JP4232088B2 - Manufacturing method of high purity electrolytic copper - Google Patents

Manufacturing method of high purity electrolytic copper Download PDF

Info

Publication number
JP4232088B2
JP4232088B2 JP2003107777A JP2003107777A JP4232088B2 JP 4232088 B2 JP4232088 B2 JP 4232088B2 JP 2003107777 A JP2003107777 A JP 2003107777A JP 2003107777 A JP2003107777 A JP 2003107777A JP 4232088 B2 JP4232088 B2 JP 4232088B2
Authority
JP
Japan
Prior art keywords
purity
copper
electrolytic
electrolytic copper
producing high
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003107777A
Other languages
Japanese (ja)
Other versions
JP2004315849A (en
Inventor
豊 斉藤
豊 古柴
健児 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003107777A priority Critical patent/JP4232088B2/en
Publication of JP2004315849A publication Critical patent/JP2004315849A/en
Application granted granted Critical
Publication of JP4232088B2 publication Critical patent/JP4232088B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、電気銅を再電解して純度:99.9999質量%以上の高純度電気銅を製造する方法に関するものであり、尿素を含有する電解液を使用することにより特に硫黄含有量の極めて少ない純度:99.9999質量%以上の高純度電気銅を製造する方法に関するものである。
【0002】
【従来の技術】
一般に、高純度銅は、電解精製することにより製造されることは知られており、この銅の電解精製では、銅濃度:40〜50g/L、遊離硫酸濃度:150〜220g/Lにさらに添加剤として膠を電気銅1トン当り30〜130g、チオ尿素を電気銅1トン当り15〜80gを添加し、さらに銀の含有量を低下させるためにHCl:50〜100mg/Lを添加した電解液中を用い、アノードとして純度:99質量%前後の粗銅を使用し、カソードとしてステンレス鋼板、チタン板などを使用して浴温:50〜70℃、電流密度:100〜300A/m2で電解し、カソードに銅を析出させることにより行われることは知られている。
このようにして得られた電気銅は、その純度が99.99質量%程度の純銅であるが、近年、純銅は半導体装置のボンディングワイヤーや半導体デバイスの配線に使用されるようになり、かかる用途には純度が99.99質量%程度の純銅では純度が不十分であった。そのために、さらなる高純度の電気銅を製造すべく研究が重ねられ、それによって純度:99.999質量%以上の電気銅が製造されるようになり市販されている。この99.999質量%以上の高純度電気銅を製造する方法として、遊離硫酸銅:90〜220g/L、温度:40℃以下で有機質添加剤を添加することなのない電解液を使用し、電流密度:250A/m2以下で電解浴に有機質添加剤を添加することなく電気銅を再電解精製する方法(特許文献1参照)、浴電解温度:30〜50℃、電流密度:50〜150A/m2で、電解浴に膠を添加して電気銅を再電解精製する方法(特許文献2参照)などが知られている。
しかし、近年の半導体デバイスの小型化、高密度化などに伴って、半導体デバイスの配線に使用される高純度銅は、99.9999質量%以上の高純度であることが求められており、かかる純度:99.9999質量%以上の高純度電気銅を製造する方法として、粗銅または通常の電気銅の硫酸銅浴での電解精製において、アノードとカソードを隔膜で仕切り、アノード室から排出される電解液を濾過するかまたは予め調整した純度の高い銅溶液をカソード室に給液し、電解浴中の硫酸濃度を10〜150g/L、電流密度:30〜150A/m2とし、カソードにチタン板を用いて再電解する方法(特許文献3参照)、
電気銅または電気銅相当の純銅を有する金属銅をアノードとし、銅濃度:20〜45g/L、遊離硫酸濃度:40〜80g/L、浴温度:10〜40℃の硫酸酸性電解液を用い、電流密度200〜500A/m2で電解する第1工程と、第1の工程より得られた電着銅をアノードとし、電流密度100〜200A/m2で電解する第2工程を含む再電解方法(特許文献4参照)などが提案されている。
【0003】
【特許文献1】
特開昭61−84389号公報
【特許文献2】
特公平5−5903号公報
【特許文献3】
特公平5−25956号公報
【特許文献4】
特公平7−68627号公報
【0004】
【発明が解決しようとする課題】
