JP2006225693A - Method for producing periodate - Google Patents

Method for producing periodate Download PDF

Info

Publication number
JP2006225693A
JP2006225693A JP2005038533A JP2005038533A JP2006225693A JP 2006225693 A JP2006225693 A JP 2006225693A JP 2005038533 A JP2005038533 A JP 2005038533A JP 2005038533 A JP2005038533 A JP 2005038533A JP 2006225693 A JP2006225693 A JP 2006225693A
Authority
JP
Japan
Prior art keywords
electrolysis
periodate
electrode
producing
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005038533A
Other languages
Japanese (ja)
Inventor
Takuro Kato
琢朗 加藤
Teruichi Takeda
照一 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2005038533A priority Critical patent/JP2006225693A/en
Publication of JP2006225693A publication Critical patent/JP2006225693A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing periodates with improved current efficiency for periodic acid and great productivity, by removing insoluble iodates or periodates precipitating on the surface of a lead dioxide anode during electrolysis when producing them through an electrolytic process of electrolytically oxidizing iodine and/or iodates contained in an aqueous solution, with a simple method. <P>SOLUTION: The electrolytic process comprises the steps of: electrolytically oxidizing iodine and/or iodates contained in the aqueous solution into periodic acid by anodically polarizing the lead dioxide electrode; and electrolytically activating the surface of the electrode in the electrolytic solution. The electrolytic activation step employs electrolysis at higher voltage than average voltage in the oxidation electrolysis by at least 1.0 V, or electrolysis in the aqueous solution containing iodine and/or iodic acid of less than 30 g/L. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ヨウ素及び/またはヨウ素酸を含有する水溶液を電解工程により電解酸化させて過ヨウ素酸塩類を製造する方法に関し、より詳しくは、電解工程において、陽極表面への不溶性のヨウ素酸塩ないしは過ヨウ素酸塩付着による電極活性の劣化を簡易な方法で活性化しながら過ヨウ素酸類を製造する方法に関する。   The present invention relates to a method for producing periodate by electrolytically oxidizing an aqueous solution containing iodine and / or iodic acid in an electrolysis step, and more specifically, insoluble iodate or The present invention relates to a method for producing periodic acids while activating deterioration of electrode activity due to periodate adhesion by a simple method.

過ヨウ素酸塩類(以下、過ヨウ素酸及びその塩類を含んだものをいう。)の製造方法としては、ヨウ素を電解酸化させて過ヨウ素酸を製造する方法が知られている。   As a method for producing periodate (hereinafter referred to as one containing periodate and its salts), a method for producing periodate by electrolytically oxidizing iodine is known.

上記方法としては、特許文献1にヨウ素酸及びその塩の水溶液を二酸化鉛電極にて電解酸化させることにより、過ヨウ素酸またはその塩を製造する方法が開示されている。この製造方法によれば、塩素、硫酸のような不純物を含まず、比較的高純度の過ヨウ素酸塩類を製造することが可能である。しかしながら、二酸化鉛電極は、例えば特許文献2または特許文献3に示されているように、電解の進行とともに電極表面上に不溶性の過ヨウ素酸塩(例えばパラ過ヨウ素酸ナトリウムや過ヨウ素酸鉛等)が析出し、局部的に高電流密度となって電極触媒である二酸化鉛の消耗が増大する、あるいは、電極表面に原料のヨウ素酸が供給されず、二酸化鉛電極の触媒活性すなわち過ヨウ素酸の電流効率が低下し、電極が不活性化することが知られている。   As the above method, Patent Document 1 discloses a method for producing periodic acid or a salt thereof by electrolytically oxidizing an aqueous solution of iodic acid and a salt thereof with a lead dioxide electrode. According to this production method, it is possible to produce periodate salts of relatively high purity that do not contain impurities such as chlorine and sulfuric acid. However, as shown in, for example, Patent Document 2 or Patent Document 3, a lead dioxide electrode has an insoluble periodate (for example, sodium periodate, lead periodate, etc.) on the electrode surface along with the progress of electrolysis. ) Is deposited, and the consumption of lead dioxide, which is an electrode catalyst, increases locally due to high current density, or the iodic acid of the raw material is not supplied to the electrode surface, and the catalytic activity of the lead dioxide electrode, ie periodic acid It is known that the current efficiency is reduced and the electrode is inactivated.

従来、このような不活性化した電極は、電解槽から取り外し、硫酸等の水溶液中に浸漬または電解して、電極表面の析出物を洗浄・除去するか、あるいは、物理的に電極表面を研磨することにより、電極の再生が試みられているが、洗浄作業に関わる手間が煩雑であり、洗浄用の薬品コストがかさみ、製造コストが増大するという解決すべき課題が残されていた。   Conventionally, such an inactivated electrode is removed from the electrolytic cell and immersed or electrolyzed in an aqueous solution of sulfuric acid or the like to wash and remove deposits on the electrode surface, or physically polish the electrode surface. Thus, the regeneration of the electrode has been attempted, but the labor involved in the cleaning work is complicated, the cost of cleaning chemicals is increased, and the problem to be solved remains that the manufacturing cost increases.

