電解
液流により系外に連続抜き出しすると共に、抜き出した
前記卑金属粒を前記溶錬炉に繰り返し、抜き出した前記
アノードスライムを前記貴金属を回収する精製工程に供
する第3工程を有してなることを特徴とする廃触媒の処
理方法を提供するものである。 【0008】 【作用】本発明方法においては、処理する原料として貴
金属を含む廃触媒、特に自動車あるいは石油化学工業に
おいて発生するPGM含有廃触媒を対象としているが、
電解用アノードにおけるPGMの含有量が従来法のよう
に5,000ppm以下に限定されない点に一つの大きな特徴が
ある。 【0009】濃縮用卑金属原料を溶融して廃触媒中のP
GMを電解用アノード中に濃縮するために、CuSやP
bS等の卑金属硫化物とフラックスを添加して溶錬炉に
おいて溶融するが、この溶錬炉としては電気炉、反射炉
あるいは自溶炉のいずれであってもよい。 【0010】溶錬して得られたPGM含有卑金属を平均
粒径10mm以下のメタルショットとした後、該ショットを
たとえば籠状のアノードに連続的に供給し、隔膜電解槽
中にて高電流密度で電解処理を行う。すなわち、陰極の
電流密度 500〜1,500A/m2 の高電流密度で操業すること
により、陰極に金属粒を析出させ、陽極ではPGM含有
スライムを短時間で多量に発生させる。 【0011】本発明方法で用いる隔膜電解槽において
は、陰極と陽極とが隔膜によって隔てられているため、
陰極に生成する粒状の金属粉と陽極に生成するアノード
スライムが混合する恐れがない。このため陰極に析出さ
せた金属粒は、循環電解液流により電槽外に抜出して濾
過をした後、固形物を溶錬炉に繰り返して濾液は電解槽
に戻し、一方、陽極で発生したPGM含有アノードスラ
イムは、随時別系統の循環電解液流で系外に抜出して濾
過し、固形物は精製工程に送ってPGMを回収し、濾液
は電解槽に戻すようにする。これにより、PGMを含む
スライムを連続的に排出しながら長時間電解を続けるこ
とができる。 【0012】一方、アノードは粒状のメタルショットで
あるため、アノード用籠の中のレベルの低下を見ながら
連続的に補給することができる。 【0013】以下、実施例をもって詳細に説明する。 【0014】 【実施例】図1に示すフローシートに従って廃触媒処理
を行った。すなわち、まず自動車工業で発生した廃触媒
を銅粉およびフラックスとともに電気炉に添加して溶融
し、PGM含有の8mm粒径の銅ショットを製造した。そ
の品位は表1に示す通りであった。 【0015】 【表1】【0016】この銅ショット200gを隔膜電解装置の陽極
として用い、表2に示すように電流密度を 610、 1,02
0、 1,530 A/m2 と3段階に変えて電解を行ったとこ
ろ、陰極に金属粉が析出し、陽極にPGM含有スライム
が生成した。それらの品位はそれぞれ表2、表3に示す
通りであった。また、この場合の電解液組成はCu10 g
/l、遊離H2 SO4 100g/lであり、陽極および陰極への
給液量は、 0.1〜5.0 l/cm2 ・h であった。 【0017】 【表2】 【0018】 【表3】 【0019】この電解によって陰極に析出する金属粒の
品位は、電流密度の上昇とともにPd、Rhも上昇する
傾向にあるが、これらは再度溶錬炉に循環されることか
ら操業上の問題はない。すなわち、陰極析出金属は循環
電解液流とともに電槽外に取出し、濾過して溶錬炉に戻
し、濾液は電槽に戻した。 【0020】PGMスライム中のトータルPGM品位
は、表3に見られるように、電流密度による影響は認め
られなかった。上記PGM含有スライムがある程度蓄積
したところで、循環電解液流により系外に抜出して濾過
を行い、得られたアノードスライムを精製工程に送って
Pt、Pd、Rhを個別に回収した。濾液は再び電槽に
戻した。 【0021】 【発明の効果】上述のように本発明法は、従来法のよう
に陽極を出し入れする操作が不要であるため、PGMの
ハンドリングロスを防ぐことができる他、電解槽の小型
化により設備コストを小さくすることができる。さら
に、陽極ライフが短く、かつ、陽極を連続的に補給で
き、またスライムも連続して系外に抜出すことができる
ので、PGMの槽内滞留期間を短くすることができ、滞
留金利を大幅に削減できるという経済上の大きなメリッ
トがある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waste catalyst containing a noble metal,
In particular, the present invention relates to the recovery of precious metals such as Pt, Pd, and Rh contained in spent catalysts generated in the automobile industry or the petrochemical industry, and more specifically, characterized in that melting and electrolysis are performed under specific conditions. Regarding the processing method. 2. Description of the Related Art Heretofore, the following methods have been known as means for recovering noble metals (mainly Pt, Pd, Rh, hereinafter referred to as PGM) from spent catalysts containing noble metals generated in the automobile or petrochemical industries. ing. [0003] The waste catalyst is put into a smelting furnace (electric furnace, reverberatory furnace, flash furnace, etc.) and melted, and PG is mixed in a base metal such as copper or lead.
A metal plate enriched with M is made, and electrolysis is performed using the metal plate as an anode to deposit an electrodeposited metal on the cathode, and generate an anode slime containing PGM below the anode. The precious metal was collected by collecting the anode slime from the bottom of the battery case and treating it separately. [0004] In this method, since it is usually aimed to obtain a high-quality electrodeposited metal on the cathode, the cathode current density is reduced to 1%.
It is essential to operate within the range of 70-260 A / m 2 , and at the same time, the PGM grade in the PGM-enriched anode
