JPS5945930A - Method for accelerating reduction of fe3+ ion - Google Patents

Method for accelerating reduction of fe3+ ion

Info

Publication number
JPS5945930A
JPS5945930A JP15275582A JP15275582A JPS5945930A JP S5945930 A JPS5945930 A JP S5945930A JP 15275582 A JP15275582 A JP 15275582A JP 15275582 A JP15275582 A JP 15275582A JP S5945930 A JPS5945930 A JP S5945930A
Authority
JP
Japan
Prior art keywords
metal
ions
plating
iron
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15275582A
Other languages
Japanese (ja)
Inventor
Hironobu Kawasaki
川崎 博信
Tomohiko Hayashi
林 知彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15275582A priority Critical patent/JPS5945930A/en
Publication of JPS5945930A publication Critical patent/JPS5945930A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remarkably accelerate a reductive reaction, by applying ultrasonic waves of a given frequency to a solution containing Fe<3+> ions dissolving a metal in the solution for reducing the Fe<3+> ions, and activating always the surface of the metal. CONSTITUTION:A metal is added to a solution containing Fe<3+> ions to reduce the Fe<3+> ions. In the process, ultrasonic waves of 10-500kHz are applied to the solution in dissolving the metal in the solution. Thus, the surface of the metal is always activated The fresh activated surface is always exposed, and the reductive reaction is remarkably accelerated by the method.

Description

【発明の詳細な説明】 本発明は、、e3+イオンを言む溶液において、Fe3
+イオンを高速度で効率よく還元する方法に俟するもの
て、鉄系めつき、2価の鉄化合物の製造、電解鉄の製造
、Ii’eイオンの分析などに適用することができる。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a solution containing Fe3+ ions.
The method of reducing + ions efficiently at high speed can be applied to iron plating, production of divalent iron compounds, production of electrolytic iron, analysis of Ii'e ions, etc.

以下に鉄系電気めっきを主として本発明の詳細な説明す
る。
The present invention will be described in detail below, focusing on iron-based electroplating.

一般Cζ鉄系電気めっきにおいては鉄と亜鉛、カドミτ
1フム、二′ノケル、コバルト、マンガン、モリ7デン
、錫等の1棟又は2種以上を含む鉄系合金めつきが広く
行なわれている。これらのめっきを行なう際にめっき浴
中に含まれるFe  イオノは浴中に存在する酸素もし
くは陽極で発生ずる発生機の酸素によって、また陽極表
面の電懺反応(こよっても酸化さ、れFe″−イオンに
変fヒする。陽極を可溶性電極とした場合には電4if
i4反応あるい(ゴ発生機の酸素による酸fヒは非常(
こ小さくその生成昂は比Φ9的少ないか、不溶性電極を
用いた場合には電(1す(反応、発生機の酸素による酸
化か非常に顕著みなりその生成耽は大rl]+と上昇す
る。
In general Cζ iron-based electroplating, iron and zinc, cadmium τ
Iron-based alloy plating containing one or more of 1-hum, 2-metal, cobalt, manganese, moly7denum, tin, etc. is widely used. During these plating processes, the Fe ion contained in the plating bath is oxidized by the oxygen present in the bath or by the oxygen generated by the generator generated at the anode, and by the electrical reaction on the surface of the anode (this also oxidizes the Fe'' - converts into ions.If the anode is a soluble electrode,
The i4 reaction or (oxidation caused by the oxygen in the generator is extremely
Because of its small size, its production rate is relatively small, or when an insoluble electrode is used, the production rate increases to 1 s (reaction, oxidation by oxygen in the generator is very noticeable, and its production rate increases to a large rl) + .

電解液中に1・e  イオンの生1.’+7量かふえて
くる古、(1)  電解効率が大巾;ご低下する。これ
は]1;5極表面でFe  +e −F’e  の反応
かおこって析出のため電気量の一部が消費さ1”Lるた
めである。
Formation of 1·e ions in the electrolyte 1. '+7 When the amount increases, (1) the electrolytic efficiency decreases by a large margin. This is because a reaction of Fe +e -F'e occurs on the surface of the 1;5 electrode, and a part of the electricity is consumed for precipitation, resulting in a loss of 1''L.

(2)陰極に析出する電析物の外観かわるくなり性能も
低下する。これは陰極表面のpHか電解により上昇する
がIパe((用)3 はpHか2あたりQ)低いところ
でもすでに沈澱し′電析物の中に一部とりこまれるもの
と考えられる。
(2) The appearance of the deposits deposited on the cathode changes and the performance deteriorates. Although the pH on the surface of the cathode increases due to electrolysis, it is considered that even at a low pH (Q per 2), it already precipitates and is partially incorporated into the deposits.