特公昭38−5255号公報Japanese Patent Publication No. 38-5255 特公昭36−10312号公報Japanese Patent Publication No. 36-10312 特開昭56−23286号公報Japanese Patent Laid-Open No. 56-23286

本発明の目的は、上記課題を解決し、ヨウ素及び/またはヨウ素酸塩を含有する水溶液を電解工程により電解酸化して過ヨウ素酸塩類を製造する方法において、電解工程中、二酸化鉛陽極表面に析出した不溶性のヨウ素酸塩ないしは過ヨウ素酸塩を簡便な方法で除去し、二酸化鉛陽極表面を活性化しながら電解することにより、電流効率を向上させ、生産性に優れた過ヨウ素酸塩類を製造する方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems and to produce periodate by electrolytic oxidation of an aqueous solution containing iodine and / or iodate by an electrolysis process. By removing the precipitated insoluble iodate or periodate by a simple method and electrolyzing while activating the lead dioxide anode surface, the current efficiency is improved and periodate with excellent productivity is produced. It is to provide a way to do.

本発明者らは鋭意研究を重ねた結果、電解工程中、二酸化鉛陽極表面に析出した不溶性のヨウ素酸塩ないしは過ヨウ素酸塩を簡便な方法で除去し、二酸化鉛陽極表面を活性化しながら電解することにより、電流効率を向上させ、過ヨウ素酸塩を生産性よく製造し得ることを見出し、本発明を完成するに至った。   As a result of intensive research, the present inventors removed insoluble iodate or periodate deposited on the surface of the lead dioxide anode during the electrolysis process by a simple method, and electrolyzed while activating the lead dioxide anode surface. As a result, it has been found that the current efficiency can be improved and the periodate can be produced with high productivity, and the present invention has been completed.

すなわち、本発明は、ヨウ素及び/またはヨウ素酸を含有する水溶液を電解工程により電解酸化させて過ヨウ素酸塩類を製造する方法において、電解工程が、ヨウ素及び/またはヨウ素酸塩を含有する水溶液中、二酸化鉛電極を陽分極させて過ヨウ素酸に電解酸化させる酸化電解と、前記電解液中、電極表面を活性化させる電極活性化電解とを包含することを特徴とする過ヨウ素酸塩類の製造方法である。   That is, the present invention relates to a method for producing periodate by electrolytically oxidizing an aqueous solution containing iodine and / or iodic acid by an electrolysis step, wherein the electrolysis step is performed in an aqueous solution containing iodine and / or iodate. The production of periodates, comprising oxidation electrolysis in which a lead dioxide electrode is positively polarized and electrolytically oxidized to periodate, and electrode activation electrolysis in which the electrode surface is activated in the electrolytic solution Is the method.

また、本発明は、上記過ヨウ素酸塩類の製造方法において、電極活性化電解が、酸化電解における平均電圧より少なくとも1.0V高い電圧にて電解されることを特徴とする過ヨウ素酸塩類の製造方法である。   Further, the present invention provides the above-described periodate production method, wherein the electrode activated electrolysis is electrolyzed at a voltage at least 1.0 V higher than the average voltage in the oxidation electrolysis. Is the method.

また、本発明は、上記電極活性化電解がヨウ素及び/またはヨウ素酸を30g/L未満含有する水溶液中で電解されることを特徴とする過ヨウ素酸塩類の製造方法である。   In addition, the present invention is a method for producing periodate, wherein the electrode activation electrolysis is electrolyzed in an aqueous solution containing less than 30 g / L of iodine and / or iodic acid.

また、本発明は、上記いずれかの過ヨウ素酸塩類の製造方法において、酸化電解が電流密度3A/dm超20A/dm以下及び電極活性化電解が電流密度20A/dm超50A/dm以下で行われることを特徴とする過ヨウ素酸塩類の製造方法である。 Further, according to the present invention, in any one of the methods for producing periodates, the oxidation electrolysis has a current density of more than 3 A / dm 2 and less than 20 A / dm 2 and the electrode activation electrolysis has a current density of more than 20 A / dm 2 and more than 50 A / dm. This is a method for producing periodate, which is performed at 2 or less.

また二酸化鉛電極が、チタン基体上に二酸化鉛層を形成させた電極であることを特徴とする上記いずれかの過ヨウ素酸塩類の製造方法である。   The lead dioxide electrode is an electrode in which a lead dioxide layer is formed on a titanium substrate.

過ヨウ素酸塩類が、過ヨウ素酸、過ヨウ素酸リチウム、過ヨウ素酸ナトリウム、過ヨウ素酸カリウム及び過ヨウ素酸アンモニウムからなる群から選ばれる少なくとも1種である事を特徴とする上記いずれかの過ヨウ素酸塩類の製造方法である。   The periodate is at least one selected from the group consisting of periodic acid, lithium periodate, sodium periodate, potassium periodate and ammonium periodate. This is a method for producing iodates.