しかし、前記特許文献3記載の純度:99.9999質量%以上の高純度電気銅を製造する方法では硫黄(以下、Sと記す)の十分な減少を果たすことができず、またカソードにチタン板を使用しなければならないのでコストがかるなどの課題があり、さらに、前記特許文献4記載の純度:99.9999質量%以上の高純度電気銅を製造する方法ではSの含有量の減少は達成できるものの、電解を2工程で行なう必要があり、量産する場合は2つの特殊な装置を必要とするのでコストがかるなどの課題があった。
【0005】
【課題を解決するための手段】
そこで、本発明者らは、かかる観点から、通常の装置を用いて純度:99.9999質量%以上の高純度電気銅の製造方法を得るべく研究を行った。その結果、(イ)従来の高純度電気銅の製造方法で使用する電解液に含まれるチオ尿素に代えて尿素を含有する電解液を使用すると、得られた電気銅に含まれるS含有量を極めて低く低減させることができる、
(ロ)この時、電解液に含まれる尿素は1〜20mg/Lである、
(ハ)したがって、この発明の高純度電気銅の製造方法で使用する電解液は、Cu:20〜50g/L、遊離硫酸:100〜150g/Lを含む硫酸酸性電解液に、添加剤としてHCl:10〜100mg/L、膠:10〜50mg/L、尿素:1〜20mg/Lを添加した電解液であることが好ましい、などの知見を得たのである。
【0006】
この発明は、かかる知見にもとづいてなされたものであって、
(1)硫酸酸性の電解液を用い、電気銅をアノードとして再電解することにより純度:99.9999質量%以上の高純度銅を製造する方法において、前記電解液は尿素を含む電解液である高純度電気銅の製造方法、
(2)硫酸酸性の電解液を用い、電気銅をアノードとして再電解することにより純度:99.9999質量%以上の高純度銅を製造する方法において、前記電解液は尿素:1〜20mg/Lを含む電解液である高純度電気銅の製造方法、
(3)電解液を用いて電気銅を再電解することにより純度:99.9999質量%以上の高純度銅を製造する方法において、前記電解液は、Cu:20〜50g/L、遊離硫酸:100〜150g/L、添加剤としてHCl:10〜100mg/L、膠:10〜50mg/L、尿素:1〜20mg/Lを含む電解液である高純度電気銅の製造方法、に特徴を有するものである。
【0007】
この発明の高純度電気銅の製造方法において、電解液の温度は17〜25℃の範囲内に保持されていることが好ましい。したがって、この発明は、
(4)電解液の温度を17〜25℃の範囲内に保持されている前記(1)、(2)または(3)記載の高純度電気銅の製造方法、に特徴を有するものである。
【0008】
この発明の高純度電気銅の製造方法において、電解液は循環供給して使用されるが、電解液をマイクロポアフィルターを通して循環させることにより一層高純度の電気銅を製造することができる。また、電解液に供給する電流密度は50〜100A/m2であることが好ましい。したがって、この発明は、
(5)電流密度が50〜100A/m2である前記(1)、(2)、(3)または(4)記載の高純度電気銅の製造方法、に特徴を有するものである。
【0009】
この発明の尿素を含む電解液を用いて高純度電気銅を製造すると、カソード母板に電着する高純度電気銅は、純度が99.9999質量%を有し、表面が平滑で、しかもカソード母板表面から厚さ方向に柱状晶が成長した金属組織を有する。一般に、電解液を用いて電気銅を再電解することにより純度:9.9999質量%以上の高純度銅を製造する方法において、カノード母板としてステンレス鋼板を用いると結晶粒が微細化し、硫酸中の硫黄および電解液中の固形物であるAgが結晶粒内に巻き込まれ、得られた電気銅中のAgやSが増加するところからステンレス鋼板では十分な高純度の高純度電気銅は得られないと言われており、一方、チタン板をカソード母板として用いると得られる電気銅の結晶粒が大きくなり、表面が平滑でかつ硫酸中の硫黄および電解液中の固形物である銀が結晶粒内に巻き込まれることが少なく、したがってAgやSなどの含有量が少なくなると言われている。
しかし、この発明ではカノード母板としてステンレス鋼板を用いても同様に高純度電気銅が得られる。その理由として、尿素を含有する電解液を用い、ステンレス鋼板をカノード母板として電解することにより得られた電着銅は、電着初期に生成した結晶粒が微細であっても、ステンレス鋼板製カソードに電着した電気銅はカソード母板表面から厚さ方向に平行に柱状晶として著しく成長するところから、不純物が柱状晶の成長に伴ってSなどの不純物が電解液側に排出され、それによって高純度の電気銅が得られるものと考えられる。この発明で得られたカソード母板に電着した電気銅は、電着した電気銅の厚さの1/2の厚さ位置で電解面に平行に切断した切断面における柱状晶の平均太さが50〜300μmの範囲内にある。
【0010】
次ぎに、この発明の高純度電気銅の製造方法における電解液の組成、温度および電流密度について前述のごとく限定した理由を説明する。
(A)電解液組成:
尿素
電解液中に含まれる尿素は添加物として電解液に含有させることによりカソードに電着した電気銅の結晶を欠陥なく柱状晶状に成長させる成分であるが、その含有量が1mg/L未満では、電着した電気銅表面に細かなブツが発生したり、電着不良が発生したりするので好ましくなく、一方、20mg/Lを越えて含有すると、電着した電気銅表面に比較的大きなブツが発生したり、柱状晶に亀裂が入ったりして不純物を巻きこむので好ましくない。したがって、電解液中に含まれる尿素の含有量は1〜20mg/L(一層好ましくは、1.5〜5mg/L)に定めた。
【0011】