(3)沈澱物が生成する。3価の鉄をaむ11/(色の
沈澱が生成してくる。
(3) A precipitate is formed. 11/ When trivalent iron is added (a colored precipitate forms).

(4) 装置の腐食を促進する。l’c 2” イ:A
ンθ)みてはほとんど腐食されないが、浴中θ)l’e
  イオンの計がふえるとめつき槽、通電バー及びロー
ル等金属部分の爬食が促進される。
(4) Accelerates equipment corrosion. l'c 2” I:A
In the bath θ)l'e, there is almost no corrosion, but in the bath θ)l'e
When the ion count increases, corrosion of metal parts such as the mating tank, energizing bar, and rolls is promoted.

以上のようにめっきに関し好ましくない現象が生し、長
期間めっきを安定して行なうためにはどうしてもFe 
 の生成を抑制すると共に生成したFe  をFe  
に還元する方法をこうじなければならない。
As mentioned above, unfavorable phenomena occur in plating, and in order to perform stable plating over a long period of time, it is necessary to use Fe.
In addition to suppressing the production of Fe,
We need to find a way to reduce this.

Fe  の還元方法として鉄及び合金成分である金属を
用いる方法が提案されている。これは特に不溶性陽極を
用いた場合には金属イオンの補給を行なうことが必要で
、その一つとして硫酸塩、ハロゲンイオン、炭酸塩、硝
酸塩などの塩として補給する方法があるが、めっきが進
むにつれて硫酸イオン、ハロゲンイオン、炭酸イオン、
硝酸イオンなどの酸イオンが浴中に蓄積されて好ましく
ない。
A method using iron and metals as alloy components has been proposed as a method for reducing Fe. Particularly when using an insoluble anode, it is necessary to replenish metal ions, and one method is to replenish them as salts such as sulfates, halogen ions, carbonates, and nitrates, but as the plating progresses, As a result, sulfate ions, halogen ions, carbonate ions,
Acid ions such as nitrate ions accumulate in the bath, which is undesirable.

これに対して金属として補給すれば、酸イオンの蓄積に
よる問題が解消されて好ましいわけである。
On the other hand, if it is replenished as a metal, the problem caused by the accumulation of acid ions will be solved, which is preferable.

そして金属がめつき浴に溶解する場合には、\4e  
 −ト  n  IrX   −Me  X  n  
 ト  −11z           °−−−  
(IIM e X n →M e 11層1−nX−r
+r  X”−へIe  +  nl’e     =
  Me”    −1nl’c       −・ 
   (2)但し Meは全国 Xは酸イオン 上記(11、f2)及び(31の反応がおこり水素を発
生して金属が塩として溶解する反応と共にFe  と直
接反応して自身はMe  イオンとなりFe  はFe
  に還元される。
And if the metal is dissolved in the plating bath, \4e
-t n IrX -Me X n
-11z °----
(IIM e X n → M e 11 layer 1-nX-r
+r X”-Ie + nl'e =
Me"-1nl'c-・
(2) However, Me is an acid ion in Nationwide X. The reactions in (11, f2) and (31) above occur, hydrogen is generated, and the metal dissolves as a salt, and it also directly reacts with Fe, and itself becomes a Me ion. Fe
will be reduced to

しかるに一般に金属の溶解反応Cまその表面+11及び
その表面活性に依存するが表面活性は通常時間と共に低
下して溶解しにくくなる傾向を示す。2)、より卑な金
属である亜鉛、カドミウム、マンカン等を使用する場合
には時間経過と共【こ金属表面(こ鉄イオンが置換析出
して、しかもこの鉄山体表面が不働態化すると考えられ
、溶解速度は?に第に低下してくる。また鉄より肘な金
属の二゛ノケル、モリブテン、錫などは1表面が酸fヒ
されて水和酸化物皮膜が形成して不働態化すると考えら
れ、これも次第に還元されにくくなってくる。
However, in general, the dissolution reaction of a metal depends on its surface +11 and its surface activity, but the surface activity usually tends to decrease with time and become difficult to dissolve. 2) When using base metals such as zinc, cadmium, and manganese, it is thought that over time, iron ions will precipitate by substitution on the surface of the metal, and the surface of the iron mass will become passivated. The rate of dissolution gradually decreases.Furthermore, metals that are weaker than iron, such as nickel, molybdenum, and tin, are exposed to acid on their surfaces, forming a hydrated oxide film and becoming passivated. It is thought that this will gradually become difficult to reduce.