本発明によれば、ヨウ素及び/またはヨウ素酸を含有する水溶液を電解工程により電解酸化させて過ヨウ素酸塩類を製造する方法において、電解工程が、ヨウ素及び/またはヨウ素酸塩を含有する水溶液中、二酸化鉛電極を陽分極させて過ヨウ素酸に電解酸化させる酸化電解と、前記電解液中、電極表面を活性化させる電極活性化電解とを組み合わせることにより、二酸化鉛電極表面に付着した不溶性のヨウ素酸塩ないしは過ヨウ素酸塩を容易に除去でき、これらの付着による電流効率の悪化が改善され、従来のように電極を取り外して再生する手間が不要であり、過ヨウ素酸塩類を生産性よく製造することが可能である。   According to the present invention, in the method for producing periodate by electrolytically oxidizing an aqueous solution containing iodine and / or iodic acid by an electrolysis step, the electrolysis step is carried out in an aqueous solution containing iodine and / or iodate. By combining the oxidation electrolysis that positively polarizes the lead dioxide electrode and electrolytically oxidizes it to periodic acid, and the electrode activation electrolysis that activates the electrode surface in the electrolyte, the insoluble matter adhering to the lead dioxide electrode surface is obtained. Iodate or periodate can be easily removed, the deterioration of current efficiency due to the adhesion is improved, and there is no need to remove and regenerate the electrode as in the past. It is possible to manufacture.

本発明は、ヨウ素及び/またはヨウ素酸を含有する水溶液を電解工程により電解酸化させて過ヨウ素酸塩類を製造する方法において、電解工程が、ヨウ素及び/またはヨウ素酸塩を含有する水溶液中、二酸化鉛電極を陽分極させて過ヨウ素酸に電解酸化させる酸化電解と、前記電解液中、電極表面を活性化させる電極活性化電解とを包含することを特徴とする過ヨウ素酸塩類の製造方法である。   The present invention relates to a method for producing periodate by electrolytically oxidizing an aqueous solution containing iodine and / or iodic acid by an electrolysis step, wherein the electrolysis step is carried out in an aqueous solution containing iodine and / or iodate. A method for producing periodates, comprising oxidation electrolysis in which a lead electrode is positively polarized and electrolytically oxidized to periodate, and electrode activation electrolysis in which the electrode surface is activated in the electrolytic solution. is there.

本発明の電解工程では、例えば、図1(隔膜電解槽の構成を示す模式図)に示された電解槽を用いることができ、図1中、隔膜電解槽1は、イオン交換膜、磁製または樹脂製の多孔膜等の隔膜2を介して陽極室3及び陰極室4に分割されるとともに、陽極5としては二酸化鉛電極、陰極6としてはステンレス鋼、チタン等が具備されている。   In the electrolysis process of the present invention, for example, the electrolytic cell shown in FIG. 1 (schematic diagram showing the configuration of the diaphragm electrolytic cell) can be used. In FIG. 1, the diaphragm electrolytic cell 1 is an ion exchange membrane, made of magnetic material. Or, it is divided into an anode chamber 3 and a cathode chamber 4 through a diaphragm 2 such as a resin porous membrane, and the anode 5 is provided with a lead dioxide electrode, and the cathode 6 is provided with stainless steel, titanium or the like.

二酸化鉛電極としては、電極触媒層に二酸化鉛を被覆させた電極であれば特に限定されないが、具体的には特開昭56−166384号公報に記載されたチタン基体上に二酸化鉛層を被覆させた電極が好ましい。   The lead dioxide electrode is not particularly limited as long as it is an electrode in which an electrode catalyst layer is coated with lead dioxide. Specifically, a lead dioxide layer is coated on a titanium substrate described in JP-A-56-166384. The electrode made to be preferable is preferable.

隔膜式電解槽の陽極液としては、ヨウ素及び/またはヨウ素酸(以下、「ヨウ素原料」と略記する。)を含有する水溶液を用いることができ、具体的にはヨウ素原料を含む塩類を水、アルカリ金属水酸化物または各種酸の水溶液に溶解したものが挙げられる。陽極液中に含有されるヨウ素原料の濃度としては、少なくとも50g/Lが好ましい。ヨウ素原料が50g/L未満では、槽電圧が高く、また、得られる過ヨウ素酸塩類の濃度が低く、生産性に劣る。   As the anolyte of the diaphragm type electrolytic cell, an aqueous solution containing iodine and / or iodic acid (hereinafter abbreviated as “iodine raw material”) can be used. Specifically, the salt containing the iodine raw material is water, What melt | dissolved in the aqueous solution of an alkali metal hydroxide or various acids is mentioned. The concentration of the iodine raw material contained in the anolyte is preferably at least 50 g / L. When the iodine raw material is less than 50 g / L, the cell voltage is high, and the concentration of the periodate obtained is low, resulting in poor productivity.