電解液中に含まれる膠はカソードに電着した電気銅表面を緻密かつ平滑にさせる成分であるが、その含有量が10mg/L未満では所望の効果が得られず、一方、50mg/Lを越えて含有すると、電解液の抵抗が大きくなって電解効率が悪くなるので好ましくない。したがって、膠の含有量は10〜50mg/Lに定めた。電解液中に含まれる膠の含有量の一層好ましい範囲は15〜30mg/Lである。
【0012】
塩素イオン濃度
電解液中に含まれる塩素イオンは、HClとして添加され、電着した電気銅に含まれるAgを少なくし、また電気銅の表面を平滑にするなどの作用を有するが、その含有量が10mg/L未満では所望の効果が得られず、一方、100mg/Lを越えて含有すると、得られたカソード表面が平滑でなく、表面に微細な孔が発生するので好ましくない。したがって、電解液中に含まれる塩素イオンは10〜100mg/Lに定めた。電解液中に含まれる塩素イオンの含有量の一層好ましい範囲は20〜60mg/Lである。
【0013】
銅濃度
電解液中に含まれる銅は低い方が電着した電解銅の緻密性を高くし、さらに平滑性をよくする作用を有するが、20g/L未満では生産性が低くなるので好ましくなく、一方、50g/Lを越えると、緻密性が悪くなるので好ましくない。したがって、電解液中に含まれる銅濃度は、20〜50g/L(一層好ましくは、35〜45g/L)に定めた。
【0014】
遊離硫酸濃度
電解液中に含まれる遊離硫酸は、電着した電解銅の緻密性を高くし、さらに平滑性をよくする作用を有するが、100g/L未満では秘密性、平滑性が悪くなるので好ましくなく、一方、150g/Lを越えると、硫酸銅の溶解度が減少して緻密性が悪くなるので好ましくない。したがって、電解液中に含まれる銅濃度は、100〜150g/L(一層好ましくは、115〜140g/L)に定めた。
【0015】
(B)電解条件
電解液温度
尿素を含む電解液の温度は、17℃未満では電解液の硫酸銅が結晶化して電解液の濃度が変化するので好ましくなく、一方、25℃を越えると電着した電気銅の緻密性および平滑性がそこなわれるようになるので好ましくない。したがって、尿素を含む電解液の温度は17〜25℃に定めた。
【0016】
電流密度
尿素を含む電解液を使用して電解する際の電流密度は、50A/m2未満では電流密度が低くなりすぎて生産性が悪くなるので好ましくなく、一方、100A/m2を越えると電着した電解銅の緻密性および平滑性を阻害するので好ましくない。したがって、電流密度は50〜100A/m2に定めた。電流密度の一層好ましい範囲は60〜80A/m2である。
【0017】
【発明の実施の形態】
実施例1〜6、比較例1〜2および従来例
純度:99.99質量%の市販の電気銅を用意し、この電気銅をアノードとしてこれをポリプロピレン製布袋に収納することによりアノードバックを作製した。さらに、SUS304製板からなるカソード母板を用意した。さらに、表1に示される尿素、膠、HCl、銅、遊離硫酸を含む電解液を用意した。さらにチオ尿素を含む電解液も用意した。前記アノードバックおよびSUS304製カソード母板を用い、表1に示される電解液を使用し、この電解液をマイクロポアフィルターを通しながら循環させることにより表1に示される条件で電解することにより実施例1〜6、比較例1〜2および従来例を実施した。この実施例1〜6、比較例1〜2および従来例でカソードに電着した電気銅に含まれる不純物を測定し、その結果を表2に示した。さらに、実施例1〜6で得られたカソードに電着した電気銅の断面を切断し、その組織を測定したところ、銅カソード板の厚さ方向に柱状晶が成長した組織を有することが分かり、電気銅の厚さの1/2の厚さ位置で電解面に平行に切断した切断面(すなわち、図1におけるA−A位置で切断した切断面)における柱状晶の平均太さを測定し、その結果を表1に示した。一例として、実施例1で作製した電着した高純度電気銅の断面組織を図1に金属組織写真として示し、図2に従来例で作製した電着した高純度電気銅の断面組織を図2に金属組織写真として示す。図1および図2において、金属組織写真の上部はカソードに電着した電気銅の表面を示し、下方は電着した電気銅のカソードに接する面を示す。図1と図2を比較すると、実施例1において電着した電気銅は、従来例において電着した電気銅に比べて柱状晶が著しく発達していることが分かる。
【0018】
【表1】

