JPH086192B2 - Method for producing electrolytic iron powder - Google Patents

Method for producing electrolytic iron powder

Info

Publication number
JPH086192B2
JPH086192B2 JP61000741A JP74186A JPH086192B2 JP H086192 B2 JPH086192 B2 JP H086192B2 JP 61000741 A JP61000741 A JP 61000741A JP 74186 A JP74186 A JP 74186A JP H086192 B2 JPH086192 B2 JP H086192B2
Authority
JP
Japan
Prior art keywords
electrolytic
cathode
iron
iron powder
electrolytic iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61000741A
Other languages
Japanese (ja)
Other versions
JPS62158890A (en
Inventor
喜充 沢田
進 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP61000741A priority Critical patent/JPH086192B2/en
Publication of JPS62158890A publication Critical patent/JPS62158890A/en
Publication of JPH086192B2 publication Critical patent/JPH086192B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電解鉄粉の製造方法に係り、より詳しく述べ
ると、電解浴、特に陰極周辺の電解液を沸騰させること
によって浴底に微細な電解鉄粉を直接製造する方法に関
する。
The present invention relates to a method for producing electrolytic iron powder. More specifically, the present invention relates to a method for producing electrolytic iron powder. The present invention relates to a method for directly producing electrolytic iron powder.

電解鉄は通常の軟鋼とか純鉄に比べ各種不純物が格段
と少ないため、磁性材料、電子材料、合金材料、試験研
究用ベースメタル材料等高品位を要求される分野に賞用
されている。
Electrolytic iron has much less impurities than ordinary mild steel or pure iron, so it has been prized in fields requiring high quality such as magnetic materials, electronic materials, alloy materials, and base metal materials for testing and research.

〔従来の技術〕[Conventional technology]

従来の鉄の電解精練法では、軟鋼、純鉄などの原料鉄
を陽極とし、適当な鉄塩の水溶液を電解液として、ステ
ンレス鋼などの陰極上に、極めて純粋な鉄を電着させて
得ている。粗金属の中で目的金属よりもイオン化傾向の
小さいもの及び不溶性あるいは難溶性物質は溶解せずに
陽極に付着して残るか、あるいは沈澱となって液底に留
る。イオン化傾向が目的金属よりも大きいものは陽極か
らは溶解するが、陰極には析出しないで溶液中に溜る。
目的金属のみが陽極から溶解して陰極に析難し、來雑物
は結局陽極に付着か、液底沈澱か、あるいは液中に留ま
って陰極に来ないのである。
In the conventional iron electrolytic refining method, raw iron such as mild steel or pure iron is used as an anode, and an aqueous solution of an appropriate iron salt is used as an electrolytic solution to obtain an extremely pure iron by electrodeposition on a cathode such as stainless steel. ing. Among the crude metals, those having a smaller ionization tendency than the target metal and insoluble or sparingly soluble substances remain undissolved and remain attached to the anode, or remain as a precipitate at the liquid bottom. Those having an ionization tendency higher than that of the target metal are dissolved from the anode, but are not deposited on the cathode and remain in the solution.
Only the target metal dissolves from the anode and is difficult to deposit on the cathode, and contaminants eventually adhere to the anode, precipitate at the bottom of the liquid, or remain in the liquid and do not come to the cathode.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

陰極上に電着した電解鉄はハンマー等で叩いて陰極面
から剥落させるが、このとき電解鉄は破片になる。電解
鉄製品はこの破片をそのままあるいは適当な大きさの破
片にして出荷されるほか、粉砕して電解鉄粉として出荷
される。この電解鉄粉を製造するためには粉砕工程が必
要である。
The electrolytic iron electrodeposited on the cathode is hit with a hammer or the like to be peeled off from the cathode surface, but at this time, the electrolytic iron becomes fragments. Electrolytic iron products are shipped with these pieces as they are or as pieces of appropriate size, and are also crushed and shipped as electrolytic iron powder. A crushing step is required to produce this electrolytic iron powder.

鉄は水素よりも卑な金属であるために、水素の発生は
不可避であるが、水素ガスが発生すると電着鉄中へのガ
ス成分や電解液の捲き込みが起って電着鉄中の不純物濃
度が増加する原因になる。そこで、陰極方面からの脱ガ
スを行なうために、従来、ドラム型陰極を用いて陰極を
回転させるとか、電解液を溶中を循環させるなどの工夫
が行なわれている。
Since iron is a base metal rather than hydrogen, the generation of hydrogen is unavoidable, but when hydrogen gas is generated, the gas components and electrolytic solution are entrained in the electrodeposited iron and This will increase the impurity concentration. Therefore, in order to perform degassing from the cathode side, various measures such as rotating the cathode using a drum-type cathode or circulating an electrolytic solution in solution have been conventionally performed.