また、陰極液としては、硫酸、水酸化ナトリウム、硫酸ナトリウム等の水溶液を用いることができ、特に限定されない。   Moreover, as a catholyte, aqueous solution, such as a sulfuric acid, sodium hydroxide, sodium sulfate, can be used, and it does not specifically limit.

本発明の電解工程は、上記のように構成された隔膜式電解槽を用いて、ヨウ素原料を含有する水溶液中、二酸化鉛電極を陽分極させて過ヨウ素酸に電解酸化させる酸化電解と、前記電解液中、電極表面を活性化させる電極活性化電解とを包含するものである。   The electrolysis step of the present invention uses the diaphragm-type electrolytic cell configured as described above, and in the aqueous solution containing the iodine raw material, the oxidation electrolysis in which the lead dioxide electrode is positively polarized and electrolytically oxidized to periodate, Electrode activation electrolysis that activates the electrode surface in the electrolytic solution is included.

本発明における電解工程は、酸化電解と電極活性化電解とからなり、酸化電解は、主に、電解液中のヨウ素原料を過ヨウ素酸に電解酸化させる反応が主であり、副反応として酸素発生も同時に進行するが、この場合での酸化電解とは、過ヨウ素酸生成の電流効率が40%以上であり、酸素発生に消費される電流が60%未満の電解状態を指す。   The electrolysis process in the present invention comprises oxidation electrolysis and electrode activation electrolysis, and the oxidation electrolysis is mainly a reaction in which iodine raw material in the electrolytic solution is electrolytically oxidized to periodic acid, and oxygen is generated as a side reaction. In this case, the oxidation electrolysis refers to an electrolysis state in which the current efficiency of periodate generation is 40% or more and the current consumed for oxygen generation is less than 60%.

一方、電極活性化電解は、不溶性塩が析出した二酸化鉛陽極を、前記電解液中、高電流密度ないしはヨウ素原料を少量含む電解液中で電解することにより、電極表面の酸素ガス発生を増加させ、このガス発生圧力によりこれらの析出物を剥離させることにより、電極を活性化させるものであり、電極活性化電解の条件としては、酸素発生に消費される電流が少なくとも70%となる範囲が好ましい。   On the other hand, electrode activation electrolysis increases the generation of oxygen gas on the electrode surface by electrolyzing a lead dioxide anode on which insoluble salts are deposited in an electrolyte containing a high current density or a small amount of iodine raw material. The electrode is activated by peeling off these precipitates by this gas generation pressure, and the conditions for electrode activation electrolysis are preferably in a range where the current consumed for oxygen generation is at least 70%. .

一般に、ヨウ素原料を多量に含む電解液中、低い電流密度領域で電解すると酸化電解が進行しやすく、逆に、ヨウ素原料を少量含む電解液中、高電流密度領域で電解すると、電極活性化電解が進行し易い。   In general, when electrolysis is performed in a low current density region in an electrolytic solution containing a large amount of iodine raw material, oxidation electrolysis tends to proceed. Conversely, in an electrolytic solution containing a small amount of iodine raw material, electrolysis is performed in a high current density region. Is easy to progress.

本発明を実施するにあたり、電解工程は、過ヨウ素酸生成の電流効率がおよそ40%未満に低下した時点で、適宜、電極活性化電解を実施することが好ましく、電極活性化電解は、酸化電解における平均電圧の少なくとも1.0V高い電圧となるように、例えば、電流密度を上昇させて一定時間電解させるか、または、ヨウ素原料を30g/L未満含有する水溶液中で一定時間電解させることにより、電極からのガス発生が促進され、ガス発生圧力により電極表面への付着物が除去でき、電極を再生、活性化することができる。また、ヨウ素原料を30g/L未満含有する水溶液中、電流密度を上昇させて電解しても同様の効果が得られる。   In practicing the present invention, it is preferable that the electrolysis step is appropriately performed electrode activation electrolysis when the current efficiency of periodate generation is reduced to less than about 40%. For example, by increasing the current density and performing electrolysis for a certain period of time, or by performing electrolysis for a certain period of time in an aqueous solution containing less than 30 g / L of iodine raw material, so that the voltage becomes at least 1.0 V higher than the average voltage in The generation of gas from the electrode is promoted, the deposit on the electrode surface can be removed by the gas generation pressure, and the electrode can be regenerated and activated. Moreover, the same effect can be obtained even when electrolysis is performed by increasing the current density in an aqueous solution containing less than 30 g / L of the iodine raw material.

電極活性化電解は、電解工程中、酸化電解の合間に、電解電圧が少なくとも1.0V上昇するように電流密度を上昇させて一定時間電解してもよいし、電解終了時、ヨウ素原料の濃度が30g/L未満となった時点で一定時間電解してもよい。   Electrode activation electrolysis may be performed for a certain period of time by increasing the current density so that the electrolysis voltage increases by at least 1.0 V during the electrolysis process during the electrolysis process, or at the end of electrolysis, the concentration of the iodine raw material Electrolysis may be performed for a certain period of time at a point of time of less than 30 g / L.

電極活性化に要する電解時間としては、電解槽の規模、電解液の種類、電流密度等の条件で決定され、特に限定されないが、少なくとも1時間電解することにより、電極活性化の効果が得られる。   The electrolysis time required for electrode activation is determined by conditions such as the scale of the electrolytic cell, the type of electrolytic solution, and the current density, and is not particularly limited, but the effect of electrode activation can be obtained by performing electrolysis for at least 1 hour. .

電解工程における酸化電解と電極活性化電解の電流密度は、通常、酸化電解が3A/dm超20A/dm以下、また、電極活性化電解が20A/dm超50A/dm以下の範囲である。電極活性化電解の電流密度が50A/dm超では、電極に悪影響を与える場合がある。 The current density of oxidation electrolysis and electrode activation electrolysis in the electrolysis process is usually in the range of oxidation electrolysis over 3 A / dm 2 over 20 A / dm 2 and electrode activation electrolysis over 20 A / dm 2 over 50 A / dm 2 It is. When the current density of electrode activation electrolysis exceeds 50 A / dm 2 , the electrode may be adversely affected.

上記の電解条件で、ヨウ素原料を過ヨウ素酸に電解酸化させ、目的とする過ヨウ素酸塩を得る。具体的には、陽極液としてヨウ素酸水溶液を用いた場合、本発明に示される電解工程により過ヨウ素酸水溶液が生成され、得られた陽極液をろ過した後、適宜、所定の濃度に濃縮して、目的とする過ヨウ素酸を得る。   Under the above electrolysis conditions, the iodine raw material is electrolytically oxidized to periodic acid to obtain the desired periodate. Specifically, when an iodic acid aqueous solution is used as the anolyte, a periodic acid aqueous solution is generated by the electrolysis step shown in the present invention, and after the obtained anolyte is filtered, it is appropriately concentrated to a predetermined concentration. To obtain the desired periodic acid.

陽極液としてヨウ素酸ナトリウム水溶液を用いた場合、電解酸化により過ヨウ素酸ナトリウム水溶液が生成され、得られた陽極液を濃縮後、冷却、ろ過して過ヨウ素酸ナトリウムの結晶を得る。また、陽極液としてヨウ素を懸濁溶解させた塩酸水溶液を用いた場合、同様に過ヨウ素酸水溶液が生成され、これをアルカリで中和した後、濃縮乾固させて、対応する過ヨウ素酸リチウム、過ヨウ素酸ナトリウム、過ヨウ素酸カリウム、過ヨウ素酸アンモニウムを得ることができる。   When a sodium iodate aqueous solution is used as the anolyte, a sodium periodate aqueous solution is produced by electrolytic oxidation. The obtained anolyte is concentrated, cooled, and filtered to obtain sodium periodate crystals. In addition, when an aqueous hydrochloric acid solution in which iodine is suspended and dissolved is used as the anolyte, a periodic acid aqueous solution is similarly produced. After neutralizing this with an alkali, the solution is concentrated to dryness and the corresponding lithium periodate is prepared. , Sodium periodate, potassium periodate, and ammonium periodate can be obtained.

本発明によれば、ヨウ素及び/またはヨウ素酸を含有する水溶液を電解工程により電解酸化させて過ヨウ素酸塩を製造する方法において、電解工程が、前記電解液中、二酸化鉛電極を陽分極させて過ヨウ素酸に電解酸化させる酸化電解と、前記電解液中、電極表面を活性化させる電極活性化電解とを組み合わせることにより、前記電極表面に付着した不溶性のヨウ素酸塩ないしは過ヨウ素酸塩を容易に除去でき、これらの付着による電流効率の悪化や、電極の局部的な消耗が改善され、従来のように電極を取り外して再生する必要がないので、過ヨウ素酸塩を生産性よく製造することが可能である。   According to the present invention, in the method for producing periodate by electrolytically oxidizing an aqueous solution containing iodine and / or iodic acid in an electrolysis step, the electrolysis step comprises positively polarizing a lead dioxide electrode in the electrolyte solution. Insoluble iodate or periodate adhering to the electrode surface can be obtained by combining oxidative electrolysis that performs electrolytic oxidation to periodate and electrode activation electrolysis that activates the electrode surface in the electrolytic solution. Periodic acid salt can be produced with high productivity because it can be easily removed, the current efficiency deteriorates due to adhesion, and the local consumption of the electrode is improved, and it is not necessary to remove and regenerate the electrode as in the past. It is possible.

本発明の実施の形態を実施例に基づいて具体的に説明する。なお、本発明は、実施例によりなんら限定されない。   The embodiment of the present invention will be specifically described based on examples. In addition, this invention is not limited at all by the Example.