Figure 0004232088
【0019】
【表2】
Figure 0004232088
【0020】
表1〜2に示される結果から、尿素を含む電解液を用いて電解する実施例1〜6により得られた高純度電気銅は、チオ尿素を含む電解液を用いて電解する従来例で得られた高純度電気銅に比べて特にS含有量が少ないことが分かる。また、この発明の条件から外れた値の尿素を含む電解液を用いて電解する比較例1〜2で得られた高純度電気銅は、S濃度およびAg濃度も高くなるなどの好ましくない性質が現れることが分かった。
【0021】
【発明の効果】
上述のように、この発明の方法によると、低コストで純度:99.9999質量%以上のS含有量の極めて少ない高純度銅が得られ、特に半導体デバイスなどの産業分野で優れた効果をもたらすものである。
【図面の簡単な説明】
【図1】実施例1で得られた電着電気銅の断面の金属組織写真である。
【図2】従来例で得られた電着電気銅の断面の金属組織写真である。[0001]
[Industrial application fields]
The present invention relates to a method for producing high-purity electrolytic copper having a purity of 99.9999% by mass by re-electrolysis of electrolytic copper, and particularly by using an electrolytic solution containing urea, the sulfur content is extremely high. Low purity: The present invention relates to a method for producing high-purity electrolytic copper of 99.9999% by mass or more.
[0002]
[Prior art]
In general, it is known that high-purity copper is produced by electrolytic purification. In this copper electrolytic purification, copper concentration: 40 to 50 g / L and free sulfuric acid concentration: 150 to 220 g / L are further added. Electrolyte containing 30 to 130 g of glue per ton of electrolytic copper, 15 to 80 g of thiourea per ton of electrolytic copper as agents, and further adding HCl: 50 to 100 mg / L to reduce the silver content Electrolyzed at a bath temperature of 50 to 70 ° C. and a current density of 100 to 300 A / m 2 using crude copper having a purity of about 99% by mass as an anode and a stainless steel plate or titanium plate as a cathode. It is known to be performed by depositing copper on the cathode.
The electrolytic copper thus obtained is pure copper having a purity of about 99.99% by mass. Recently, pure copper has been used for bonding wires of semiconductor devices and wiring of semiconductor devices. However, pure copper having a purity of about 99.99% by mass was insufficient in purity. Therefore, research is repeated to produce higher-purity electrolytic copper, and thereby, electrolytic copper having a purity of 99.999% by mass or more is produced and is commercially available. As a method for producing high-purity electrolytic copper of 99.999% by mass or more, an electrolytic solution containing free copper sulfate: 90 to 220 g / L, temperature: 40 ° C. or less and without adding an organic additive is used. Density: 250 A / m 2 or less, a method for re-electrolytic purification of electrolytic copper without adding an organic additive to the electrolytic bath (see Patent Document 1), bath electrolysis temperature: 30-50 ° C., current density: 50-150 A / A method of refining electrolytic copper by adding glue to the electrolytic bath at m 2 (see Patent Document 2) is known.
However, with recent miniaturization and higher density of semiconductor devices, high-purity copper used for wiring of semiconductor devices is required to have a high purity of 99.9999% by mass or more. Purity: As a method for producing high-purity electrolytic copper of 99.9999% by mass or more, in electrolytic refining of crude copper or ordinary electrolytic copper in a copper sulfate bath, the anode and the cathode are separated by a diaphragm, and the electrolysis discharged from the anode chamber The solution is filtered or a preliminarily prepared high purity copper solution is supplied to the cathode chamber, the sulfuric acid concentration in the electrolytic bath is 10 to 150 g / L, and the current density is 30 to 150 A / m 2. (Refer to Patent Document 3)
Metal copper having pure copper or copper equivalent to pure copper is used as an anode, and a sulfuric acid electrolytic solution having a copper concentration of 20 to 45 g / L, a free sulfuric acid concentration of 40 to 80 g / L, and a bath temperature of 10 to 40 ° C. is used. a first step of electrolysis at a current density 200~500A / m 2, the resulting electrodeposited copper from the first step an anode, re electrolytic process comprising the second step of electrolysis at a current density 100~200A / m 2 (See Patent Document 4) and the like have been proposed.
[0003]
[Patent Document 1]
JP 61-84389 A [Patent Document 2]
Japanese Patent Publication No. 5-5903 [Patent Document 3]
Japanese Patent Publication No. 5-25956 [Patent Document 4]
Japanese Examined Patent Publication No. 7-68627 [0004]
[Problems to be solved by the invention]
However, the method of producing high-purity electrolytic copper having a purity of 99.9999% by mass or more described in Patent Document 3 cannot sufficiently reduce sulfur (hereinafter referred to as S), and a titanium plate is used as a cathode. However, the method of producing high purity electrolytic copper with a purity of 99.9999% by mass or more described in Patent Document 4 can achieve a reduction in the S content. However, it is necessary to perform electrolysis in two steps, and in the case of mass production, there are problems such as high costs because two special devices are required.
[0005]
[Means for Solving the Problems]
Therefore, the present inventors have studied from such a viewpoint to obtain a method for producing high-purity electrolytic copper having a purity of 99.9999% by mass or more using a normal apparatus. As a result, (a) when using an electrolyte containing urea instead of thiourea contained in the electrolyte used in the conventional method for producing high purity electrolytic copper, the S content contained in the obtained electrolytic copper is reduced. Can be reduced very low,
(B) At this time, urea contained in the electrolyte is 1 to 20 mg / L.
(C) Therefore, the electrolytic solution used in the method for producing high-purity electrolytic copper according to the present invention is a sulfuric acid electrolytic solution containing Cu: 20 to 50 g / L and free sulfuric acid: 100 to 150 g / L, and HCl as an additive. : 10 to 100 mg / L, glue: 10 to 50 mg / L, urea: 1 to 20 mg / L of electrolyte solution is preferable.
[0006]
This invention was made based on such knowledge,
(1) In a method for producing high-purity copper having a purity of 99.9999% by mass or more by re-electrolyzing with electrolytic copper as an anode using a sulfuric acid electrolyte, the electrolyte is an electrolyte containing urea. Production method of high purity electrolytic copper,
