JP3792525B2 - Manufacturing method of high purity nickel - Google Patents

Manufacturing method of high purity nickel Download PDF

Info

Publication number
JP3792525B2
JP3792525B2 JP2001087866A JP2001087866A JP3792525B2 JP 3792525 B2 JP3792525 B2 JP 3792525B2 JP 2001087866 A JP2001087866 A JP 2001087866A JP 2001087866 A JP2001087866 A JP 2001087866A JP 3792525 B2 JP3792525 B2 JP 3792525B2
Authority
JP
Japan
Prior art keywords
nickel
ppm
less
purity
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001087866A
Other languages
Japanese (ja)
Other versions
JP2002285372A (en
Inventor
裕一朗 新藤
幸一 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2001087866A priority Critical patent/JP3792525B2/en
Publication of JP2002285372A publication Critical patent/JP2002285372A/en
Application granted granted Critical
Publication of JP3792525B2 publication Critical patent/JP3792525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、硫酸ニッケル溶液を用いて電解精製により純度5N(99.999wt%)以上の高純度ニッケルを製造する方法に関する。
【0002】
【従来の技術】
一般に、5Nレベルの高純度ニッケルを製造する場合に、硫酸ニッケル溶液を用いて電解精製法を用いて製造するのが効率的であると考えられる。
しかし、硫酸ニッケル溶液のみを電解浴とした場合、アノードから酸素ガスが発生してpHが低下し、電流効率が非常に悪化する現象があるという問題があった。このためpH低下を抑制するために、アンモニア等を添加する必要があるが、このアンモニア添加は硫安等が次第に蓄積され、電解に困難をきたしていた。
【0003】
このような電解における問題は必ずしも明確ではないが、アノードに用いたニッケル原料の表面が不働態化し、電気が通らなくなってしまうことが原因と考えられる。
しかし、従来このような問題を解決できる方策が、特に講じられている分けではなく、硫酸ニッケル溶液を用いて電解精製しようとする場合、必ずしも効率的であるとは言えなかった。
【0004】
【発明が解決しようとする課題】
本発明は、硫酸ニッケル溶液を用いて電解精製する場合、アノードからの酸素ガス発生を抑制し電流効率の低下を防止して、効率的に高純度ニッケルを製造する方法を提供することを目的としたものである。
【0005】
【課題を解決するための手段】
上記問題点を解決するため、硫酸ニッケル溶液の浴組成を改善することにより、アノードからの酸素ガス発生を抑制できるとの知見を得た。
この知見に基づき、本発明は
1. 電解液として硫酸ニッケル溶液を用い、これにハロゲン化水素酸を添加して電解精製することを特徴とする高純度ニッケルの製造方法。
2. ハロゲン化水素酸の濃度が0.1〜10mol/Lであることを特徴とする上記1記載の高純度ニッケルの製造方法。
3. 電析ニッケル中の酸素含有量が30ppm以下、硫黄含有量が1ppm以下であることを特徴とする上記1又は2記載の高純度ニッケルの製造方法。
を提供するものである。
【0006】
【発明の実施の形態】
図1に示す電解槽を用い、4Nレベルの塊状のニッケルをアノードとし、カソードに4Nレベルのニッケルを使用して電解を行う。
浴温10〜70°C、硫酸系電解液を使用し、該電解液に塩酸、臭化水素酸又は弗酸から選択したハロゲン化水素酸を0.1〜10mol/L添加する。ニッケル濃度20〜120g/L、電流密度0.1〜10A/dmで実施する。電流密度0.1A/dm未満では生産性が悪く、また10A/dmを超えるとノジュールが発生してしまい、アノードとカソードが接触するため好ましくないので、電流密度は0.1〜10A/dmの範囲とする。
【0007】
これにより、電流効率は80〜100%となる。純度5Nの電析ニッケル(カソードに析出)が得られる。また、電析ニッケル中のガス成分も減少し、酸素は30ppm以下、硫黄は1ppm以下とすることができる。
このように、微量のハロゲン化水素酸を添加することにより、電解がスムーズにいく。この原因は必ずしも明確ではないが、原料ニッケルの表面が不働態化するのを防止しているものと考えられる。
ハロゲン化水素酸を0.1mol/L未満では添加の効果がなく、従来同様にpHが低下し、電流効率が急速に悪化する。またハロゲン化水素酸10.0mol/Lを超えると電析ニッケルの純度が悪くなる。したがって、ハロゲン化水素酸の添加量は0.1〜10.0mol/Lとする。
【0008】
【実施例及び比較例】
次に、本発明の実施例について説明する。なお、本実施例はあくまで一例であり、この例に制限されるものではない。すなわち、本発明の技術思想の範囲内で、実施例以外の態様あるいは変形を全て包含するものである。
【0009】
(実施例1)
図1に示すような電解槽1を用い、4Nレベルの塊状のニッケル原料2をアノード5とし、カソード4に4Nレベルのニッケルを使用して電解を行った。符号2はアノードバスケットである。
浴温40°C、硫酸系電解液で弗酸を1mol/Lを添加し、ニッケル濃度50g/L、電流密度2A/dm、電解時間40hr実施した。
これにより、pHが次第に上昇し、pH1.5から2に上昇した。電流効率92%であり、電析ニッケル(カソードに析出)約1kgを得た。純度は5Nを達成した。電析ニッケル中の酸素は10ppm以下、硫黄は1ppm以下であった。
以上の結果を表1に示す。
【0010】
(実施例2)
実施例1と同じ電解槽を用い、4Nレベルの塊状のニッケルをアノードとし、カソードに4Nレベルのニッケルを使用して電解を行った。
浴温40°C、硫酸系電解液で弗酸を5mol/Lを添加し、ニッケル濃度50g/L、電流密度2A/dm、電解時間40hr実施した。
この結果、pHが1.5から2.2に上昇した。電流効率94%であり、電析ニッケル(カソードに析出)約1.0kgを得た。純度は5Nを達成した。電析ニッケル中の酸素は20ppm以下、硫黄は0.1ppm以下であった。以上の結果を同様に表1に示す。
【0011】
(実施例3)
実施例1と同じ電解槽を用い、4Nレベルの塊状のニッケルをアノードとし、カソードに4Nレベルのニッケルを使用して電解を行った。
浴温40°C、硫酸系電解液で臭化水素酸を1mol/Lを添加し、ニッケル濃度50g/L、電流密度2A/dm、電解時間40hr実施した。
この結果、pHが1.5から2に上昇した。電流効率90%であり、電析ニッケル(カソードに析出)約0.98kgを得た。純度は5Nを達成した。電析ニッケル中の酸素は15ppm以下、硫黄は0.8ppm以下であった。以上の結果を同様に表1に示す。
【0012】
(比較例1)
弗酸、塩酸、臭化水素酸等のハロゲン化水素酸を一切添加せず、実施例1と同じ電解槽を用い、4Nレベルの塊状のニッケルをアノードとし、カソードに4Nレベルのニッケルを使用して硫酸系電解液で電解を行った。
浴温40°C、ニッケル濃度50g/L、電流密度2A/dm、電解時間40hr実施した。この結果pHは1.5からpH1.0に低下し、電流効率は65%に低下した。また、電析ニッケル中の酸素は50ppm、硫黄は2ppmとなり、ガス成分の増加があった。
以上の結果を同様に表1に示す。
【0013】
【表1】