以上のような理由から金属を用いてFe  を還元する
方法はFe  の生成量が多くなってくると、I’e 
 への還元がおいつかなくなってバランスがとれなくな
って来る。特に不溶性陽極を用いてFe2+イオンの高
#度浴で電解する場合、F”e  の生成反応かFe−
Fe  の還元反応を上まわってバランスかとれなくな
り前述のような問題を生じてくる。
For the reasons mentioned above, the method of reducing Fe using metal is
It becomes impossible to keep the balance due to the slow return to income. In particular, when electrolyzing in a high-intensity bath of Fe2+ ions using an insoluble anode, the production reaction of F"e or Fe-
The reduction reaction of Fe 2 is exceeded and the balance becomes unbalanced, causing the above-mentioned problems.

本発明者らは−F記の金属を用いて還元する方法におい
て、金属表面を常に活性に保つ方法を種々検討した結果
、金属の溶解時に101<IrZ〜500KIIZの超
音波を印す11することによってFe−+Fe  の還
元反応が大巾に促進されることを認めた。
The present inventors investigated various ways to keep the metal surface active at all times in the reduction method using the metal listed in -F, and found that it is possible to apply ultrasonic waves of 101<IrZ to 500KIIZ when melting the metal11. It was recognized that the reduction reaction of Fe-+Fe was greatly promoted by

これは金属表面Cζ形成された皮膜は超音波により破壊
され常に新鮮で活性な而′があらイっれてくるためと考
えら3する。しかもまた前述の反応(こおいて理由は未
解明であるが、水素の発生がおさえられて効率よく高速
度でFe  がFeに還元されることを認めた。
This is thought to be because the film Cζ formed on the metal surface is destroyed by the ultrasonic waves, and a fresh and active film always emerges. Moreover, in the above-mentioned reaction (although the reason is unknown, it was found that hydrogen generation was suppressed and Fe was efficiently reduced to Fe at a high rate).

この場合使用できる金属としては鉄、’llj Zi>
、カドミウム、二゛ノケル、コバルト、マンカフ、錫、
モリブテン、o、> $5<系合金めっきに電析される
金属の他場合により自身は析出せず還元たけ((作用す
るアルミニτリム、マクネンウ13等を用いることがで
きる。金属の形状、とし、て(オ表面、晴をてきるたけ
大きく粉末状が好ましいか、線状、病状、千′ノグ状の
形態もとることができる。
In this case, the metal that can be used is iron, 'llj Zi>
, cadmium, dinochelium, cobalt, mancuff, tin,
In other cases, molybdenum, o, > $5 < metals that are electrolytically deposited on the alloy plating itself is not deposited and is reduced ((aluminum It is preferable that the powder be in the form of a large powder, but it can also take the form of a linear, pathological, or cylindrical shape.

印加する高周波としては101<117.から50 F
目<11Zで好ましくは151(HZから50KIIZ
で良好な結果かえられる。■旧<IIZ以下ては音波域
(ζ入り金属表面の酸化ないし水利酸化物皮1トΔを破
壊するに十分でなく、その効果が認められない。一方5
00K H2以上ではその振動が大きすぎて溶成自体(
こ気泡を生じ、これもまた全1ドパ表面皮1莫を破購す
るには効果が認められなくなる。
The high frequency to be applied is 101<117. From 50F
<11Z, preferably 151 (HZ to 50KIIZ
Good results can be obtained. ■ Below the old < IIZ, the sonic range (oxidation of the metal surface containing ζ or water-use oxide skin 1 to Δ is not sufficient to destroy Δ, and its effect is not recognized. On the other hand, 5
Above 00K H2, the vibration is too large and the melting itself (
This produces bubbles, and this also becomes ineffective in destroying the entire Dopa surface skin.

本発明の適用はまためっきにかきらず例えはFc  化
合物を共晶として製置する方法、lli IQ’# >
’)、全製造する方法、あるいはまた1・゛Cイオンを
分析4−る際+(吉まれるFe  を全てFe  に還
元してから過マンガン酸カリ溶液で滴定する方法など巾
広い範囲に通用することが可能である。
The application of the present invention is not limited to plating; for example, a method of preparing an Fc compound as a eutectic, lli IQ'#>
'), a method for producing the entire product, or a method for analyzing 1.゛C ions + (reducing all of the Fe to Fe and then titrating with a potassium permanganate solution). It is possible to do so.