(2) In a method for producing high-purity copper having a purity of 99.9999% by mass or more by re-electrolyzing with electrolytic copper as an anode using a sulfuric acid electrolyte, the electrolyte contains urea: 1 to 20 mg / L A method for producing high-purity electrolytic copper, which is an electrolytic solution containing
(3) In a method for producing high purity copper having a purity of 99.9999% by mass or more by re-electrolyzing electrolytic copper using an electrolytic solution, the electrolytic solution contains Cu: 20 to 50 g / L, free sulfuric acid: It is characterized by a method for producing high-purity electrolytic copper that is an electrolytic solution containing 100 to 150 g / L, HCl: 10 to 100 mg / L, glue: 10 to 50 mg / L, and urea: 1 to 20 mg / L as additives. Is.
[0007]
In the method for producing high-purity electrolytic copper according to the present invention, the temperature of the electrolytic solution is preferably maintained within a range of 17 to 25 ° C. Therefore, the present invention
(4) It has the characteristics in the manufacturing method of the high purity electrolytic copper as described in said (1), (2) or (3) by which the temperature of electrolyte solution is hold | maintained in the range of 17-25 degreeC.
[0008]
In the method for producing high-purity electrolytic copper according to the present invention, the electrolytic solution is circulated and used, but higher-purity electrolytic copper can be produced by circulating the electrolytic solution through a micropore filter. Moreover, it is preferable that the current density supplied to electrolyte solution is 50-100 A / m < 2 >. Therefore, the present invention
(5) It has the characteristics in the manufacturing method of the high purity electrolytic copper as described in said (1), (2), (3) or (4) whose current density is 50-100 A / m < 2 >.
[0009]
When high-purity electrolytic copper is produced using the electrolytic solution containing urea of the present invention, the high-purity electrolytic copper electrodeposited on the cathode base plate has a purity of 99.9999% by mass, a smooth surface, and a cathode. It has a metal structure in which columnar crystals grow in the thickness direction from the surface of the base plate. In general, in a method for producing high-purity copper having a purity of 9.9999% by mass or more by re-electrolyzing electrolytic copper using an electrolytic solution, when a stainless steel plate is used as a canode base plate, crystal grains are refined and sulfuric acid is added. Since stainless steel and Ag, which is a solid substance in the electrolyte, are entrained in the crystal grains, and Ag and S in the obtained electrolytic copper increase, high-purity electrolytic copper with sufficient purity can be obtained with a stainless steel plate. On the other hand, when a titanium plate is used as a cathode base plate, the crystal grain of the obtained electrolytic copper becomes large, the surface is smooth, sulfur in sulfuric acid and silver which is a solid substance in the electrolyte are crystallized. It is said that it is less likely to be caught in the grains, and therefore the content of Ag, S, etc. is reduced.
However, in this invention, even if a stainless steel plate is used as the canode mother plate, high-purity electrolytic copper can be obtained similarly. The reason for this is that electrodeposited copper obtained by electrolyzing a stainless steel plate as a canode base plate using an electrolyte containing urea is made of a stainless steel plate, even if the crystal grains produced in the initial electrodeposition are fine. The electrolytic copper electrodeposited on the cathode grows remarkably as columnar crystals parallel to the thickness direction from the cathode base plate surface, and impurities such as S are discharged to the electrolyte side as the columnar crystals grow. It is considered that high purity electrolytic copper can be obtained. The electrolytic copper electrodeposited on the cathode base plate obtained in the present invention has an average thickness of columnar crystals in the cut surface cut in parallel to the electrolytic surface at a thickness position that is 1/2 the thickness of the electrodeposited electrolytic copper. Is in the range of 50 to 300 μm.
[0010]
Next, the reason why the composition, temperature and current density of the electrolytic solution in the method for producing high purity electrolytic copper of the present invention are limited as described above will be described.
(A) Electrolyte composition:
Urea contained in the urea electrolyte is a component that allows the electrolytic copper electrodeposited on the cathode to grow into a columnar crystal without defects by being contained in the electrolyte as an additive, but its content is less than 1 mg / L In this case, it is not preferable because fine flaws or poor electrodeposition occurs on the electrodeposited electrolytic copper surface. On the other hand, when the content exceeds 20 mg / L, the electrodeposited electrolytic copper surface is relatively large. It is not preferable because it generates impurities or cracks in the columnar crystal and entraps impurities. Therefore, the content of urea contained in the electrolytic solution is set to 1 to 20 mg / L (more preferably, 1.5 to 5 mg / L).
[0011]
The glue contained in the glue electrolyte is a component that makes the surface of electrolytic copper electrodeposited on the cathode dense and smooth, but if its content is less than 10 mg / L, the desired effect cannot be obtained, while 50 mg / L If the content exceeds V, the resistance of the electrolytic solution increases and the electrolysis efficiency deteriorates. Therefore, the glue content was set to 10 to 50 mg / L. A more preferable range of the content of glue contained in the electrolytic solution is 15 to 30 mg / L.
[0012]
Chloride ion concentration Chloride ions added as HCl have the effect of reducing the Ag contained in the electrodeposited electrolytic copper and smoothing the surface of the electrolytic copper. If it is less than 10 mg / L, the desired effect cannot be obtained. On the other hand, if it exceeds 100 mg / L, the obtained cathode surface is not smooth and fine pores are generated on the surface, which is not preferable. Therefore, the chlorine ion contained in electrolyte solution was set to 10-100 mg / L. A more preferable range of the content of chlorine ions contained in the electrolytic solution is 20 to 60 mg / L.