Figure 0003792525
【0014】
表1に示すように、弗酸又は臭化水素酸を添加した実施例1〜3では電流効率が90%以上と高く、電析ニッケル中の酸素は30ppm以下、硫黄は1ppm以下となり、高純度のニッケルが得られた。この外、塩酸等の他のハロゲン化水素酸を添加したものでも同様の結果が得られた。
これに対し、弗酸、塩酸、臭化水素酸等のハロゲン化水素酸を一切添加しない比較例1では電流効率は65%に低下し、また電析ニッケル中の酸素及び硫黄の増加があった。
【0015】
【発明の効果】
以上に示すように、電解液として硫酸ニッケル溶液を用い、これにハロゲン化水素酸を添加して電解精製することにより、アノードからの酸素ガス発生を抑制し電流効率の低下を防止して、効率的に高純度ニッケルを製造することができるという著しい効果を有する。
【図面の簡単な説明】
【図1】電解工程の概要を示す図である。
【符号の説明】
1 電解槽
2 塊状のニッケル原料
3 アノードバスケット
4 カソード
5 アノード[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing high-purity nickel having a purity of 5N (99.999 wt%) or more by electrolytic purification using a nickel sulfate solution.
[0002]
[Prior art]
In general, when producing 5N level high-purity nickel, it is considered efficient to produce it using an electrolytic purification method using a nickel sulfate solution.
However, when only the nickel sulfate solution is used as the electrolytic bath, there is a problem that oxygen gas is generated from the anode, the pH is lowered, and the current efficiency is extremely deteriorated. For this reason, it is necessary to add ammonia or the like in order to suppress a decrease in pH. However, this ammonia addition gradually accumulates ammonium sulfate and makes electrolysis difficult.
[0003]
Although the problem in such electrolysis is not necessarily clear, it is thought that the cause is that the surface of the nickel raw material used for the anode is passivated and cannot conduct electricity.
However, measures that can solve such problems have not been particularly taken, and it has not always been efficient to attempt electrolytic purification using a nickel sulfate solution.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for efficiently producing high-purity nickel by suppressing generation of oxygen gas from an anode and preventing a decrease in current efficiency when electrolytic purification is performed using a nickel sulfate solution. It is a thing.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the inventors have obtained knowledge that the generation of oxygen gas from the anode can be suppressed by improving the bath composition of the nickel sulfate solution.
Based on this finding, the present invention provides 1. A method for producing high-purity nickel, characterized in that a nickel sulfate solution is used as an electrolytic solution, and hydrohalic acid is added thereto for electrolytic purification.
2. 2. The method for producing high-purity nickel as described in 1 above, wherein the concentration of hydrohalic acid is 0.1 to 10 mol / L.
3. 3. The method for producing high-purity nickel as described in 1 or 2 above, wherein the electrodeposited nickel has an oxygen content of 30 ppm or less and a sulfur content of 1 ppm or less.
Is to provide.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Using the electrolytic cell shown in FIG. 1, electrolysis is performed using 4N level bulk nickel as the anode and 4N level nickel as the cathode.
A sulfuric acid electrolyte solution is used at a bath temperature of 10 to 70 ° C., and a hydrohalic acid selected from hydrochloric acid, hydrobromic acid or hydrofluoric acid is added to the electrolyte solution in an amount of 0.1 to 10 mol / L. Nickel concentration 20 to 120 g / L, carried out at a current density of 0.1 to 10 A / dm 2. If the current density is less than 0.1 A / dm 2 , the productivity is poor, and if it exceeds 10 A / dm 2 , nodules are generated and the anode and cathode come into contact with each other. the range of dm 2.
[0007]
Thereby, the current efficiency is 80 to 100%. Electrodeposited nickel (deposited on the cathode) with a purity of 5N is obtained. Moreover, the gas component in electrodeposition nickel also reduces, oxygen can be 30 ppm or less, and sulfur can be 1 ppm or less.
Thus, electrolysis proceeds smoothly by adding a small amount of hydrohalic acid. Although this cause is not necessarily clear, it is considered that the surface of the raw material nickel is prevented from being passivated.
If the hydrohalic acid is less than 0.1 mol / L, there is no effect of addition, the pH is lowered as in the conventional case, and the current efficiency is rapidly deteriorated. Moreover, when it exceeds 10.0 mol / L of hydrohalic acid, the purity of electrodeposited nickel will worsen. Therefore, the addition amount of hydrohalic acid is 0.1 to 10.0 mol / L.
[0008]
[Examples and Comparative Examples]
Next, examples of the present invention will be described. In addition, a present Example is an example to the last, and is not restrict | limited to this example. That is, all aspects or modifications other than the embodiments are included within the scope of the technical idea of the present invention.
[0009]
Example 1
Using an electrolytic cell 1 as shown in FIG. 1, electrolysis was performed using 4N level bulk nickel material 2 as anode 5 and 4N level nickel as cathode 4. Reference numeral 2 denotes an anode basket.
The bath temperature was 40 ° C., 1 mol / L of hydrofluoric acid was added with a sulfuric acid electrolyte, the nickel concentration was 50 g / L, the current density was 2 A / dm 2 , and the electrolysis time was 40 hours.
As a result, the pH gradually increased and rose from pH 1.5 to 2. The current efficiency was 92%, and about 1 kg of electrodeposited nickel (deposited on the cathode) was obtained. Purity achieved 5N. The oxygen in the electrodeposited nickel was 10 ppm or less, and the sulfur was 1 ppm or less.
The results are shown in Table 1.
[0010]
(Example 2)
Using the same electrolytic cell as in Example 1, 4N level bulk nickel was used as the anode, and 4N level nickel was used as the cathode for electrolysis.
The bath temperature was 40 ° C., 5 mol / L of hydrofluoric acid was added as a sulfuric acid electrolyte, the nickel concentration was 50 g / L, the current density was 2 A / dm 2 , and the electrolysis time was 40 hours.
As a result, the pH increased from 1.5 to 2.2. The current efficiency was 94%, and about 1.0 kg of electrodeposited nickel (deposited on the cathode) was obtained. Purity achieved 5N. The oxygen in the electrodeposited nickel was 20 ppm or less, and the sulfur was 0.1 ppm or less. The above results are similarly shown in Table 1.
[0011]
Example 3
Using the same electrolytic cell as in Example 1, 4N level bulk nickel was used as the anode, and 4N level nickel was used as the cathode for electrolysis.
The bath temperature was 40 ° C., 1 mol / L of hydrobromic acid was added as a sulfuric acid electrolyte, the nickel concentration was 50 g / L, the current density was 2 A / dm 2 , and the electrolysis time was 40 hours.
As a result, the pH increased from 1.5 to 2. The current efficiency was 90%, and about 0.98 kg of electrodeposited nickel (deposited on the cathode) was obtained. Purity achieved 5N. The oxygen in the electrodeposited nickel was 15 ppm or less, and the sulfur was 0.8 ppm or less. The above results are similarly shown in Table 1.
[0012]
(Comparative Example 1)
No hydrohalic acid such as hydrofluoric acid, hydrochloric acid, hydrobromic acid or the like was added, the same electrolytic cell as in Example 1 was used, 4N level bulk nickel was used as the anode, and 4N level nickel was used as the cathode. Then, electrolysis was performed with a sulfuric acid electrolyte.
The bath temperature was 40 ° C., the nickel concentration was 50 g / L, the current density was 2 A / dm 2 , and the electrolysis time was 40 hours. As a result, the pH decreased from 1.5 to pH 1.0, and the current efficiency decreased to 65%. Moreover, oxygen in electrodeposited nickel was 50 ppm, sulfur was 2 ppm, and there was an increase in gas components.
The above results are similarly shown in Table 1.
[0013]
[Table 1]
Figure 0003792525
[0014]
As shown in Table 1, in Examples 1 to 3 to which hydrofluoric acid or hydrobromic acid was added, the current efficiency was as high as 90% or higher, oxygen in the electrodeposited nickel was 30 ppm or less, sulfur was 1 ppm or less, and high purity. Of nickel was obtained. In addition, similar results were obtained with the addition of other hydrohalic acids such as hydrochloric acid.
In contrast, in Comparative Example 1 in which no hydrohalic acid such as hydrofluoric acid, hydrochloric acid, hydrobromic acid or the like was added, the current efficiency was reduced to 65%, and oxygen and sulfur in the electrodeposited nickel were increased. .
[0015]
【The invention's effect】
As shown above, a nickel sulfate solution is used as the electrolytic solution, and hydrohalic acid is added to the electrolytic solution for electrolytic purification, thereby suppressing oxygen gas generation from the anode and preventing a decrease in current efficiency. In particular, it has a remarkable effect that high-purity nickel can be produced.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of an electrolysis process.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrolysis cell 2 Bulk nickel raw material 3 Anode basket 4 Cathode 5 Anode

Claims (3)

電解液として硫酸ニッケル溶液を用い、これにハロゲン化水素酸を添加して電解精製することを特徴とする高純度ニッケルの製造方法。  A method for producing high-purity nickel, characterized in that a nickel sulfate solution is used as an electrolytic solution, and hydrohalic acid is added thereto for electrolytic purification. ハロゲン化水素酸の濃度が0.1〜10mol/Lであることを特徴とする請求項1記載の高純度ニッケルの製造方法。  The method for producing high-purity nickel according to claim 1, wherein the concentration of hydrohalic acid is 0.1 to 10 mol / L. 電析ニッケル中の酸素含有量が30ppm以下、硫黄含有量が1ppm以下であることを特徴とする請求項1又は2記載の高純度ニッケルの製造方法。  The method for producing high-purity nickel according to claim 1 or 2, wherein the electrodeposited nickel has an oxygen content of 30 ppm or less and a sulfur content of 1 ppm or less.
JP2001087866A 2001-03-26 2001-03-26 Manufacturing method of high purity nickel Expired - Fee Related JP3792525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001087866A JP3792525B2 (en) 2001-03-26 2001-03-26 Manufacturing method of high purity nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001087866A JP3792525B2 (en) 2001-03-26 2001-03-26 Manufacturing method of high purity nickel

Publications (2)

Publication Number Publication Date
JP2002285372A JP2002285372A (en) 2002-10-03
JP3792525B2 true JP3792525B2 (en) 2006-07-05

Family

ID=18943047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001087866A Expired - Fee Related JP3792525B2 (en) 2001-03-26 2001-03-26 Manufacturing method of high purity nickel

Country Status (1)

Country Link
JP (1) JP3792525B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111705334B (en) * 2020-05-27 2022-04-08 金川集团股份有限公司 Method for improving physical appearance quality of electrodeposited nickel in pure sulfate system

Also Published As

Publication number Publication date
JP2002285372A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
JP3876253B2 (en) Manufacturing method of high purity nickel
CN1880512A (en) Trivalent chromium electroplating solution in sulfate system and method for preparing same
CN109680301B (en) Anode plate for zinc electrolysis and preparation method thereof
US20120247971A1 (en) Metal electrowinning anode and electrowinning method
JP2014526608A (en) Oxygen generating anode and method for producing the same
JP5686457B2 (en) Method for producing oxygen generating anode
JP3792525B2 (en) Manufacturing method of high purity nickel
JP2010090414A (en) Aluminum-electroplating solution, and plated aluminum film
CN105132945A (en) Composite additive used for energy-saving electrolytic refined copper
JP4721448B2 (en) Method for producing aluminum foil for electrolytic capacitor
JP4232088B2 (en) Manufacturing method of high purity electrolytic copper
JP7122315B2 (en) Electrode, method for producing same, and method for producing regenerated electrode
KR101397743B1 (en) Method for manufacturing high-purity nickel
JP5993097B2 (en) Method for producing high purity cobalt chloride
JP3878402B2 (en) Metal purification method
Touabi et al. Optimization of electrochemical copper recovery process: effect of the rotation speed in chloride medium of pH= 3
EP1683877A4 (en) METHOD FOR PRODUCING Ti OR Ti ALLOY THROUGH REDUCTION BY Ca
JP2006225693A (en) Method for producing periodate
JP2005163096A5 (en)
JP2008045172A (en) Aluminum material for electrolytic capacitor electrode, method for producing electrode material for electrolytic capacitor, electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
US20170218531A1 (en) Metal electrowinning anode and electrowinning method
JP2928426B2 (en) Manufacturing method of electrolytic iron
JP3805411B2 (en) Improved electrowinning method for zinc.
CN110923758B (en) High-buffering stability copper plating solution for PCB electroplating and preparation method thereof
JP2570076B2 (en) Manufacturing method of high purity nickel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371