以下に図面をもとに本発明を鉄系めつきに適用した場合
?(ついて具体的に説明する。第1図1と超音波を利用
したFe、  還元装置を示す。■はめつきセル、2は
めつき液が流れる管、3は還元槽でその開口部4から金
属が送入され6が金属の充填部3+ でここでめっき障との接触が行なわれ、Fe  の還元
反応がおこる。この反応を促進するため(・こ外部から
5の発振器により超音波を印加する。Pが循環ポンプで
還元されたFe  は配管7を通ってめっきセルに送り
こまれる。
What happens when the present invention is applied to iron plating based on the drawings below? (This will be explained in detail. Fig. 1 shows a Fe reduction device using ultrasonic waves. ■ A plating cell, 2 a pipe through which the plating solution flows, and 3 a reduction tank in which metal is removed from an opening 4. Fe is introduced into the metal-filled portion 3+, where it comes into contact with the plating barrier, and a reduction reaction of Fe occurs.In order to promote this reaction, ultrasonic waves are applied from the outside by an oscillator 5. Fe from which P has been reduced by the circulation pump is sent to the plating cell through piping 7.

この際にめっき浴の金属イオン、成分濃度、pH1温度
加える金属の種類と表面積、印加する超音波の周波数及
び強度、めっき浴の循環速度により1i’e  の還元
速度は変fヒするので、その条件に応じて最適条件を決
めることが望ましい。
At this time, the reduction rate of 1i'e varies depending on the metal ions in the plating bath, the concentration of components, the pH 1 temperature, the type and surface area of the metal added, the frequency and intensity of the applied ultrasonic waves, and the circulation speed of the plating bath. It is desirable to determine optimal conditions depending on the conditions.

次Aこ実施例により本発明の詳細な説明する。The present invention will now be described in detail with reference to Examples.

実施例1 基本成分としてZnSO4・71r201509/ I
t、(NH4)2 S O,+ 309 / j2、F
e5(1,1及びF c2 (S O,1)3  とし
てFe  イオンが1009 / 、1. Fe  か
309 、/ It 13111.5.40°Cの鉄亜
鉛合金めつき溶成に表面iI’(か3 n?/ gの亜
鉛粉末をめっきmh=looy+こ対して4g加えて還
元を行なった。この際に外から26Kl(Z 、 1.
50Wの超音1皮を印加した」場合としなかった場合の
比較を第2図に示す。
Example 1 ZnSO4・71r201509/I as the basic component
t, (NH4)2 S O, + 309 / j2, F
Fe ions as e5(1,1 and F c2 (S O,1)3 are 1009 / , 1. Fe or 309 , / It 13111.5. Surface iI' ( 3 n?/g of zinc powder was added to the plating mh=looy+ and 4 g was added to perform reduction. At this time, 26 Kl (Z, 1.
Fig. 2 shows a comparison between cases in which 50W of ultrasonic sound was applied and cases in which it was not applied.

第2図でAは超音波を印加した場合、RI;を印υ[1
しなかった場合であり、超音波により1・゛c0〕還l
lt速度が、大巾に」二月することを示している。史C
ζ特徴あることはBの反応ては溶解した11”、 鉛の
うち21%は水素発生に消費されたのσこ対しAの反応
では水素の発生はなく溶解した亜鉛の全てが、、e:l
+の還元に消費されていた。
In Fig. 2, when A is applied with ultrasound, RI; is applied υ[1
1・゛c0〕reduction l
It shows that the lt speed will increase by a wide margin in February. History C
ζ What is distinctive is that in reaction B, 21% of the dissolved 11" and lead was consumed for hydrogen generation, whereas in reaction A, no hydrogen was generated and all of the dissolved zinc was consumed, e: l
It was consumed for the return of +.

実施例2 基本成分としてN1p(11・611□(1200y 
/ i、(NH4)2 S 04が40y/ノ、 Ii
” e S 04及びl’e (804)3としてFe
  が409 / 、L Fe ’が202/ノてpH
2,5゜°0の50gのめつき浴を用い第1図に示す装
置を用いてFe  の還元を行なった。この際にめっき
浴の循環速度を517分、反応槽は59mmφ長さ20
0mmの円柱中に2.59 / n/の鉄粉を500g
充填し入側及び出側にP布をおいて粉末が糸外に流出し
ないようAこした。この時反応槽に45KIIZ、60
0Wの超音波を印加した場合及びしなかった場合の比較
を行なった。
Example 2 N1p (11·611□(1200y
/ i, (NH4)2 S 04 is 40y/no, Ii
"e S 04 and l'e (804)3 as Fe
is 409/, L Fe' is 202/note pH
Fe reduction was carried out using the apparatus shown in FIG. 1 using a 50 g plating bath at 2.5°0. At this time, the circulation speed of the plating bath was set to 517 minutes, and the reaction tank was 59 mmφ and 20
500g of 2.59/n/ iron powder in a 0mm cylinder
After filling, a P cloth was placed on the inlet and outlet sides to prevent the powder from flowing out of the yarn. At this time, 45KIIZ and 60
A comparison was made between applying and not applying 0W ultrasonic waves.

えられた結果を第1表に示す。表からイっかるようにめ
っき浴のFe  は超音波を加えたことにより大巾に減
少することを示している。
The results obtained are shown in Table 1. As can be seen from the table, Fe in the plating bath is significantly reduced by applying ultrasonic waves.

第1表 めっき浴中FCの経時変化Table 1 Changes in FC in plating bath over time

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明σ目パe イオ′/の還元装置の模式第
2図はFe  イオンθ)苫(元に及ぼす超音θにの印
加の効果を示す図である。 茅 2−1父 及ん8−%内
Fig. 1 is a schematic diagram of the reduction device for σ/e io'/ of the present invention. Fig. 2 is a diagram showing the effect of the application of ultrasonic θ on Fe ions θ). within 8%

Claims (1)

【特許請求の範囲】[Claims] F e  イオンを含む溶液において金属を用いて1+
’e”+イオンを1・e  イオンに還元する際に、l
0KHzから500KHzの超音波を印tyt+ して
行なうことを特徴とするFe  イオン還元促進法。
1+ using a metal in a solution containing Fe ions
When reducing 'e''+ ion to 1・e ion, l
A method for promoting Fe ion reduction, characterized in that it is carried out by applying ultrasonic waves of 0 KHz to 500 KHz.
JP15275582A 1982-09-03 1982-09-03 Method for accelerating reduction of fe3+ ion Pending JPS5945930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15275582A JPS5945930A (en) 1982-09-03 1982-09-03 Method for accelerating reduction of fe3+ ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15275582A JPS5945930A (en) 1982-09-03 1982-09-03 Method for accelerating reduction of fe3+ ion

Publications (1)

Publication Number Publication Date
JPS5945930A true JPS5945930A (en) 1984-03-15

Family

ID=15547452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15275582A Pending JPS5945930A (en) 1982-09-03 1982-09-03 Method for accelerating reduction of fe3+ ion

Country Status (1)

Country Link
JP (1) JPS5945930A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161985A (en) * 1986-01-09 1987-07-17 Showa Denko Kk Manufacture of electrolytic iron
JPS6465024A (en) * 1987-09-04 1989-03-10 Nisshin Steel Co Ltd Accelerating method for reducing iron ion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161985A (en) * 1986-01-09 1987-07-17 Showa Denko Kk Manufacture of electrolytic iron
JPS6465024A (en) * 1987-09-04 1989-03-10 Nisshin Steel Co Ltd Accelerating method for reducing iron ion

Similar Documents

Publication Publication Date Title
JP3455709B2 (en) Plating method and plating solution precursor used for it
JP6877650B2 (en) Method of manufacturing electrode catalyst
TWI457472B (en) Electrolytic dissolution of chromium from chromium electrodes
US4715935A (en) Palladium and palladium alloy plating
JPWO2010061766A1 (en) Method for producing active cathode for electrolysis
WO2015121790A2 (en) Continuous trivalent chromium plating method
US5628893A (en) Halogen tin composition and electrolytic plating process
JPS5945930A (en) Method for accelerating reduction of fe3+ ion
JPS6142796B2 (en)
US4349390A (en) Method for the electrolytical metal coating of magnesium articles
JPS5854200B2 (en) Method of supplying metal ions in electroplating bath
JP2787992B2 (en) Ni-W alloy plating method
JP6517501B2 (en) Strike copper plating solution and strike copper plating method
US3629078A (en) Method for surface treatment of zinc-plated sheet steel
JPH05306497A (en) Phophatizing chemical conversion treatment
JPS59197596A (en) Phosphate treatment for steel plate
JPS6230895A (en) Method for plating nickel-boron alloy
SU1133311A1 (en) Method for amalgamating metals and alloys weakly reacting with mercury
JPS6344837B2 (en)
JPS5959890A (en) Method for preventing deterioration in activity of ferrous cathode of electrolytic cell
JPS6211075B2 (en)
JPS5928600A (en) Management of ferrous electroplating liquid
US2561656A (en) Electrolytic production of polyhydric alcohols
JPH11262641A (en) Separation membrane for electroless nickel plating liquid regenerating and method of regenerating electroless nickel plating liquid
JPS6217196A (en) Method for plating stainless steel