[0013]
The copper contained in the copper concentration electrolytic solution has the effect of increasing the denseness of the electrodeposited electrolytic copper and further improving the smoothness, but less than 20 g / L is not preferable because the productivity is reduced, On the other hand, if it exceeds 50 g / L, the denseness deteriorates, which is not preferable. Therefore, the copper concentration contained in the electrolytic solution is set to 20 to 50 g / L (more preferably 35 to 45 g / L).
[0014]
Free sulfuric acid concentration Free sulfuric acid contained in the electrolytic solution increases the density of the electrodeposited electrolytic copper and further improves the smoothness. However, if it is less than 100 g / L, the confidentiality and smoothness deteriorate. On the other hand, if it exceeds 150 g / L, the solubility of copper sulfate decreases and the denseness deteriorates. Therefore, the copper concentration contained in the electrolytic solution is set to 100 to 150 g / L (more preferably, 115 to 140 g / L).
[0015]
(B) Electrolytic conditions Electrolyte temperature If the temperature of the electrolyte solution containing urea is less than 17 ° C, copper sulfate in the electrolyte solution is crystallized and the concentration of the electrolyte solution changes. On the other hand, if it exceeds 25 ° C, electrodeposition is performed. This is not preferable because the denseness and smoothness of the electro-copper are deteriorated. Therefore, the temperature of the electrolyte containing urea was set to 17 to 25 ° C.
[0016]
Current density when electrolyzing using an electrolyte containing urea is less than 50 A / m 2, which is not preferable because the current density becomes too low and the productivity deteriorates. On the other hand, when the current density exceeds 100 A / m 2 , This is not preferable because the denseness and smoothness of the electrodeposited electrolytic copper are hindered. Therefore, the current density was set to 50~100A / m 2. A more preferable range of the current density is 60 to 80 A / m 2 .
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Examples 1 to 6, Comparative Examples 1 to 2 and Conventional Example Purity: 99.99 mass% of commercially available electrolytic copper was prepared, and this electrolytic copper was used as an anode, and this was stored in a polypropylene cloth bag to produce an anode bag. did. Further, a cathode base plate made of SUS304 plate was prepared. Furthermore, an electrolyte solution containing urea, glue, HCl, copper, and free sulfuric acid shown in Table 1 was prepared. An electrolyte containing thiourea was also prepared. Example using the anode bag and the cathode mother plate made of SUS304, using the electrolytic solution shown in Table 1, and circulating the electrolytic solution through a micropore filter under the conditions shown in Table 1. 1-6, Comparative Examples 1-2, and the prior art example were implemented. Impurities contained in electrolytic copper electrodeposited on the cathodes in Examples 1 to 6, Comparative Examples 1 and 2 and the conventional example were measured, and the results are shown in Table 2. Furthermore, when the cross section of the electrolytic copper electrodeposited on the cathode obtained in Examples 1 to 6 was cut and the structure was measured, it was found that it had a structure in which columnar crystals grew in the thickness direction of the copper cathode plate. Measure the average thickness of the columnar crystals on the cut surface (that is, the cut surface cut at the position AA in FIG. 1) cut in parallel with the electrolytic surface at a thickness position that is 1/2 the thickness of the electrolytic copper. The results are shown in Table 1. As an example, the cross-sectional structure of the electrodeposited high-purity electrolytic copper produced in Example 1 is shown in FIG. 1 as a metal structure photograph, and FIG. 2 shows the cross-sectional structure of the electrodeposited high-purity electrolytic copper produced in the conventional example. Is shown as a metallographic photograph. In FIG. 1 and FIG. 2, the upper part of the metallographic photograph shows the surface of electrolytic copper electrodeposited on the cathode, and the lower part shows the surface in contact with the electrodeposited electrolytic copper cathode. When FIG. 1 and FIG. 2 are compared, it can be seen that the electrodeposited electrode in Example 1 has remarkably developed columnar crystals compared to the electrodeposited electrodeposited electrode in the conventional example.
[0018]
[Table 1]
Figure 0004232088
[0019]
[Table 2]
Figure 0004232088
[0020]
From the results shown in Tables 1 and 2, the high-purity electrolytic copper obtained in Examples 1 to 6 that are electrolyzed using an electrolytic solution containing urea is obtained in a conventional example in which electrolysis is performed using an electrolytic solution containing thiourea. It can be seen that the S content is particularly small compared to the obtained high-purity electrolytic copper. Moreover, the high purity electrolytic copper obtained in Comparative Examples 1 and 2 that electrolyze using an electrolytic solution containing urea with a value outside the conditions of the present invention has undesirable properties such as an increase in S concentration and Ag concentration. I knew it would appear.
[0021]
【The invention's effect】
As described above, according to the method of the present invention, high-purity copper having an extremely low S content with a purity of 99.9999% by mass or more can be obtained at a low cost, and particularly has an excellent effect in industrial fields such as semiconductor devices. Is.
[Brief description of the drawings]
1 is a metallographic photograph of a cross section of electrodeposited electrolytic copper obtained in Example 1. FIG.
FIG. 2 is a metallographic photograph of a cross section of electrodeposited electrolytic copper obtained in a conventional example.