電解浴表面は空気に開放されているために、電解液中
の第1鉄イオンが酸化され、電解浴が不安定になるほ
か、酸化された第2鉄イオンはFe(OH)などの形で沈
澱を生じ、電着鉄中へ捲き込まれて不純物の原因になる
という問題がある。
Since the surface of the electrolytic bath is open to the air, ferrous ions in the electrolytic solution are oxidized and the electrolytic bath becomes unstable, and the oxidized ferric ions are in the form of Fe (OH) 3 etc. However, there is a problem in that it causes precipitation and is caught in the electrodeposited iron to cause impurities.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記の如き従来技術の問題点を解決す
べく鋭意努力していたところ、少なくとも陰極周辺の電
解液を沸騰させながら電解を行なうことによって、高純
度、高品質の電解鉄粉を直接製造でき、また、電解液を
沸騰させることによって脱ガス性が改良され、電解液の
酸化の防止にもなることを見い出し、本発明を完成し
た。
The inventors of the present invention have made diligent efforts to solve the problems of the prior art as described above, and at least perform electrolysis while boiling the electrolytic solution around the cathode to obtain a high purity, high quality electrolytic iron powder. The present invention has been completed based on the finding that it can be directly produced, and that the boiling point of the electrolytic solution improves the degassing property and also prevents the oxidation of the electrolytic solution.

すなわち、本発明は、鉄電着用陰極と陽極とを対置さ
せ、第一鉄イオン含有支持電解室水溶液からなる電解浴
に浸漬し、少なくとも前記陰極周囲の電解液を沸騰させ
つつ電解を行ない、電解鉄粉を得ることを特徴とする電
解鉄粉の製造方法にある。
That is, the present invention, the iron electrodeposition cathode and the anode are placed in opposition, immersed in an electrolytic bath consisting of a ferrous ion-containing supporting electrolytic chamber aqueous solution, performing electrolysis while boiling at least the electrolytic solution around the cathode, electrolysis A method for producing electrolytic iron powder is characterized in that iron powder is obtained.

電解液を加熱する方法は、特に制約されず、例えば、
陰極下方にスチーム管を通したり、電解槽の周囲にヒー
タを取り付けるなどの方法によることができる。
The method of heating the electrolytic solution is not particularly limited, for example,
For example, a steam tube may be passed under the cathode, or a heater may be attached around the electrolytic cell.

〔作 用〕[Work]

陰極周囲の電解液が沸騰していることによって、陰極
上に析出する電解鉄が陰極表面から恒常的に剥落し、底
に100μm以下の粒径の鉄粉として留る。また、電解液
の沸騰が脱ガスの働きを有するので、脱ガスのために余
分な工夫が必要でないばかりか、電解液の純度、品質
(粘さ等)も向上する。
Since the electrolytic solution around the cathode is boiling, the electrolytic iron deposited on the cathode is constantly peeled off from the cathode surface, and remains on the bottom as iron powder having a particle size of 100 μm or less. Further, since boiling of the electrolytic solution has a function of degassing, not only extra measures for degassing are required but also the purity and quality (viscosity, etc.) of the electrolytic solution are improved.

〔実施例〕〔Example〕

第1図に電解装置の1例を示す。陽極1および陰極2
はそれぞれ板状体であり、交互にかつ平行に浴上から懸
垂して配置されている(電極の両端はいずれも陽極1で
ある)。しかし、これ以外の電極構成、例えば、回転ド
ラム型陰極と、その両側に回転軸と平行に配置した板状
陽極とから構成されてもよい。
FIG. 1 shows an example of the electrolysis device. Anode 1 and cathode 2
Are plate-like bodies, and are alternately and parallelly suspended from the bath (both ends of the electrode are the anodes 1). However, an electrode structure other than this, for example, a rotating drum type cathode and plate-shaped anodes arranged on both sides thereof in parallel with the rotation axis may be used.

陽極として用いる鉄材は一般軟鋼でもよいが、少しで
も純度を上げる目的で純鉄を用いても良い。陰極は電解
鉄が放電電着するもので、導電体でありかつ電解液に対
して不活性な材質で構成されればよく、純鉄、ステンレ
ス鋼、チタン、白金などのうち、特に取扱性の良さとコ
ストの観点からステンレス鋼が好ましく用いられる。
The iron material used as the anode may be general mild steel, but pure iron may be used for the purpose of slightly increasing the purity. The cathode is one where electrolytic iron is electrodeposited by electric discharge, and may be made of a material that is a conductor and inert to the electrolytic solution. Of the pure iron, stainless steel, titanium, platinum, etc., it is particularly easy to handle. From the viewpoint of goodness and cost, stainless steel is preferably used.

陽極1と陰極2は対向させて電解浴3中に浸漬する。
電解浴は主要成分として硫酸第一鉄及び又は塩化第一鉄
を用い、これらの硫酸又は塩酸酸性浴に支持電解質とし
て電導性の良い、鉄よりも単なる塩が用いられ、硫酸ア
ンモニウム、塩化アンモニウム、硫酸ナトリウム、塩化
ナトリウム、硫酸カリウム、塩化カリウム、硫酸マグネ
シウム、塩化マグネシウム、塩化カルシウム等が代表例
として挙げられる。
The anode 1 and the cathode 2 are opposed to each other and immersed in the electrolytic bath 3.
The electrolytic bath uses ferrous sulfate and / or ferrous chloride as the main components, and in these sulfuric acid or hydrochloric acid acidic baths, a salt having better conductivity than iron is used as a supporting electrolyte. Ammonium sulfate, ammonium chloride, and sulfuric acid are used. Representative examples include sodium, sodium chloride, potassium sulfate, potassium chloride, magnesium sulfate, magnesium chloride, calcium chloride and the like.

第1図中、4はヒータである。ヒータ4は陰極2の周
辺の電解液を沸騰させることができれば足りるが、この
例では、殆んで電解浴3全体を沸騰させる。ヒータ4
は、特に陰極2の下部を走るスチーム用管からなり、そ
の中に高熱スチームを流すことによって電解液3を沸騰
させる。電解液は高濃度の水溶液であり、沸点は103〜1
06℃程度である。
In FIG. 1, 4 is a heater. The heater 4 is only required to be able to boil the electrolytic solution around the cathode 2, but in this example, almost all the electrolytic bath 3 is boiled. Heater 4
Consists of a steam tube that runs below the cathode 2, in particular, by boiling the electrolytic solution 3 by flowing high-heat steam therein. The electrolyte is a highly concentrated aqueous solution with a boiling point of 103-1.
It is about 06 ℃.

第1図に示した如き電解装置で実際に電解を行なっ
た。その条件を下記の通りであった。
Electrolysis was actually carried out by the electrolysis device as shown in FIG. The conditions were as follows.

陽 極:純鉄,幅820mm×高さ800mm×厚さ30mmの板状
体,7枚 陰 極:ステンレス鋼,幅900mm×高さ1000mm×厚さ5mm
の板状体,6枚 極間距離:100mm 電解浴: FeCl2 140g/ NH4Cl 130g/ pH 4.5〜5.0 槽間電圧:0.4V 電流密度:1.6A/dm2 電解時間:72hr. 電解中ずっと電解浴を沸騰させたところ、陰極の下方
の浴の底に粒径25〜144μm,平均粒径約74μmの電解鉄
粉が得られた。この電解鉄粉の元素分析を行なった。そ
の結果を下記表1に示す。
Positive electrode: Pure iron, 820 mm wide x 800 mm high x 30 mm thick plate, 7 sheets Negative pole: Stainless steel, 900 mm wide x 1000 mm high x 5 mm thick
Plate, 6 sheets Electrode distance: 100 mm Electrolysis bath: FeCl 2 140 g / NH 4 Cl 130 g / pH 4.5 to 5.0 Inter-cell voltage: 0.4 V Current density: 1.6 A / dm 2 Electrolysis time: 72 hr. When the electrolytic bath was boiled, electrolytic iron powder having a particle size of 25 to 144 μm and an average particle size of about 74 μm was obtained at the bottom of the bath below the cathode. Elemental analysis of this electrolytic iron powder was performed. The results are shown in Table 1 below.

比較のために、電解鉄をボールミル粉砕して得られた
同一粒径の鉄粉の元素分析を行なった。その結果を表1
に示す。
For comparison, elemental analysis was performed on iron powder of the same particle size obtained by ball milling electrolytic iron. The results are shown in Table 1.
Shown in

〔発明の効果〕 本発明によれば、高純度電解鉄粉を電解により直接に
バッチ式で製造することができ、電解鉄の破片から粉砕
を行なう必要がない。また、電解浴が沸騰状態にあるこ
とによって、脱ガス性がよくなり、かつ電解浴の酸化も
防止され効果があり、その結果、高純度、高品質の電解
鉄粉が得られるのみならず、余分な脱ガス手段や酸化防
止手段を不要にすることができる。
[Effect of the Invention] According to the present invention, high-purity electrolytic iron powder can be directly produced in a batch method by electrolysis, and it is not necessary to perform pulverization from fragments of electrolytic iron. Further, the electrolytic bath is in a boiling state, the degassing property is improved, and there is an effect that the oxidation of the electrolytic bath is also prevented, as a result, not only high purity, high quality electrolytic iron powder is obtained, It is possible to eliminate the need for extra degassing means and oxidation preventing means.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の方法を実施する電解装置の模式図であ
る。 1……陽極、2……陰極、 3……電解液(浴)、4……ヒータ。
FIG. 1 is a schematic diagram of an electrolysis apparatus for carrying out the method of the present invention. 1 ... Anode, 2 ... Cathode, 3 ... Electrolyte (bath), 4 ... Heater.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】鉄電着用陰極と陽極とを対置させ、第一鉄
イオン含有支持電解質水溶液からなる電解浴に浸漬し、
少なくとも前記陰極周囲の電解液を沸騰させつつ電解を
行ない、電解鉄粉を得ることを特徴とする電解鉄粉の製
造方法。
1. A cathode and an anode for iron electrodeposition are placed in opposition to each other and immersed in an electrolytic bath consisting of a ferrous ion-containing supporting electrolyte aqueous solution,
An electrolytic iron powder is obtained by performing electrolysis while boiling at least the electrolytic solution around the cathode to obtain electrolytic iron powder.
JP61000741A 1986-01-08 1986-01-08 Method for producing electrolytic iron powder Expired - Lifetime JPH086192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61000741A JPH086192B2 (en) 1986-01-08 1986-01-08 Method for producing electrolytic iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61000741A JPH086192B2 (en) 1986-01-08 1986-01-08 Method for producing electrolytic iron powder

Publications (2)

Publication Number Publication Date
JPS62158890A JPS62158890A (en) 1987-07-14
JPH086192B2 true JPH086192B2 (en) 1996-01-24

Family

ID=11482136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61000741A Expired - Lifetime JPH086192B2 (en) 1986-01-08 1986-01-08 Method for producing electrolytic iron powder

Country Status (1)

Country Link
JP (1) JPH086192B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1497309A (en) * 1975-07-17 1978-01-05 Electricity Council Continuous production of iron by electrolysis of a ferrous electrolyte

Also Published As

Publication number Publication date
JPS62158890A (en) 1987-07-14

Similar Documents

Publication Publication Date Title
EP2268852B1 (en) Electrochemical process for the recovery of metallic iron and sulfuric acid values from iron-rich sulfate wastes, mining residues and pickling liquors
US3821097A (en) Current density redistributing anode
Song et al. Equilibrium between titanium ions and high-purity titanium electrorefining in a NaCl-KCl melt
US2541721A (en) Process for replenishing nickel plating electrolyte
Moskalyk et al. Anode effects in electrowinning
Elsherief Effects of cobalt, temperature and certain impurities upon cobalt electrowinning from sulfate solutions
Bazan et al. Electrochemical removal of tin from dilute aqueous sulfate solutions using a rotating cylinder electrode of expanded metal
US3345212A (en) Electrolytic process for preparing iron
CA1064856A (en) Purification of nickel electrolyte by electrolytic oxidation
JPH086192B2 (en) Method for producing electrolytic iron powder
US1077894A (en) Electrode.
US2358029A (en) Process of electrodepositing indium
JPH11229172A (en) Method and apparatus for producing high-purity copper
Wang et al. The effects of Mg2+ concentration,(NH4) 2SO4 concentration and current density on electrolytic manganese process
Jiricny et al. Copper electrowinning using spouted-bed electrodes: Part II. Copper electrowinning with ferrous ion oxidation as the anodic reaction
US4310395A (en) Process for electrolytic recovery of nickel from solution
US6103088A (en) Process for preparing bismuth compounds
US2796394A (en) Separating and recovering nonferrous alloys from ferrous materials coated therewith
JPS62161976A (en) Manufacture of electrolytic iron
JPH0726221B2 (en) Method for producing electrolytic iron
Avci Electrolytic recovery of gold from aqueous solutions
US4115220A (en) Process for the preparation of high purity antimony
JPS62161982A (en) Manufacture of electrolytic iron
Owais Electrowinning of lead powder from chloride leach liquor
US2225904A (en) Lead oxide and electrolytic process of forming the same