It was necessary to control it to 5,000 ppm or less. In addition, the PGM concentration grade in the anode is limited as described above, and continuous discharge of slime was not possible. Therefore, in order to recover precious metals on a profitable basis, it is necessary to increase the number of battery tanks considerably. Not only is the initial equipment cost enormous, but there is also a technical problem that the concentration of precious metals is low and the anode must have a long electrolytic life.
It was difficult to shorten the residence time of the PGM in the battery case. As a result, there was a major economic problem such as an increase in the interest rate on residence. [0005] As described above, the recovery of PGM by the conventional method requires a large capital investment, and can be said to be difficult to recover in a short period of time and high in actual yield. Did not. Therefore, there has been a demand for the development of a novel PGM recovery method which is inexpensive as compared with the conventional method and can be recovered in a short period of time with a high yield. Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above problems, and as a result, have found that the above objects can be achieved by performing high current density electrolysis using a diaphragm electrolytic cell. It has been found that the method according to the invention can be developed. That is, the present invention provides Pt, Pd and R
h, by treating a waste catalyst containing at least one noble metal selected from the group consisting of copper or lead for noble metal enrichment in a smelting furnace, to concentrate the noble metal in the base metal to have a diameter of 10 mmφ or less. First step of forming a metal shot; using the obtained metal shot as an anode, electrolyzing at a high current density of 610 to 1020 A / m 2 in a diaphragm electrolysis tank to deposit base metal particles on a cathode, A second step of generating and depositing a noble metal-containing anode slime in the compartment; continuously extracting the base metal particles deposited on the cathode and the anode slime generated on the anode to the outside by a circulating electrolytic solution flow, and extracting the base metal particles. In the smelting furnace, and subjecting the extracted anode slime to a purification step of recovering the noble metal. Be Te is to provide a method of processing spent catalyst characterized by. The method of the present invention is directed to a waste catalyst containing a noble metal as a raw material to be treated, particularly a PGM-containing waste catalyst generated in the automobile or petrochemical industry.
One major feature is that the content of PGM in the anode for electrolysis is not limited to 5,000 ppm or less as in the conventional method. [0009] The base metal material for concentration is melted and P
To concentrate GM in the electrolytic anode, CuS or P
A base metal sulfide such as bS and a flux are added and melted in a smelting furnace. The smelting furnace may be any of an electric furnace, a reverberatory furnace and a flash smelting furnace. After the PGM-containing base metal obtained by smelting is formed into a metal shot having an average particle size of 10 mm or less, the shot is continuously supplied to, for example, a cage-shaped anode, and a high current density is supplied in a diaphragm electrolytic cell. To perform electrolytic treatment. That is, by operating at a high current density of 500 to 1,500 A / m 2 of the cathode, metal particles are deposited on the cathode, and a large amount of PGM-containing slime is generated on the anode in a short time. In the diaphragm electrolytic cell used in the method of the present invention, the cathode and the anode are separated by a diaphragm.
There is no fear that the granular metal powder generated on the cathode and the anode slime generated on the anode are mixed. For this reason, the metal particles deposited on the cathode are extracted out of the battery case by the circulating electrolyte flow and filtered, and then the solid is repeatedly returned to the smelting furnace to return the filtrate to the electrolytic bath. The contained anode slime is withdrawn from the system as needed with a separate circulating electrolyte stream and filtered, the solids are sent to a purification step to recover PGM, and the filtrate is returned to the electrolytic cell. Thereby, electrolysis can be continued for a long time while continuously discharging the slime containing PGM. On the other hand, since the anode is a granular metal shot, it can be continuously replenished while observing a decrease in the level in the anode basket. Hereinafter, the present invention will be described in detail with reference to embodiments. EXAMPLE A waste catalyst treatment was performed according to the flow sheet shown in FIG. That is, first, a waste catalyst generated in the automobile industry was added to an electric furnace together with copper powder and flux and melted to produce a PGM-containing copper shot having a particle diameter of 8 mm. Its quality was as shown in Table 1. [Table 1] Using 200 g of this copper shot as the anode of a membrane electrolyzer, the current density was 610, 1,02 as shown in Table 2.
When electrolysis was performed in three stages of 0 and 1,530 A / m 2 , metal powder was deposited on the cathode and PGM-containing slime was generated on the anode. Their qualities were as shown in Tables 2 and 3, respectively. In this case, the composition of the electrolytic solution was Cu 10 g.
/ l, a free H 2 SO 4 100g / l, the liquid supply amount to the anode and cathode was 0.1~5.0 l / cm 2 · h. [Table 2] [Table 3] As for the quality of the metal particles deposited on the cathode by this electrolysis, Pd and Rh tend to increase as the current density increases. However, since these are circulated again to the smelting furnace, there is no operational problem. . That is, the cathode deposited metal was taken out of the battery case together with the circulating electrolyte flow, filtered and returned to the smelting furnace, and the filtrate was returned to the battery case. As shown in Table 3, the total PGM quality in the PGM slime was not affected by the current density. When the PGM-containing slime had accumulated to some extent, it was extracted out of the system by a circulating electrolyte stream and filtered, and the obtained anode slime was sent to a purification step to collect Pt, Pd, and Rh individually. The filtrate was returned to the battery case again. As described above, the method of the present invention does not require the operation of taking in and out the anode unlike the conventional method, so that the handling loss of the PGM can be prevented and the size of the electrolytic cell can be reduced. Equipment costs can be reduced. In addition, the anode life is short, the anode can be continuously replenished, and the slime can be continuously withdrawn from the system, so that the PGM residence time in the tank can be shortened, and the retention interest rate can be significantly increased. There is a great economic advantage that it can be reduced.

【図面の簡単な説明】 【図1】本発明の廃触媒の処理方法のフローシートを示
す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a flow sheet of a method for treating a spent catalyst of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小倉 恵二 千葉県市川市高谷2015番地7 田中貴金 属工業株式会社市川工場内 (72)発明者 高田 正栄 東京都千代田区丸の内1丁目8番2号 小坂製錬株式会社内 (56)参考文献 特開 昭57−110633(JP,A) 特開 昭61−217536(JP,A) 特公 昭49−26801(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C22B 1/00 - 61/00 C25C 1/12 - 1/20 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Keiji Ogura 2015-7 Takaya, Ichikawa-shi, Chiba Pref. Tanaka Kikino Kogyo Kogyo Co., Ltd. (72) Inventor Masaei Takada 1-8-2 Marunouchi, Chiyoda-ku, Tokyo Kosaka Smelting Co., Ltd. (56) References JP-A-57-110633 (JP, A) JP-A-61-217536 (JP, A) JP-B-49-26801 (JP, B1) (58) Fields investigated (Int.Cl. 7 , DB name) C22B 1/00-61/00 C25C 1/12-1/20

Claims (1)

(57)【特許請求の範囲】 【請求項1】 Pt、PdおよびRhのうちから選ばれ
る少なくとも1種の貴金属を含む廃触媒を溶錬炉におい
て貴金属濃縮用の銅または鉛からなる卑金属原料と共に
処理することにより、該卑金属中に前記貴金属を濃縮し
て10mmφ以下のメタルショットとする第1工程;得
られたメタルショットをアノードに用いて隔膜電解槽中
にて610〜1020A/mの高電流密度で電解して
陰極に卑金属粒を電着析出させると共に、陽極区画に貴
金属含有アノードスライムを発生沈積させる第2工程;
陰極に析出した前記卑金属粒と陽極で発生した前記アノ
ードスライムとをそれぞれ循環電解液流により系外に連
続抜き出しすると共に、抜き出した前記卑金属粒を前記
溶錬炉に繰り返し、抜き出した前記アノードスライムを
前記貴金属を回収する精製工程に供する第3工程を有し
てなることを特徴とする廃触媒の処理方法。
(57) [Claim 1] A waste catalyst containing at least one noble metal selected from Pt, Pd and Rh in a smelting furnace together with a base metal material comprising copper or lead for concentrating noble metals. A first step of concentrating the noble metal in the base metal into a metal shot having a diameter of 10 mm or less by performing the treatment; and using the obtained metal shot as an anode in a diaphragm electrolyzer in a diaphragm electrolytic cell at a rate of 610 to 1020 A / m 2 . A second step of electrolyzing at a current density to electrodeposit and deposit base metal particles on the cathode and generating and depositing a noble metal-containing anode slime in the anode compartment;
The base metal particles deposited on the cathode and the anode slime generated at the anode are each continuously withdrawn out of the system by a circulating electrolytic solution flow, and the extracted base metal particles are repeated in the smelting furnace to remove the extracted anode slime. A method for treating a spent catalyst, comprising a third step of providing a purification step of recovering the noble metal.
JP11400391A 1991-04-18 1991-04-18 Waste catalyst treatment method Expired - Lifetime JP3380262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11400391A JP3380262B2 (en) 1991-04-18 1991-04-18 Waste catalyst treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11400391A JP3380262B2 (en) 1991-04-18 1991-04-18 Waste catalyst treatment method

Publications (2)

Publication Number Publication Date
JPH04318128A JPH04318128A (en) 1992-11-09
JP3380262B2 true JP3380262B2 (en) 2003-02-24

Family

ID=14626626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11400391A Expired - Lifetime JP3380262B2 (en) 1991-04-18 1991-04-18 Waste catalyst treatment method

Country Status (1)

Country Link
JP (1) JP3380262B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100250063B1 (en) * 1998-02-18 2000-04-01 이상한 The method for extracting novel metal element of the waste cataiyst for the waste gas purifier in automobile using scrapped copper slag
JP5196095B2 (en) * 2006-06-20 2013-05-15 三菱マテリアル株式会社 Precious metal recovery method and recovered precious metal
FR2907352B1 (en) * 2006-10-20 2009-02-20 Terra Nova PROCESS FOR PROCESSING WASTE CONTAINING PRECIOUS METALS AND DEVICE FOR CARRYING OUT SAID METHOD

Also Published As

Publication number Publication date
JPH04318128A (en) 1992-11-09

Similar Documents

Publication Publication Date Title
CA2293691C (en) Method for separating and isolating precious metals from non precious metals dissolved in solutions
CN107849716B (en) High-purity tin and method for producing same
EP2528704B1 (en) Method and arrangement for producing metal powder
JP2014501850A (en) Electrical recovery of gold and silver from thiosulfate solutions
JP2007231363A (en) Process for electrolytic refining of copper
CN109485023B (en) Method for recovering tellurium from copper-tellurium-containing waste liquid
US5569370A (en) Electrochemical system for recovery of metals from their compounds
KR19980702701A (en) Electrolytic Sampling Method of Copper Mat
Van der Heiden et al. Fluidized bed electrolysis for removal or recovery of metals from dilute solutions
EP0253783B1 (en) Process for refining gold and apparatus employed therefor
US4066520A (en) Slurry electrowinning process
US756328A (en) Recovery of gold and silver from cyanid solutions.
JP3380262B2 (en) Waste catalyst treatment method
US3721611A (en) Process for the production of metals
JPH10140257A (en) Wet refining method of nickel by chlorine leaching electrolytic extracting method
WO2015025304A2 (en) A process for the recovery of a tin material from electronic scrap and an electrolytic tin material obtained using the process
JP6985678B2 (en) Electrorefining method for low-grade copper anodes and electrolytes used for them
US805969A (en) Separation of metals.
US4164456A (en) Electrolytic process
EP3189170B1 (en) Process and apparatus for metal refining
US4404071A (en) Method of treating electrolytic solution of copper for purification and reuse thereof
EP0028158A1 (en) Methods and systems of removal of metals from solution and of purification of metals and purified solutions and metals so obtained
US3054736A (en) Method and apparatus for recovery of copper and zinc from scrap
JP3055821B2 (en) Method and apparatus for high current density electrolysis
JP2003342763A (en) Method of recovering copper alloy pickling waste liquid

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071213

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071213

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071213

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9