Claims (7)

硫酸酸性の電解液を用い、電気銅をアノードとして再電解することにより純度:99.9999質量%以上の高純度銅を製造する方法において、前記電解液は尿素を含む電解液であることを特徴とする高純度電気銅の製造方法。In a method for producing high-purity copper having a purity of 99.9999% by mass or more by re-electrolyzing electrolytic copper as an anode using a sulfuric acid electrolytic solution, the electrolytic solution is an electrolytic solution containing urea. A method for producing high purity electrolytic copper. 硫酸酸性の電解液を用い、電気銅をアノードとして再電解することにより純度:99.9999質量%以上の高純度銅を製造する方法において、前記電解液は尿素:1〜20mg/Lを含む電解液であることを特徴とする高純度電気銅の製造方法。In a method for producing high-purity copper having a purity of 99.9999% by mass or more by re-electrolyzing electrolytic copper as an anode using a sulfuric acid electrolytic solution, the electrolytic solution is an electrolysis containing urea: 1 to 20 mg / L. A method for producing high-purity electrolytic copper, which is a liquid. 硫酸酸性の電解液を用い、電気銅を再電解することにより純度:99.9999質量%以上の高純度銅を製造する方法において、前記電解液は、Cu:20〜50g/L、遊離硫酸:100〜150g/L、HCl:10〜100mg/L、膠:10〜50mg/L、尿素:1〜20mg/Lを含む電解液であることを特徴とする高純度電気銅の製造方法。In a method for producing high purity copper having a purity of 99.9999% by mass or more by re-electrolyzing electrolytic copper using a sulfuric acid electrolytic solution, the electrolytic solution is Cu: 20 to 50 g / L, free sulfuric acid: A method for producing high-purity electrolytic copper, which is an electrolytic solution containing 100 to 150 g / L, HCl: 10 to 100 mg / L, glue: 10 to 50 mg / L, urea: 1 to 20 mg / L. 前記純度:99.9999質量%以上の高純度銅を製造する方法において使用する電解液の温度は17〜25℃の範囲内に保持されていることを特徴とする請求項1、2または3記載の高純度電気銅の製造方法。The temperature of the electrolytic solution used in the method for producing high purity copper having a purity of 99.9999% by mass or more is maintained within a range of 17 to 25 ° C. Manufacturing method of high purity electrolytic copper. 前記純度:99.9999質量%以上の高純度銅を製造する方法において、再電解の際に供給する電流密度は50〜100A/m2であることを特徴とする請求項1、2、3または4記載の高純度電気銅の製造方法。In the method for producing high-purity copper having a purity of 99.9999% by mass or more, the current density supplied during re-electrolysis is 50 to 100 A / m 2 , 4. The method for producing high-purity electrolytic copper according to 4. 請求項1、2、3、4または5記載の方法により製造した厚さ方向に成長した柱状晶組織を有する高純度電気銅。A high-purity electrolytic copper having a columnar crystal structure grown in the thickness direction produced by the method according to claim 1, 2, 3, 4 or 5. 請求項1、2、3、4または5記載の方法により製造した厚さ方向に成長した柱状晶組織を有する高純度電気銅であって、この高純度電気銅の厚さの1/2の厚さ位置で電解面に平行に切断した切断面における柱状晶の平均太さが50〜300μmの範囲内にある高純度電気銅。A high-purity electrolytic copper having a columnar crystal structure grown in the thickness direction manufactured by the method according to claim 1, wherein the thickness is ½ of the thickness of the high-purity electrolytic copper. High-purity electrolytic copper in which the average thickness of columnar crystals in the cut surface cut parallel to the electrolytic surface at a position is in the range of 50 to 300 μm.
JP2003107777A 2003-04-11 2003-04-11 Manufacturing method of high purity electrolytic copper Expired - Fee Related JP4232088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003107777A JP4232088B2 (en) 2003-04-11 2003-04-11 Manufacturing method of high purity electrolytic copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003107777A JP4232088B2 (en) 2003-04-11 2003-04-11 Manufacturing method of high purity electrolytic copper

