JPH0726221B2 - Method for producing electrolytic iron - Google Patents

Method for producing electrolytic iron

Info

Publication number
JPH0726221B2
JPH0726221B2 JP61001275A JP127586A JPH0726221B2 JP H0726221 B2 JPH0726221 B2 JP H0726221B2 JP 61001275 A JP61001275 A JP 61001275A JP 127586 A JP127586 A JP 127586A JP H0726221 B2 JPH0726221 B2 JP H0726221B2
Authority
JP
Japan
Prior art keywords
cathode
iron
electrolytic
ultrasonic waves
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61001275A
Other languages
Japanese (ja)
Other versions
JPS62161985A (en
Inventor
誠一郎 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP61001275A priority Critical patent/JPH0726221B2/en
Publication of JPS62161985A publication Critical patent/JPS62161985A/en
Publication of JPH0726221B2 publication Critical patent/JPH0726221B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電解液中で鉄を陽極とし、陰極上に高純度鉄を
電着せしめる電解鉄の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing electrolytic iron in which iron is used as an anode in a liquid electrolyte and high-purity iron is electrodeposited on the cathode.

〔従来の技術〕[Conventional technology]

電解鉄は通常の軟鋼とか純鉄に比べ各種不純物が格段と
少ないため、磁性材料、電子材料、合金材料、試験研究
用ベースメタル材料等高品位を要求される分野に賞用さ
れている。
Electrolytic iron has much less impurities than ordinary mild steel or pure iron, so it has been prized in fields requiring high quality such as magnetic materials, electronic materials, alloy materials, and base metal materials for testing and research.

しかし、最近の技術革新に伴い、特殊分野において超高
純度化、特定元素の超低含有化が望まれてきており、従
来、陽極の選択の仕方により左右されていた金属元素以
外の非金属元素についてもたとえば塩素、窒素、酸素、
水素などの元素の含有が問題視されるようになった。こ
れらの元素の混入源は電解液成分であり、混入機構は未
だ明らかではないが、陰極表面上で発生するガスや電解
液が捲きこまれているのではないかと考えられている。
However, along with recent technological innovations, ultra-purification and ultra-low content of specific elements have been demanded in special fields, and non-metal elements other than metal elements, which have hitherto been influenced by the selection method of the anode. For example, chlorine, nitrogen, oxygen,
Inclusion of elements such as hydrogen has become a problem. The mixing source of these elements is the electrolytic solution component, and although the mixing mechanism has not been clarified yet, it is considered that the gas generated on the cathode surface or the electrolytic solution may be entrapped.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は、電解液中で鉄を陽極とし、陰極上に高純度鉄
を電着せしめて電解鉄を製造する場合に、この高純度鉄
中に混入してくる塩素、窒素、酸素、水素等の元素の量
を最小限度に抑制することを目的とするものである。
The present invention uses iron in an electrolytic solution as an anode, and in the case of producing electrolytic iron by electrodepositing high-purity iron on the cathode, chlorine, nitrogen, oxygen, hydrogen, etc. which are mixed into the high-purity iron. The purpose is to minimize the amount of the element.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記目的を達成するために鋭意研究をした
結果、鉄イオンが放電し電着する陰極表面に向けて超音
波を当てることにより電解鉄中の塩素、窒素、酸素、水
素の元素含有量をかなり減少しうることを見い出し、本
発明を完成した。すなち、本発明は、電解液を収容した
電解槽中に陰極と軟鋼、純鉄などからなる陽極とを対置
させ、電解して陰極上に高純度鉄を得る電解鉄の製造方
法において、電解液中に配置した超音波発振子から陰極
面上に超音波を当てながら電解を行なう電解鉄の製造方
法にある。
As a result of intensive studies for achieving the above-mentioned objects, the inventors of the present invention have shown that chlorine, nitrogen, oxygen, and hydrogen elements in electrolytic iron are applied by applying ultrasonic waves toward the cathode surface where iron ions are discharged and electrodeposited. The present invention has been completed by finding that the content can be considerably reduced. That is, the present invention, a cathode and a mild steel in an electrolytic cell containing an electrolytic solution, an anode made of pure iron or the like is placed in opposition, in a method for producing electrolytic iron to obtain high-purity iron on the cathode by electrolysis, It is a method for producing electrolytic iron in which electrolysis is performed while applying ultrasonic waves to the cathode surface from an ultrasonic oscillator arranged in an electrolytic solution.

従来、電解液中に板状の陽極と陰極を対向して配置して
電解を行なう技術のほか、陰極として水平に回転軸を支
持した回転ドラム型のものを用いこれに板状の陽極を対
置させ、前記陰極を回転させながら電解を行なう技術も
公知である。さらに、陰極として、垂直な回転軸をもつ
回転ドラム型のものを用い、あるいは水平または垂直な
回転軸をもつ回転ディスク型のものを用い、かつ陰極を
回転しながら電解を行なう方法も考えられる。これらの
いずれにおいても、陰極面上に超音波を当てて陰極面上
の電解液に振動あるいは乱れを与えることによって本発
明の効果を奏せしめることが可能である。
Conventionally, in addition to the technology of electrolyzing by placing a plate-shaped anode and a cathode in an electrolytic solution so as to face each other, a plate-shaped anode is placed opposite to a rotating drum type with a horizontal rotating shaft supported as the cathode. A technique is also known in which electrolysis is performed while rotating the cathode. Further, a method of using a rotating drum type having a vertical rotation axis or a rotating disk type having a horizontal or vertical rotation axis as the cathode and performing electrolysis while rotating the cathode is also conceivable. In any of these cases, it is possible to exert the effect of the present invention by applying ultrasonic waves to the cathode surface to give vibration or disturbance to the electrolytic solution on the cathode surface.

超音波は陰極面の全面に当たるようにすることが望まし
い。従って、複数個の陰極板と陽極板が並行に配列され
た場合には、各陰極板の全面に超音波が当たるように複
数個の超音波発振子を用いることが好ましいであろう。
一方、回転ドラム型の陰極の場合には、ドラムの1母線
に向って超音波を当てれば、ドラムは回転しているので
超音波はドラムの曲面の全部に当たることになり、一般
的には1個の超音波発振子で足りるであろう。但し、こ
れは、回転ドラム型陰極に対しても複数の超音波発振子
を用いて陰極の全幅に当てて超音波が当たるようにある
いは均一に当たるようにすることを排斥するものではな
い。
It is desirable that the ultrasonic waves strike the entire surface of the cathode. Therefore, when a plurality of cathode plates and an anode plate are arranged in parallel, it is preferable to use a plurality of ultrasonic oscillators so that the ultrasonic waves hit the entire surface of each cathode plate.
On the other hand, in the case of the rotating drum type cathode, if ultrasonic waves are applied toward one generatrix of the drum, the ultrasonic waves will hit the entire curved surface of the drum, and generally 1 One ultrasonic oscillator will be enough. However, this does not exclude the use of a plurality of ultrasonic oscillators for the rotating drum type cathode so that the ultrasonic waves are applied to the entire width of the cathode or are evenly applied.

一般的には、周波数10〜75kHzの超音波を用いる。超音
波発振子のエネルギーは陰極の寸法、電解液の量、超音
波発振子と陰極との距離等により決定されるべきもので
ある。
Generally, ultrasonic waves with a frequency of 10 to 75 kHz are used. The energy of the ultrasonic oscillator should be determined by the size of the cathode, the amount of electrolyte, the distance between the ultrasonic oscillator and the cathode, and the like.

陰極の材質は導電体でありかつ電解液に対して不活性な
ものであればよく、純鉄、ステンレス鋼、チタン、白金
などを使用できるが、取扱性の良さとコストの観点から
ステンレス鋼が好ましい。
The material of the cathode may be any material that is a conductor and inert to the electrolytic solution, and pure iron, stainless steel, titanium, platinum, etc. can be used, but stainless steel is preferable from the viewpoint of good handleability and cost. preferable.

陽極は、通常、鉄からなるが、鉄の品位が悪ければ、別
系列で清浄化が必要であり、鋼材(SS材)以上の品位の
ものがよく、一般的には軟鋼または純鉄を用いる。
The anode is usually made of iron, but if the grade of iron is poor, it is necessary to clean it in a separate series, and a grade of steel material (SS material) or better is good, generally mild steel or pure iron is used. .

電解液は公知のものを使用することができ、例えば、硫
酸ナトリウム、硫酸カリウム、硫酸アンモニウムなどの
水溶性硫酸塩の硫酸酸性水溶液とか、塩化ナトリウム、
塩化カリウム、塩化アンモニウムなどの水溶性塩酸塩の
塩酸酸性水溶液などを用いることができる。
As the electrolytic solution, known ones can be used, for example, sodium sulfate, potassium sulfate, a sulfuric acid acidic aqueous solution of a water-soluble sulfate such as ammonium sulfate, sodium chloride,
Aqueous hydrochloric acid aqueous solution of water-soluble hydrochloride such as potassium chloride or ammonium chloride can be used.

〔作用〕[Action]

本発明の方法の作用機構は必ずしも明らかではないが、
陰極表面上で発生する水素ガスが脱着するとき電解鉄中
に電解液や気体が捲き込まれて塩素等の元素が含有され
るが、本発明により陰極表面上に超音波を当てることに
より陰極表面に存在する気体が可及的速やかに除去さ
れ、電解鉄中への電解液や気体の捲き込みが防止される
ものと考えられる。
Although the mechanism of action of the method of the present invention is not always clear,
When hydrogen gas generated on the cathode surface is desorbed, an electrolytic solution or gas is caught in electrolytic iron and contains elements such as chlorine, but by applying ultrasonic waves on the cathode surface according to the present invention, the cathode surface It is considered that the gas existing in the iron is removed as soon as possible, and the entrainment of the electrolytic solution and the gas into the electrolytic iron is prevented.

〔実施例〕〔Example〕

第1図を参照して説明すると、電解浴1中に、垂直な回
転軸2で支持されたステンレス鋼製回転ドラムを陰極3
とし、陰極3の周囲に陰極3と対置して鉛直に支持され
た多数本の鉄製陽極4を配置し、陰極3を回転させなが
ら電解を行なった。そして、電解中、市販の超音波発振
器5のノズル6を電解液1中で陰極ドラム3の母線の方
向に向けて配置し、陰極面に超音波を当てた。
Referring to FIG. 1, in a electrolytic bath 1, a stainless steel rotating drum supported by a vertical rotating shaft 2 is used as a cathode 3.
Then, a large number of vertically supported iron anodes 4 were placed around the cathode 3 in opposition to the cathode 3, and electrolysis was performed while rotating the cathode 3. Then, during electrolysis, the nozzle 6 of the commercially available ultrasonic oscillator 5 was arranged in the electrolytic solution 1 in the direction of the generatrix of the cathode drum 3, and ultrasonic waves were applied to the cathode surface.

電解条件は下記の通りであった。The electrolysis conditions were as follows.

陰極:ステンレス鋼製、直径1m、長さ2m 陽極:軟鋼 電解液: FeCl2 1.0モル/l NH4Cl 2.0モル/l pH 4.0 濃度 70℃ 浴 HCl 電圧:3.5V 電流密度:3.4A/dm2 陰極回転速度:5rpm 超音波発振器:10kHz、100W こうして、陰極ドラム曲面上に厚さ6.7mmと厚さ10.5mm
に電解液7を電着させた後、ドラム表面をハンマーでた
たいて電解鉄破片を回収した。陰極ドラム表面の母線に
沿って第1図に示す如く〜の位置から回収された電
解鉄片を化学分析した。その結果をそれぞれ下記第1表
および第2表に示すが、比較のために超音波を当てるこ
となく他は同一条件で得た電解鉄の化学分析結果を併記
する。
Cathode: Stainless steel, diameter 1m, length 2m Anode: Mild steel Electrolyte: FeCl 2 1.0 mol / l NH 4 Cl 2.0 mol / l pH 4.0 Concentration 70 ℃ Bath HCl Voltage: 3.5V Current density: 3.4A / dm 2 Cathode rotation speed: 5 rpm Ultrasonic oscillator: 10 kHz, 100 W Thus, thickness 6.7 mm and thickness 10.5 mm on the curved surface of the cathode drum
After the electrolytic solution 7 was electrodeposited on, the drum surface was hit with a hammer to collect electrolytic iron fragments. As shown in FIG. 1, electrolytic iron pieces collected from positions (1) to (4) along the generatrix of the surface of the cathode drum were chemically analyzed. The results are shown in Tables 1 and 2 below. For comparison, the results of chemical analysis of electrolytic iron obtained under the same conditions without applying ultrasonic waves are also shown for comparison.

以上の結果から、陰極表面に超音波を当てることによ
り、電解鉄中のCl、N、O、Hの元素含有量を大きく低
減できることが明らかである。
From the above results, it is clear that the element contents of Cl, N, O and H in electrolytic iron can be greatly reduced by applying ultrasonic waves to the cathode surface.

〔発明の効果〕〔The invention's effect〕

本発明により、電解鉄の製造において、電解鉄中の塩
素、窒素、酸素、水素等の元素含有量を低減し高純度の
電解鉄を提供することが可能になる。
According to the present invention, in the production of electrolytic iron, it is possible to reduce the content of elements such as chlorine, nitrogen, oxygen and hydrogen in the electrolytic iron and provide electrolytic iron of high purity.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の方法に従って鉄を電解する様子を説明
する模式的である。 1……電解液、2……回転軸、3……陰極ドラム、4…
…陽極、5……超音波発振器、7……電着鉄。
FIG. 1 is a schematic diagram for explaining the manner of electrolyzing iron according to the method of the present invention. 1 ... Electrolyte, 2 ... Rotating shaft, 3 ... Cathode drum, 4 ...
… Anode, 5 …… Ultrasonic oscillator, 7 …… Electroplated iron.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電解液を収容した電解槽中に陰極と軟鋼、
純鉄などからなる陽極とを対置させ、電解して陰極上に
高純度鉄を得る電解鉄の製造方法において、電解液中に
配置した超音波発振子から陰極面上に超音波を当てなが
ら電解を行なうことを特徴とする電解鉄の製造方法。
1. A cathode and mild steel in an electrolytic cell containing an electrolytic solution,
In the method of producing electrolytic iron, which is placed in opposition to an anode made of pure iron or the like and electrolyzes to obtain high-purity iron on the cathode, electrolysis is performed by applying ultrasonic waves on the cathode surface from an ultrasonic oscillator placed in an electrolytic solution A method for producing electrolytic iron, which comprises:
【請求項2】周波数約10〜75kHzの超音波を陰極上に当
てる特許請求の範囲第1項記載の電解鉄の製造方法。
2. The method for producing electrolytic iron according to claim 1, wherein ultrasonic waves having a frequency of about 10 to 75 kHz are applied to the cathode.
JP61001275A 1986-01-09 1986-01-09 Method for producing electrolytic iron Expired - Lifetime JPH0726221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61001275A JPH0726221B2 (en) 1986-01-09 1986-01-09 Method for producing electrolytic iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61001275A JPH0726221B2 (en) 1986-01-09 1986-01-09 Method for producing electrolytic iron

Publications (2)

Publication Number Publication Date
JPS62161985A JPS62161985A (en) 1987-07-17
JPH0726221B2 true JPH0726221B2 (en) 1995-03-22

Family

ID=11496907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61001275A Expired - Lifetime JPH0726221B2 (en) 1986-01-09 1986-01-09 Method for producing electrolytic iron

Country Status (1)

Country Link
JP (1) JPH0726221B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432300C (en) * 2001-09-05 2008-11-12 3M创新有限公司 Ultrasonically-enhanced electroplating apparatus and methods

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01263290A (en) * 1988-04-12 1989-10-19 Purantetsukusu:Kk Device for producing nonferrous metal
JP2006299308A (en) * 2005-04-18 2006-11-02 Katsuhiro Nakayama Method of refining metal using ultrasonic wave
US8460535B2 (en) 2009-04-30 2013-06-11 Infinium, Inc. Primary production of elements

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945930A (en) * 1982-09-03 1984-03-15 Nippon Steel Corp Method for accelerating reduction of fe3+ ion

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100432300C (en) * 2001-09-05 2008-11-12 3M创新有限公司 Ultrasonically-enhanced electroplating apparatus and methods

Also Published As

Publication number Publication date
JPS62161985A (en) 1987-07-17

Similar Documents

Publication Publication Date Title
JPH0726221B2 (en) Method for producing electrolytic iron
Vuković Rotating ring–disc electrode study of the enhanced oxygen evolution on an activated ruthenium electrode
Bazan et al. Electrochemical removal of tin from dilute aqueous sulfate solutions using a rotating cylinder electrode of expanded metal
CN102433581B (en) Method for preparing novel anode material for electro-deposition of nonferrous metals
US4049507A (en) Electrodepositing method
JPS62158894A (en) Manufacture of electrolytic iron
Byrne et al. Destruction of cyanide wastes by electrolytic chlorination
JP2005163096A5 (en)
JPH0726220B2 (en) Manufacturing method of electrolytic iron
JPH0356316B2 (en)
Ryan Electrodeposition of High‐Purity Chromium from Electrolytes Containing Fluoride or Fluosilicate
Murase et al. Measurement of pH in the vicinity of a cathode during the chloride electrowinning of nickel
JPS62161976A (en) Manufacture of electrolytic iron
JPS62161981A (en) Manufacture of electrolytic iron
SU220254A1 (en) Method of obtaining manganese dioxide
JPH086192B2 (en) Method for producing electrolytic iron powder
JPH0356315B2 (en)
GB834640A (en) Improvements in or relating to electrolytic processes
JPH032235B2 (en)
JPS5798696A (en) Nickel strike method
Ryan et al. The source of the nitrogen impurity in electrodeposited chromium
JPH0651918B2 (en) Manufacturing method of high-purity electrolytic iron
JPH0653945B2 (en) High-purity iron manufacturing method
JPS62161982A (en) Manufacture of electrolytic iron
Ginatta et al. Method and Cell for the Electrolytic Production of a Polyvalent Metal