実施例1
隔膜にフッ素樹脂系陽イオン交換膜(デュポン社登録商標 Nafion NE424)、陽極にPbO被覆チタン電極(活性面:0.45dm)、陰極にチタン電極(活性面:0.45dm)をそれぞれ具備した隔膜電解槽(図1)を使用し、陽極室に100g/Lのヨウ素酸ナトリウム水溶液1Lを、陰極室に40g/Lの水酸化ナトリウム水溶液1Lをそれぞれ供給して、電流密度10A/dm(電流4.5A)で6時間、過ヨウ素酸の酸化電解を行った。この時の平均電圧は、約5V、過ヨウ素酸の電流効率(全印加電流に対する、過ヨウ素酸の生成に消費される電流の百分率を示す)は80%であった。
Example 1
Fluororesin cation exchange membrane to membrane (registered trademark of Du Pont Nafion NE424), anode PbO 2 coated titanium electrodes (active surface: 0.45dm 2), titanium electrodes (active surface: 0.45dm 2) to the cathode, respectively Using the provided diaphragm electrolytic cell (FIG. 1), supplying 1 L of 100 g / L sodium iodate aqueous solution to the anode chamber and 1 L of 40 g / L sodium hydroxide aqueous solution to the cathode chamber, respectively, the current density was 10 A / dm. Periodic acid oxidation electrolysis was carried out at 2 (current 4.5 A) for 6 hours. The average voltage at this time was about 5 V, and the current efficiency of periodic acid (indicating the percentage of current consumed to generate periodic acid with respect to the total applied current) was 80%.

上記電解操作を1バッチとし、新規に調製した電解液を用いて同様の電解操作を複数回繰り返した結果、過ヨウ素酸の電流効率は徐々に低下する傾向を示し、6バッチ後では、約40%まで低下し、電極表面には黒色のヨウ素酸鉛が析出していることを確認した。   As a result of repeating the same electrolysis operation a plurality of times using a newly prepared electrolytic solution, the current efficiency of periodic acid showed a tendency to gradually decrease, and after 6 batches, about 40 %, And it was confirmed that black lead iodate was deposited on the electrode surface.

6バッチ目の電解終了後、酸化電解によりヨウ素酸濃度が約60g/Lまで低下した同電解液中、電流密度50A/dm(22.5A)、槽電圧約10Vの条件で1時間通電し、電極活性化電解を行った。 After electrolysis of the 6th batch, in the same electrolytic solution in which the iodic acid concentration was reduced to about 60 g / L by oxidation electrolysis, current was passed for 1 hour under conditions of a current density of 50 A / dm 2 (22.5 A) and a cell voltage of about 10 V. Electrode activation electrolysis was performed.

上記活性化電解後に、新規に調製した電解液を用いて7バッチ目の電解操作を行った結果、過ヨウ素酸の電流効率は78%まで回復し、電極表面が活性化されていることを確認した。   After the activation electrolysis, the seventh batch of electrolysis was performed using the newly prepared electrolyte. As a result, the periodic acid current efficiency was recovered to 78%, and it was confirmed that the electrode surface was activated. did.

比較例1
実施例1において、6バッチ目の電解終了後、電極活性化電解を行わない以外は実施例1と同様にして、7バッチ目の電解を行った。この結果、過ヨウ素酸の電流効率は40%となり、電極表面を活性化することはできなかった。
Comparative Example 1
In Example 1, after completion of electrolysis in the sixth batch, electrolysis in the seventh batch was performed in the same manner as in Example 1 except that electrode activation electrolysis was not performed. As a result, the current efficiency of periodic acid was 40%, and the electrode surface could not be activated.

実施例1及び比較例1の結果を、表1に示す。   The results of Example 1 and Comparative Example 1 are shown in Table 1.

表1

Figure 2006225693
Table 1
Figure 2006225693

実施例2
実施例1と同様の隔膜電解槽を使用し、陽極室に200g/Lのヨウ素酸水溶液1Lを、陰極室に40g/Lの水酸化ナトリウム溶液1Lをそれぞれ供給して、電流密度20A/dm(電流9A)で8時間、過ヨウ素酸の酸化電解を行った。この時の平均電圧は、約9V、過ヨウ素酸の電流効率は72%となった。
Example 2
The same diaphragm electrolytic cell as in Example 1 was used, and 1 L of 200 g / L iodic acid aqueous solution was supplied to the anode chamber, and 1 L of 40 g / L sodium hydroxide solution was supplied to the cathode chamber, respectively, and the current density was 20 A / dm 2. Periodic acid was oxidized and electrolyzed at (current 9A) for 8 hours. The average voltage at this time was about 9 V, and the current efficiency of periodic acid was 72%.

上記酸化電解によりヨウ素酸濃度が約30g/Lまで低下した電解液中、酸化電解と同様の電流密度で、1時間通電し、電極活性化電解を行った。なお、電極活性化電解終了後、陽極液中のヨウ素酸の濃度は10g/L未満となった。   In the electrolytic solution in which the iodic acid concentration was reduced to about 30 g / L by the oxidation electrolysis, current activation was performed for 1 hour at the same current density as that in the oxidation electrolysis to perform electrode activation electrolysis. After the electrode activation electrolysis, the concentration of iodic acid in the anolyte was less than 10 g / L.

各電解工程に酸化電解及び電極活性化電解を含む上記電解操作を1バッチとし、新規に調製した電解液を用いて同様の電解操作を複数回繰り返したが、電流効率の低下はみられず、6バッチ目の電解を行った結果、過ヨウ素酸の電流効率は70%を示した。   The above electrolysis operation including oxidation electrolysis and electrode activation electrolysis in each electrolysis step was made into one batch, and the same electrolysis operation was repeated several times using a newly prepared electrolytic solution, but no decrease in current efficiency was observed, As a result of conducting the sixth batch of electrolysis, the current efficiency of periodic acid was 70%.

比較例2
実施例2において、バッチ毎に電極活性化電解を行わない以外は実施例2と同様にして6バッチ目の電解を行った結果、過ヨウ素酸の電流効率は45%まで低下した。
Comparative Example 2
In Example 2, the sixth batch of electrolysis was performed in the same manner as in Example 2 except that electrode activation electrolysis was not performed for each batch. As a result, the current efficiency of periodic acid was reduced to 45%.

実施例2及び比較例2の結果を、表2に示す。   The results of Example 2 and Comparative Example 2 are shown in Table 2.

表2

Figure 2006225693
Table 2
Figure 2006225693

表1及び表2の結果から、酸化電解の後に電極活性化電解を行うことにより、前記電極表面に付着した不溶性のヨウ素酸塩ないしは過ヨウ素酸塩を容易に除去でき、これらの付着による電流効率の悪化や、電極の局部的な消耗が改善され、従来のように電極を取り外して再生する必要がないので、過ヨウ素酸塩を生産性よく製造することが可能である。   From the results of Tables 1 and 2, insoluble iodate or periodate attached to the electrode surface can be easily removed by performing electrode activation electrolysis after oxidation electrolysis, and the current efficiency due to these adhesions. The deterioration of the electrode and the local consumption of the electrode are improved, and it is not necessary to remove and regenerate the electrode as in the prior art. Therefore, it is possible to produce periodate with high productivity.

隔膜電解槽の構成を示す模式図である。It is a schematic diagram which shows the structure of a diaphragm electrolytic cell.

符号の説明Explanation of symbols

1 隔膜電解槽
2 隔膜
3 陽極室
4 陰極室
5 陽極
6 陰極

DESCRIPTION OF SYMBOLS 1 Diaphragm electrolytic cell 2 Diaphragm 3 Anode chamber 4 Cathode chamber 5 Anode 6 Cathode

Claims (6)

ヨウ素及び/またはヨウ素酸を含有する水溶液を電解工程により電解酸化させて過ヨウ素酸塩類を製造する方法において、電解工程が、ヨウ素及び/またはヨウ素酸塩を含有する水溶液中、二酸化鉛電極を陽分極させて過ヨウ素酸に電解酸化させる酸化電解と、前記電解液中、電極表面を活性化させる電極活性化電解とを包含することを特徴とする過ヨウ素酸塩類の製造方法。 In a method for producing periodate by electrolytically oxidizing an aqueous solution containing iodine and / or iodic acid in an electrolysis step, the electrolysis step comprises positively treating a lead dioxide electrode in an aqueous solution containing iodine and / or iodate. A method for producing periodate, comprising oxidation electrolysis that is polarized and electrolytically oxidized to periodic acid, and electrode activation electrolysis that activates an electrode surface in the electrolytic solution. 請求項1に記載の過ヨウ素酸塩類の製造方法において、電極活性化電解が、酸化電解における平均電圧より少なくとも1.0V高い電圧にて電解されることを特徴とする過ヨウ素酸塩類の製造方法。 The method for producing periodates according to claim 1, wherein the electrode activated electrolysis is electrolyzed at a voltage at least 1.0 V higher than the average voltage in the oxidation electrolysis. . 請求項1に記載の過ヨウ素酸塩類の製造方法において、電極活性化電解が、ヨウ素及び/またはヨウ素酸を30g/L未満含有する水溶液中で電解されることを特徴とする過ヨウ素酸塩類の製造方法。 The method for producing periodates according to claim 1, wherein the electrode activated electrolysis is electrolyzed in an aqueous solution containing less than 30 g / L of iodine and / or iodic acid. Production method. 請求項1に記載の過ヨウ素酸塩類の製造方法において、酸化電解が電流密度3A/dm超20A/dm以下及び電極活性化電解が電流密度20A/dm超50A/dm以下で行われることを特徴とする過ヨウ素酸塩類の製造方法。 The method of manufacturing a periodate salt according to claim 1, oxide electrolysis current density 3A / dm 2 super 20A / dm 2 or less and the electrode activation electrolyte current density 20A / dm 2 super 50A / dm 2 rows below A method for producing periodates, characterized in that 二酸化鉛電極が、チタン基体上に二酸化鉛層を形成させた電極であることを特徴とする請求項1から請求項4のいずれか一項に記載の過ヨウ素酸塩類の製造方法。 The method for producing periodate according to any one of claims 1 to 4, wherein the lead dioxide electrode is an electrode in which a lead dioxide layer is formed on a titanium substrate. 過ヨウ素酸塩類が、過ヨウ素酸、過ヨウ素酸リチウム、過ヨウ素酸ナトリウム、過ヨウ素酸カリウム及び過ヨウ素酸アンモニウムからなる群から選ばれる少なくとも1種である事を特徴とする請求項1から請求項5のいずれか一項に記載の過ヨウ素酸塩類の製造方法。
The periodate is at least one selected from the group consisting of periodic acid, lithium periodate, sodium periodate, potassium periodate and ammonium periodate. Item 6. The method for producing periodate according to any one of Items 5 to 6.
JP2005038533A 2005-02-16 2005-02-16 Method for producing periodate Pending JP2006225693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005038533A JP2006225693A (en) 2005-02-16 2005-02-16 Method for producing periodate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005038533A JP2006225693A (en) 2005-02-16 2005-02-16 Method for producing periodate

Publications (1)

Publication Number Publication Date
JP2006225693A true JP2006225693A (en) 2006-08-31

Family

ID=36987317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005038533A Pending JP2006225693A (en) 2005-02-16 2005-02-16 Method for producing periodate

Country Status (1)

Country Link
JP (1) JP2006225693A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112030179A (en) * 2019-06-04 2020-12-04 泰安汉威集团有限公司 Environment-friendly production process of iodate
EP3825441A1 (en) 2019-11-21 2021-05-26 COVENTYA S.p.A. An electrolytic treatment device for preparing plastic parts to be metallized and a method for etching plastic parts
WO2023194432A1 (en) * 2022-04-05 2023-10-12 Pharmazell Gmbh Method for preparing periodates via anodic oxidation in a steady state reactor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112030179A (en) * 2019-06-04 2020-12-04 泰安汉威集团有限公司 Environment-friendly production process of iodate
EP3825441A1 (en) 2019-11-21 2021-05-26 COVENTYA S.p.A. An electrolytic treatment device for preparing plastic parts to be metallized and a method for etching plastic parts
WO2021099556A1 (en) 2019-11-21 2021-05-27 Coventya S.P.A. An electrolytic treatment device for preparing plastic parts to be metallized and a method for etching plastic parts
EP4407070A2 (en) 2019-11-21 2024-07-31 Coventya S.r.l. An electrolytic treatment device for preparing plastic parts to be metallized and a method for etching plastic parts
WO2023194432A1 (en) * 2022-04-05 2023-10-12 Pharmazell Gmbh Method for preparing periodates via anodic oxidation in a steady state reactor

Similar Documents

Publication Publication Date Title
US4088550A (en) Periodic removal of cathodic deposits by intermittent reversal of the polarity of the cathodes
CN110016676B (en) Regenerated titanium anode and preparation method thereof
JP2006225693A (en) Method for producing periodate
JP2010505846A (en) Improved electrochemical reduction of halogenated 4-aminopicolinic acid
JP2013508564A (en) Improved silver cathode activation
TWI652230B (en) Gold-containing iodine-based etching solution processing method and processing device
JPH03257199A (en) Production of aluminum base for printing plate
JPS586788B2 (en) Recycling method for lead dioxide coated electrodes
JPH0780253A (en) Electrodialytic purifying method
TW201917236A (en) Electrode and production method therefor, and production method for regenerated electrode
USRE28849E (en) Surface preparation process for recoating of used coated metallic electrodes
JP5344278B2 (en) Indium metal production method and apparatus
JPS622036B2 (en)
EP0267858B1 (en) Process for manufacturing vanadium trichloride in an aqueous solution
JP6167254B1 (en) Method of recovering Au from iodine-based etching waste liquid and regenerating the etching solution
JP5231067B2 (en) Method for recovering performance of electrolytic cell used for production of polysulfide and method for producing polysulfide
KR100837423B1 (en) The method for generating deactivated electrode in the cell for electrolyzing salt water
JPH03173800A (en) Production of substrate for printing plate
JPH01184293A (en) Production of iodine and iodate
JPS6046387A (en) Reactivation of active electrode
JPS63134684A (en) Production of quaternary ammonium hydroxide
JP2003073878A (en) Treatment method for waste copper sulfate solution by electrolysis
JPH10216741A (en) Removal of chloride ions in water
JPS62199790A (en) Method for regenerating anode
JPH01184294A (en) Production of iodate