Publications (2)

Publication Number Publication Date
JP2004315849A JP2004315849A (en) 2004-11-11
JP4232088B2 true JP4232088B2 (en) 2009-03-04

Family

ID=33469518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003107777A Expired - Fee Related JP4232088B2 (en) 2003-04-11 2003-04-11 Manufacturing method of high purity electrolytic copper

Country Status (1)

Country Link
JP (1) JP4232088B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204103A (en) * 2017-06-01 2018-12-27 三菱マテリアル株式会社 High-purity electrolytic copper

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253345A (en) * 2005-03-10 2006-09-21 Furukawa Circuit Foil Kk High purity electrolytic copper foil and manufacturing method thereof
CN102534658B (en) * 2012-03-01 2014-07-23 崔海林 Method for preparing electrolytic copper fast with copper ore
CN104047021A (en) * 2013-03-13 2014-09-17 江苏瑞崚新材料科技有限公司 Method for preparing 6N-Cu by electrolysis technology
WO2018221724A1 (en) * 2017-06-01 2018-12-06 三菱マテリアル株式会社 High-purity electrolytic copper
EP3636803A4 (en) 2017-06-01 2021-02-24 Mitsubishi Materials Corporation Method for producing high-purity electrolytic copper
CN107974695B (en) * 2017-11-17 2020-01-10 金川集团股份有限公司 Method for producing ultra-high pure copper by one-step electrolysis method
KR102237348B1 (en) * 2018-11-29 2021-04-07 에스지금속 주식회사 Recovery method of copper and precious metal by electrolysis of crude copper containing precious metal using copper chloride solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018204103A (en) * 2017-06-01 2018-12-27 三菱マテリアル株式会社 High-purity electrolytic copper
JP7454329B2 (en) 2017-06-01 2024-03-22 三菱マテリアル株式会社 High purity electrical copper plate

Also Published As

Publication number Publication date
JP2004315849A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP4518262B2 (en) High purity electrolytic copper and its manufacturing method
JPH08990B2 (en) Ultra high purity copper manufacturing method
JP4076751B2 (en) Electro-copper plating method, phosphor-containing copper anode for electrolytic copper plating, and semiconductor wafer plated with these and having less particle adhesion
JP4232088B2 (en) Manufacturing method of high purity electrolytic copper
JP2003171797A (en) Copper electroplating method, pure copper anode for copper electroplating, semiconductor wafer plated by using these and less deposited with particle
RU2469111C1 (en) Method of producing copper powder from copper-containing ammoniate wastes
JP4607165B2 (en) Electro copper plating method
JP5993097B2 (en) Method for producing high purity cobalt chloride
JPH034629B2 (en)
JP2019052329A (en) Electrorefining method of low-grade copper anode, and electrolytic solution used therefor
US2556635A (en) Electrolytic refining of copper
JP2005163096A5 (en)
JP7137649B2 (en) Method for producing potassium gold cyanide
JP2623267B2 (en) Manufacturing method of low-purity high-purity electrolytic copper
JPS6133918B2 (en)
TWI837547B (en) Method for manufacturing potassium gold cyanide
JP3805411B2 (en) Improved electrowinning method for zinc.
JPH0768627B2 (en) High-purity copper manufacturing method
JP3792525B2 (en) Manufacturing method of high purity nickel
JP2004083992A (en) Method for producing high purity antimony and high purity antimony
KR100349445B1 (en) Cementation apparatus of high purity copper
RU2393943C2 (en) METHOD OF PRODUCING SILVER POWDERS &#34;ПСр1&#34; AND &#34;ПСр2&#34;
JP5234844B2 (en) Electro-copper plating method, phosphor-containing copper anode for electrolytic copper plating, and semiconductor wafer plated with these and having less particle adhesion
US3175965A (en) Electrolysis of pig iron containing copper
JP5179549B2 (en) Electro copper plating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4232088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees