JP6517501B2 - Strike copper plating solution and strike copper plating method - Google Patents

Strike copper plating solution and strike copper plating method Download PDF

Info

Publication number
JP6517501B2
JP6517501B2 JP2014243791A JP2014243791A JP6517501B2 JP 6517501 B2 JP6517501 B2 JP 6517501B2 JP 2014243791 A JP2014243791 A JP 2014243791A JP 2014243791 A JP2014243791 A JP 2014243791A JP 6517501 B2 JP6517501 B2 JP 6517501B2
Authority
JP
Japan
Prior art keywords
copper
plating
plating solution
anode
strike
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014243791A
Other languages
Japanese (ja)
Other versions
JP2015134960A (en
Inventor
剛成 倉田
剛成 倉田
範夫 菊川
範夫 菊川
正頼 松島
正頼 松島
佐々木 弘之
弘之 佐々木
旭 篠原
旭 篠原
大樹 浅山
大樹 浅山
恵 石丸
恵 石丸
潔 覚張
潔 覚張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kagaku Sangyo Co Ltd
YKK Corp
Original Assignee
Nihon Kagaku Sangyo Co Ltd
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kagaku Sangyo Co Ltd, YKK Corp filed Critical Nihon Kagaku Sangyo Co Ltd
Priority to JP2014243791A priority Critical patent/JP6517501B2/en
Priority to CN201410784800.7A priority patent/CN104711648B/en
Publication of JP2015134960A publication Critical patent/JP2015134960A/en
Application granted granted Critical
Publication of JP6517501B2 publication Critical patent/JP6517501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はストライク銅めっき液およびストライク銅めっき方法に関する。さらに詳細には、鉄や亜鉛等へのめっきに使用される、シアンイオン(CN-)を含まないストライク銅めっき液と、このめっき液を用いるストライク銅めっき方法に関する。
The present invention relates to a strike copper plating solution and a strike copper plating method . More specifically, the present invention relates to a strike copper plating solution which does not contain cyanide ion (CN ), which is used for plating iron, zinc and the like, and a strike copper plating method using this plating solution .

ストライク銅めっきは、鉄や亜鉛のように卑な金属材料に銅めっきを施すに際して、めっき皮膜の密着性を付与するための下地めっきとして、工業的に広く利用されている。現在実用化されている銅めっき液としてはシアン化銅めっき液、ピロリン酸銅めっき液、硫酸銅めっき液などがあるが、例えばめっきが施される物体(被めっき体)が亜鉛である場合、硫酸銅めっき液のように酸性の液では、亜鉛は銅とのイオン化傾向の差が大きいことから亜鉛への銅の置換反応が生じる。その結果、密着性の良い皮膜を形成することができない。   Strike copper plating is industrially widely used as a base plating for imparting adhesion of a plated film when copper is plated on a basic metal material such as iron and zinc. There are copper cyanide plating solutions, copper pyrophosphate plating solutions, copper sulfate plating solutions and the like as copper plating solutions currently put into practical use, for example, in the case where the object to be plated (plated object) is zinc, In an acidic solution such as a copper sulfate plating solution, zinc has a large difference in ionization tendency from copper, and thus a copper substitution reaction to zinc occurs. As a result, a film with good adhesion can not be formed.

これに対して、シアン化銅めっき液は、亜鉛の溶解や置換反応が生じ難く、密着性の良い銅皮膜を形成することができる。また、シアン化銅めっき液は、めっきのつき周りも良好であるところから、特に亜鉛ダイカスト製品等へのストライク銅めっきは、従来、シアン化銅めっき液が多用されている。
しかし、シアン化銅めっき液は、周知の通り毒性が高く、人体や環境に対して多大な悪影響があるため、シアンイオン(CN-)を含まない新たなストライク銅めっき液(ノーシアンストライク銅めっき液)の開発が望まれている。
On the other hand, the copper cyanide plating solution is unlikely to cause dissolution or substitution reaction of zinc, and can form a copper film with good adhesion. In addition, since the copper cyanide plating solution has good plating coverage, conventionally, a copper cyanide plating solution has been widely used in strike copper plating particularly for zinc die-cast products and the like.
However, copper cyanide plating solution, high as is well known toxicity, because of the significant adverse effects on the human body and the environment, cyanide ion (CN -) new strike copper plating solution containing no (cyanide strike copper plating Development) is desired.

ノーシアンストライク銅めっき液としては、一般的な下地保護を目的として上記のピロリン酸銅めっき液(特許文献1,2)や、希土類磁石用のストライク銅めっき液としてEDTAめっき液(特許文献3)などが知られているものの、これらのストライク銅めっき液であっても亜鉛への銅の置換の抑制が十分でないため、密着性に優れた銅めっき皮膜は得られていない。
また、亜鉛ダイカスト用のストライク銅めっき液として、オキシカルボン酸は不安定で、EDTAは密着しないとされている(特許文献4)。
As a no cyan strike copper plating solution, the above-mentioned copper pyrophosphate plating solution (patent documents 1 and 2) for the purpose of general base protection, and an EDTA plating solution as a strike copper plating solution for rare earth magnets (patent document 3) Although these strike copper plating solutions do not sufficiently suppress the substitution of copper with zinc, copper plating films having excellent adhesion have not been obtained.
In addition, as a strike copper plating solution for zinc die casting, it is considered that oxycarboxylic acid is unstable and EDTA does not adhere (Patent Document 4).

一方、特許文献5にはノーシアンストライク銅めっき液として、銅(II)イオン源、ヒダントイン及び/又はヒダントイン誘導体からなる第1の錯化剤、多価カルボン酸からなる第2の錯化剤、及びモリブデン等の金属酸塩からなる電解質組成物、及び該電解質組成物を用いた基板表面に銅含有層を堆積する方法が提案されている。   On the other hand, in Patent Document 5, a copper (II) ion source, a first complexing agent comprising a hydantoin and / or a hydantoin derivative, and a second complexing agent comprising a polyvalent carboxylic acid as a no-cyan strike copper plating solution, And an electrolyte composition comprising a metal acid salt such as molybdenum, and a method of depositing a copper-containing layer on a substrate surface using the electrolyte composition.

しかし、特許文献5に開示の電解質組成物からなるめっき液を使用して、例えば亜鉛ダイカスト製品へのストライク銅めっきを行った場合、銅めっき皮膜の密着性は従来のシアン化銅めっき液を使用した場合に比べて必ずしも十分とはいえない。
このようなことから、鉄や亜鉛のような卑な金属材料からなる被めっき体に対して、より密着性の向上した下地銅めっき層を形成することができるノーシアンストライク銅めっき液の開発が望まれている。
However, for example, when strike copper plating on a zinc die-cast product is performed using a plating solution composed of the electrolyte composition disclosed in Patent Document 5, the adhesion of the copper plating film is the conventional copper cyanide plating solution. It is not always sufficient compared to the case of
From such a thing, development of the no cyan strike copper plating solution which can form a base copper plating layer with improved adhesion to a plated object made of a simple metal material such as iron or zinc is developed. It is desired.

特開平9−291391号公報Unexamined-Japanese-Patent No. 9-291391 特開平1−286407号公報Unexamined-Japanese-Patent No. 1-286407 特開2002−332592号公報JP 2002-332592 A 特表2010−168626号公報Japanese Patent Publication No. 2010-168626 特開2011−528406号公報JP, 2011-528406, A

本発明は上記のような状況に基づき、鉄や亜鉛等の被めっき体に対して、シアン化銅めっき液を用いた場合と同様に密着性の良好なストライク銅皮膜を安定して形成することができ、しかも毒性がなく、人体や環境に対する悪影響が極めて少ない安全性の高いストライク銅めっき液と、このめっき液を用いるストライク銅めっき方法を提供することを目的とする。
The present invention stably forms a strike copper film having good adhesion to an object to be plated, such as iron or zinc, as in the case of using a copper cyanide plating solution, based on the above situation. It is an object of the present invention to provide a highly safe strike copper plating solution which is not toxic and has very little adverse effect on the human body and the environment, and a strike copper plating method using this plating solution .

本発明者等は、上記目的を達成するために検討した結果、次のような知見を得た。
(a)亜鉛ダイカスト製品は、前記のように、もともと亜鉛が溶解・置換反応が進行し易いため、難めっき素材とされている。
(b)一方、バレルめっきは、めっき物がひと固まりで動くために、表層部のめっきがつき易い部分(高電流密度部)と中心部のめっきがつき難い部分(低電流密度部)が生じ易く、めっき液のつき周りが悪い場合、高電流部には銅めっきがつくが、低電流部にはめっきがつかず、めっきのつかない部分は置換反応が起こり、密着不良になる。
(c)上記(a)、(b)から、亜鉛ダイカスト製品を、バレルめっきする際には、溶解・置換し難く、つき周りの良いシアン化銅めっき液以外では、密着性の良い皮膜を形成することが難しいとされている。
(d)特に、ダイカスト製品の場合、全めっき面を均一にめっきするのは極めて困難である。
(e)シアン浴と同様にめっき液中に一価銅を存在させ、亜鉛ダイカスト表面に均一な銅の析出を素早く生じさせることで置換を抑制させ、その上に二価銅でめっきを行うことのできるめっき液の設計を行った結果、密着性の良い皮膜を得ることができることを見出した。
(f)更には、陽極としては、可溶性の無酸素銅陽極を単独で使用するか、可溶性の無酸素銅陽極と不溶性陽極とを併用するが、上記(e)で設計しためっき液の場合、併用すると、めっき液中の銅濃度の維持が容易であり、実用に際して優れた効果を得ることができることをも見出している。
The inventors of the present invention obtained the following findings as a result of studying to achieve the above object.
(A) As described above, zinc die-cast products are considered as difficult-to-plate materials because zinc is easily dissolved and displaced.
(B) On the other hand, in barrel plating, since the plated material moves in one set, a portion (high current density portion) where plating is easy to occur in the surface layer and a portion (low current density portion) where plating is hard to occur in the center occurs. In the case where the plating solution is not well covered, copper plating occurs in the high current area, but plating does not occur in the low current area, and substitution reaction occurs in areas where plating does not occur, resulting in poor adhesion.
(C) From (a) and (b) above, when plating zinc die-cast products in barrel plating, it is difficult to dissolve and replace, and a film with good adhesion is formed except for copper cyanide plating solution with good circumference. It is considered difficult to do.
(D) In particular, in the case of a die-cast product, it is extremely difficult to uniformly plate all plated surfaces.
(E) As in the case of the cyanide bath, make monovalent copper present in the plating solution and quickly deposit uniform copper on the zinc die-cast surface to suppress the substitution, and perform plating on it with divalent copper. As a result of designing a plating solution that can be used, it has been found that a film with good adhesion can be obtained.
(F) Furthermore, as the anode, a soluble oxygen-free copper anode is used alone, or a soluble oxygen-free copper anode and an insoluble anode are used in combination, but in the case of the plating solution designed in (e), It has also been found that, when used in combination, maintenance of the copper concentration in the plating solution is easy, and an excellent effect can be obtained in practical use.

本発明のめっき液は、上記の知見に基づいてなされたもので、(1)二価銅の塩、オキシモノカルボン酸塩、ヒダントイン化合物、及び電導性塩を含有し、pHが10〜12であって、シアンイオン(CN-)を含まないことを特徴とする。
また、(2)本発明のストライク銅めっき方法は、上記のめっき液により、陽極として無酸素銅陽極の単独使用、又は無酸素銅陽極と不溶性陽極との併用下においてめっきすることを特徴とす
なお、(3)上記のめっき液は、二価銅の塩の濃度が二価銅イオン(Cu2+)に換算して0.03〜0.3mol/L、オキシモノカルボン酸塩の濃度が0.2〜1.0mol/L、ヒダントイン化合物の濃度が0.05〜0.5mol/Lであることが好ましく、(3)オキシモノカルボン酸塩がグルコン酸塩、ヒダントイン化合物がヒダントインあるいは5,5-ジメチルヒダントインであることが好ましい。
しかも、本発明のめっき液は、電導性塩が、0.1〜0.4mol/Lであることが好ましい。
The plating solution of the present invention was made based on the above findings and contains (1) salts of divalent copper, oxymonocarboxylates, hydantoin compounds, and conductive salts, and has a pH of 10 to 12. there are, cyanide ion - characterized in that it contains no (CN).
(2) The strike copper plating method of the present invention is characterized by using the above-mentioned plating solution to plate an oxygen-free copper anode alone or as a combination of an oxygen-free copper anode and an insoluble anode. Ru .
(3) In the above plating solution, the concentration of the salt of divalent copper is 0.03 to 0.3 mol / L in terms of divalent copper ion (Cu 2+ ), and the concentration of oxymonocarboxylate is The concentration of the hydantoin compound is preferably 0.2 to 1.0 mol / L, preferably 0.05 to 0.5 mol / L, (3) the oxymonocarboxylate is gluconate, the hydantoin compound is hydantoin or 5, Preferably, it is 5-dimethylhydantoin.
Moreover, in the plating solution of the present invention, the conductive salt is preferably 0.1 to 0.4 mol / L.

本発明における不溶性陽極は、従来から一般的に陽極として用いられている不溶性の白金、SUS、カーボン、酸化イリジウム、その他各種のものであってよく(以下、不溶性陽極と記す)、これらの中の少なくとも1種が、無酸素銅陽極と併用される。
無酸素銅陽極と不溶性陽極との併用において、不溶性陽極を1種使用する場合でも、2種以上使用する場合でも、電流分配比が無酸素銅陽極:不溶性陽極=8:2〜6:4となるようにすることが好ましい。
The insoluble anode in the present invention may be insoluble platinum, SUS, carbon, iridium oxide, and various other materials conventionally used as an anode (hereinafter referred to as insoluble anode), among them At least one is used in combination with the oxygen free copper anode.
In the combined use of the oxygen-free copper anode and the insoluble anode, the current distribution ratio of the oxygen-free copper anode: insoluble anode is 8: 2 to 6: 4 regardless of whether one or two insoluble anodes are used. It is preferable that

前記構成を有する本発明のストライク銅めっき液によれば、バレルめっき、ラックめっき等一般的なめっき手法において、特に亜鉛ダイカスト製品等の被めっき体に対して、極めて密着性に優れ、かつめっき性状の良好なストライク皮膜を、形成することができる。
しかも、本発明のストライク銅めっき液は、シアン化銅めっき液等のような毒性はなく、高い安全性を有しており、人体や環境に対する悪影響が少なく、その有用性は大きい。
According to the strike copper plating solution of the present invention having the above-mentioned constitution, in general plating methods such as barrel plating and rack plating, it is extremely excellent in adhesion to the object to be plated such as a zinc die-cast product etc. Good strike film, can be formed.
In addition, the strike copper plating solution of the present invention is not toxic as in the copper cyanide plating solution and the like, has high safety, has less adverse effects on human bodies and the environment, and is highly useful.

本発明のめっき液において、陽極として無酸素銅陽極を単独で使用した場合と、無酸素銅陽極と不溶性陽極とを併用した場合のそれぞれについて、電解量とめっき液中の銅イオン濃度との相関を示すグラフである。In the plating solution of the present invention, the correlation between the amount of electrolysis and the copper ion concentration in the plating solution for each of the case where an oxygen free copper anode is used alone as the anode and the case where an oxygen free copper anode and an insoluble anode are used in combination. Is a graph showing

本発明において、オキシモノカルボン酸とヒダントイン化合物は、錯化剤として使用するものであり、オキシモノカルボン酸が二価銅と生成する錯体は液中で不安定であり、放置すると銅が還元され、金属銅として沈殿を生じる(Cu2+→Cu+→Cu)。これに対し、ヒダントイン化合物は、一価銅と安定な錯体を形成するため、還元途中の一価銅を捕捉し、沈殿を防ぐことができる。
上記の生成された一価銅は、めっきの密着性、めっき効率の向上とつき周りのよさを生じるが、一価銅は二価銅に比べて置換し易いので、一価銅の濃度は、置換せず、かつ電気を流して二価銅よりも素早くめっきがつくと共に、その後は二価銅によるめっきが始まる程度の極く少量(例えば、総銅濃度中10%未満)でよい。一価銅濃度が多すぎると、置換反応が進行してしまい、密着不良が生じる。
In the present invention, the oxymonocarboxylic acid and the hydantoin compound are used as a complexing agent, and the complex in which the oxymonocarboxylic acid is formed with divalent copper is unstable in the solution, and the copper is reduced on standing , Precipitate as metallic copper (Cu 2+ → Cu + → Cu). On the other hand, since the hydantoin compound forms a stable complex with monovalent copper, it can capture monovalent copper during reduction and prevent precipitation.
Although the above-mentioned generated monovalent copper causes the adhesion of the plating, the improvement of plating efficiency and the roundness, since the monovalent copper is easy to replace as compared with the divalent copper, the concentration of the monovalent copper is It is not necessary to replace, and to conduct electricity to plate faster than divalent copper, and thereafter it may be a very small amount (for example, less than 10% in the total copper concentration) to the extent that plating with divalent copper starts. If the concentration of monovalent copper is too high, the substitution reaction proceeds and adhesion failure occurs.

本めっき液は陰極効率が低いため、無酸素銅陽極単独使用の場合は、めっき液中の銅濃度が上昇する傾向があるが、無酸素銅陽極と不溶性陽極を併用する場合は、銅濃度を一定に維持する。併用の場合、上記したように電流分配比を無酸素銅陽極:不溶性陽極=8:2〜6:4となるようにすることが、銅濃度を一定にする上で特に好ましい。   Since this plating solution has a low cathode efficiency, the copper concentration in the plating solution tends to increase when using an oxygen free copper anode alone, but when using an oxygen free copper anode and an insoluble anode together, the copper concentration is Keep it constant. In the case of combined use, it is particularly preferable to make the current distribution ratio be oxygen free copper anode: insoluble anode = 8: 2 to 6: 4, as described above, in order to keep the copper concentration constant.

一方、めっき(バレルめっきやラックめっき等一般的なめっき)を行う場合、上記した陽極を使用し、電流密度は、0.2〜0.7A/dm2、好ましくは0.2〜0.5A/dm2とすることが適しており、温度は15〜50℃、好ましくは20〜40℃が適している。 On the other hand, when performing plating (general plating such as barrel plating and rack plating), the above-mentioned anode is used, and the current density is 0.2 to 0.7 A / dm 2 , preferably 0.2 to 0.5 A It is suitable to use / dm 2 and the temperature is 15 to 50 ° C., preferably 20 to 40 ° C.

本発明において、銅イオン(Cu2+)源である前記二価銅の塩としては、硫酸銅又はその水和物、硝酸銅又はその水和物、塩化銅又はその水和物、水酸化銅、臭化銅等、水溶液中で二価の銅イオン(Cu2+)を生成する、シアンイオン(CN-)を含まない、水溶性の銅化合物が用いられる。 In the present invention, as a salt of the divalent copper which is a copper ion (Cu 2+ ) source, copper sulfate or hydrate thereof, copper nitrate or hydrate thereof, copper chloride or hydrate thereof, copper hydroxide , copper bromide or the like, to produce a divalent of copper ions (Cu 2+) in aqueous solution, cyanide ion (CN -) does not contain a copper compound soluble is used.

また、オキシモノカルボン酸塩としては、グルコン酸塩、グリコール酸塩、乳酸塩、ヘプトン酸塩等が第一の錯化剤として使用される。
ヒダントイン系化合物としては、ヒダントインや、5,5−ジメチルヒダントインが第二の錯化剤として使用される。
さらに、電導性塩としては、硫酸、硝酸、塩酸、りん酸、あるいはアルカリ金属の硫酸塩、硝酸塩、塩酸塩、りん酸塩等めっき液の電導性の促進と安定性を付与し得る化合物が使用される。
なお、本発明のめっき液には上記各化合物の外に、さらに、必要に応じて本発明の前記効果を損なわない範囲で光沢剤、酸化防止剤、潤滑剤等を添加してもよい。
In addition, as the oxymonocarboxylate, gluconate, glycolate, lactate, heptonate and the like are used as the first complexing agent.
As the hydantoin-based compound, hydantoin or 5,5-dimethylhydantoin is used as the second complexing agent.
Furthermore, as the conductive salt, a compound capable of providing conductivity promotion and stability of the plating solution such as sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, or sulfate, nitrate, hydrochloride or phosphate of alkali metal is used. Be done.
In addition to the above-mentioned compounds, if necessary, a brightener, an antioxidant, a lubricant and the like may be added to the plating solution of the present invention as long as the effects of the present invention are not impaired.

本発明のめっき液において、二価銅塩の濃度は、二価銅イオン(Cu2+)に換算して0.03〜0.3mol/L、好ましくは0.05〜0.2mol/Lとするのが適している。二価銅塩の濃度がこれよりも上昇すると、銅濃度が高い方が置換し易い傾向にあるため密着不良が生じ易い。 In the plating solution of the present invention, the concentration of divalent copper salt is 0.03 to 0.3 mol / L, preferably 0.05 to 0.2 mol / L, in terms of divalent copper ion (Cu 2+ ). It is suitable to do. If the concentration of the divalent copper salt is higher than this range, the higher the concentration of copper, the easier it is to replace.

また、オキシモノカルボン酸塩の濃度は0.2〜1.0mol/L、ヒダントイン系化合物の濃度は0.05〜0.5mol/Lとするのが適しており、いずれの錯化剤も濃度がこれより多いと、上記濃度の二価銅に対して錯体生成に関与しない錯化剤が生じてしまい、これ未満では、上記濃度で含む二価銅や、該二価銅由来の一価銅との錯体の生成量が少なくなり過ぎて、所望のめっきの密着性やつき周りのよさ、あるいはめっき効率の向上効果を得ることができなくなる。   The concentration of oxymonocarboxylate is 0.2 to 1.0 mol / L, and the concentration of hydantoin compound is 0.05 to 0.5 mol / L, and any complexing agent concentration is also suitable. If the amount is more than this, complexing agents not involved in complex formation will be generated to the above-mentioned concentration of divalent copper, and if less than this, divalent copper contained in the above concentration or monovalent copper derived from the divalent copper As a result, the amount of formation of the complex with the above is too small, and it is not possible to obtain the desired adhesion, good roundness of the plating, or the effect of improving the plating efficiency.

本発明におけるめっき液は、水酸化ナトリウム、水酸化カリウム等により、pH10〜12に調整する。このpH範囲は亜鉛の溶解がし難い範囲であると周知されており、その範囲を外れると亜鉛の溶解が進行し、結果置換し易くなる。また、pHがこれより低いと錯化剤の錯化力も弱まり置換し易くなり、pHがこれより高いと銅の水酸化物が生成し、沈殿が生じてしまい、液として成立しなくなる。   The plating solution in the present invention is adjusted to pH 10 to 12 with sodium hydroxide, potassium hydroxide or the like. It is well known that this pH range is a range in which the dissolution of zinc is difficult, and when the range is out, the dissolution of zinc progresses and as a result, it becomes easy to replace. If the pH is lower than this range, the complexing power of the complexing agent is also weak and substitution tends to occur, and if the pH is higher than this range, copper hydroxide is formed to cause precipitation, and the solution does not form.

本発明のめっき液は、陽極として、無酸素銅陽極の単独使用か、もしくは無酸素銅陽極と不溶性陽極との併用下でのめっき処理に用いられる。
特に無酸素銅陽極と不溶性陽極とを併用する場合、無酸素銅陽極を単独使用する場合に比べ、めっき液中の銅濃度の上昇を抑制し、液中の銅濃度を一定に維持することができる。銅濃度を一定に維持させるには、無酸素銅陽極と不溶性陽極とは、電流分配比(無酸素銅:不溶性陽極)が8:2〜6:4とすることが好ましい。
The plating solution of the present invention is used as an anode for the plating process either alone or in combination with an oxygen-free copper anode and an insoluble anode.
In particular, when using both an oxygen-free copper anode and an insoluble anode, it is possible to suppress an increase in copper concentration in the plating solution and maintain a constant copper concentration in the solution, as compared to using only an oxygen-free copper anode. it can. In order to maintain the copper concentration constant, it is preferable to set the current distribution ratio (oxygen-free copper: insoluble anode) of the oxygen-free copper anode and the insoluble anode to 8: 2 to 6: 4.

本発明のめっき液は、上記の陽極を使用し、15〜50℃、好ましくは20〜40℃、電流密度0.2〜0.7A/dm2、好ましくは0.2〜0.5A/dm2の条件でのめっき処理に使用することが適している。
また、本発明のストライク銅めっき液を用いる場合においても、脱脂(浸漬脱脂または電解脱脂)、活性化等の後、アルカリ性前処理液による前処理等の従来のめっき液を用いる場合と同様の前処理を行う。
The plating solution of the present invention uses the above-mentioned anode and is 15 to 50 ° C., preferably 20 to 40 ° C., current density 0.2 to 0.7 A / dm 2 , preferably 0.2 to 0.5 A / dm It is suitable to use for the plating process in 2 conditions.
Even when using the strike copper plating solution of the present invention, after degreasing (immersion degreasing or electrolytic degreasing), activation, etc., the same as in the case of using a conventional plating solution such as pretreatment with an alkaline pretreatment solution. Do the processing.

〔実施例1〕
1.めっき液の調製:
下記化合物を脱イオン水に溶解し、水酸化ナトリウムでpH11に調整して実施例1のめっき液を調製した。
硫酸銅・5水和物(二価銅塩):
40g/L(0.16mol/L)
グルコン酸ナトリウム(オキシモノカルボン酸塩):
100g/L(0.46mol/L)
ヒダントイン(ヒダントイン化合物):
10g/L(0.10mol/L)
硫酸カリウム(電導性塩):
30g/L(0.17mol/L)
Example 1
1. Preparation of plating solution:
The following compound was dissolved in deionized water and adjusted to pH 11 with sodium hydroxide to prepare a plating solution of Example 1.
Copper sulfate pentahydrate (divalent copper salt):
40 g / L (0.16 mol / L)
Sodium gluconate (oxymonocarboxylate):
100 g / L (0.46 mol / L)
Hydantoin (hydantoin compound):
10 g / L (0.10 mol / L)
Potassium sulfate (conductive salt):
30 g / L (0.17 mol / L)

2.めっき工程:
被めっき体としての亜鉛ダイカスト(ZDC−2)製品を、アルカリ性電解脱脂液で5分間処理した後、酸で活性処理し、水で洗浄した。
次に、速やかに、実施例1のめっき液に浸漬し、電流を通し、下記条件のめっきを行った。
(1)陽極:
a)無酸素銅陽極単独使用
b)無酸素銅陽極と不溶性(IrO2)陽極の併用:
無酸素銅とIrO2の電流分配比≒8:2
(2)めっき液温度:25℃
(3)平均電流密度:0.3A/dm2
(4)めっき膜厚:1μm
2. Plating process:
The zinc die cast (ZDC-2) product as a body to be plated was treated with an alkaline electrolytic degreasing solution for 5 minutes, then activated with an acid and washed with water.
Next, the resultant was immediately immersed in the plating solution of Example 1, a current was passed, and plating was performed under the following conditions.
(1) Anode:
a) Use of oxygen-free copper anode alone b) Combination of oxygen-free copper anode and insoluble (IrO 2 ) anode:
Current distribution ratio of oxygen free copper to IrO 2 8 8: 2
(2) Plating solution temperature: 25 ° C
(3) Average current density: 0.3 A / dm 2
(4) Plating thickness: 1 μm

3.密着性試験と目視観察:
密着性試験は、JISH8504に規定されるテープによる剥離の有無の試験とした。この結果、a),b)いずれの電極を使用した場合も、実用上十分な密着性を有していることが確認された。
また、目視による観察の結果は、a),b)いずれの陽極を使用した場合も、めっき面全面に、良好な光沢が確認された
3. Adhesion test and visual observation:
The adhesion test was a test of the presence or absence of peeling with a tape specified in JISH8504. As a result, it was confirmed that practically sufficient adhesion was obtained when any of the a) and b) electrodes were used.
Moreover, as a result of observation by visual observation, good gloss was confirmed on the entire surface of the plated surface regardless of which of the a) and b) anodes were used.

4.厚付けめっき:
上記3の密着性試験で、実用上十分な密着性を有することを確認した後、このめっき後の亜鉛ダイカスト製品に対し、ピロリン酸銅85g/L、ピロリン酸カリウム325g/L、pH8.8の浴を調製し、アンモニア、光沢剤(日本化学産業社製商品名“ピロニッカES”)を添加しためっき液を用い、上記2のめっき工程と同様にして膜厚8μmの厚付けめっきを行った。
厚付けめっき後の亜鉛ダイカスト製品に対し、折り曲げ試験を行い、破断面の剥離の有無を目視観察した。この結果、a)、b)いずれの電極を使用した場合も、剥離は全く無く、厚付けめっきにおいても極めて優れた密着性を有することが確認できた。
4. Plating plating:
After confirming that the coating has sufficient adhesion in the above-mentioned adhesion test 3, for the zinc die-cast product after plating, 85 g / L of copper pyrophosphate, 325 g / L of potassium pyrophosphate, pH 8.8 A bath was prepared, and using a plating solution to which ammonia and a brightener (trade name "Pirronika ES" manufactured by Nippon Chemical Industrial Co., Ltd.) were added, thick plating with a film thickness of 8 μm was performed in the same manner as the plating step 2 above.
The zinc die cast product after thick plating was subjected to a bending test, and the presence or absence of peeling of the fractured surface was visually observed. As a result, in the case of using any of the electrodes a) and b), it was confirmed that there was no peeling at all and that the electrode had extremely excellent adhesion even in thick plating.

〔比較例1〕
1.めっき液の調製:
下記化合物を脱イオン水に溶解し、水酸化ナトリウムでpH11に調整して比較例1のめっき液を調製した。
硫酸銅・5水和物(二価銅塩):
40g/L(0.16mol/L)
クエン酸三ナトリウム(トリカルボン酸塩):
75g/L(0.26mol/L)
5,5-ジメチルヒダントイン(ヒダントイン化合物):
100g/L(0.78mol/L)
モリブデン酸アンモニウム:
5g/L(0.004mol/L)
Comparative Example 1
1. Preparation of plating solution:
The following compound was dissolved in deionized water and adjusted to pH 11 with sodium hydroxide to prepare a plating solution of Comparative Example 1.
Copper sulfate pentahydrate (divalent copper salt):
40 g / L (0.16 mol / L)
Trisodium citrate (tricarboxylate):
75 g / L (0.26 mol / L)
5,5-Dimethylhydantoin (hydantoin compound):
100 g / L (0.78 mol / L)
Ammonium molybdate:
5 g / L (0.004 mol / L)

2.めっき工程:
比較例1のめっき液を用いる以外は、実施例1と同様にしてめっきした。
3.密着性試験と目視観察:
実施例1と同様の密着性試験と目視観察を行った。その結果は、a),b)いずれの電極を使用した場合も、密着性が無いばかりか、光沢のないボソボソしためっき皮膜であった。
この理由は、トリカルボン酸塩と二価銅との錯体は液中で安定であり、放置しても金属銅としての沈殿を殆ど生じないため、密着性を付与する一価銅が得られず、密着性が得られないと考えられる。
2. Plating process:
The plating was performed in the same manner as in Example 1 except that the plating solution of Comparative Example 1 was used.
3. Adhesion test and visual observation:
The same adhesion test and visual observation as in Example 1 were performed. As a result, when any of the electrodes a) and b) was used, not only there was no adhesion but also a lusterless plating film was formed.
The reason for this is that the complex of tricarboxylate and divalent copper is stable in the liquid and hardly precipitates as metallic copper when left to stand, so that monovalent copper which imparts adhesiveness can not be obtained. It is considered that adhesion can not be obtained.

〔比較例2〕
1.めっき液の調製:
下記化合物を脱イオン水に溶解し、水酸化ナトリウムでpH11に調整して比較例2のめっき液を調製した。
硫酸銅・5水和物(二価銅塩):
20g/L(0.08mol/L)
酒石酸ナトリウム(ジカルボン酸塩):
90g/L(0.46mol/L)
ヒダントイン(ヒダントイン化合物):
10g/L(0.10mol/L)
硫酸カリウム(電導性塩):
30g/L(0.17mol/L)
Comparative Example 2
1. Preparation of plating solution:
The following compound was dissolved in deionized water and adjusted to pH 11 with sodium hydroxide to prepare a plating solution of Comparative Example 2.
Copper sulfate pentahydrate (divalent copper salt):
20 g / L (0.08 mol / L)
Sodium tartrate (dicarboxylate):
90 g / L (0.46 mol / L)
Hydantoin (hydantoin compound):
10 g / L (0.10 mol / L)
Potassium sulfate (conductive salt):
30 g / L (0.17 mol / L)

2.めっき工程:
比較例2のめっき液を用いる以外は、実施例1と同様にしてめっきした。
3.密着性試験と目視観察:
実施例1と同様の密着性試験と目視による観察を行った。その結果は、a),b)いずれの電極を使用した場合も、比較例1の場合と同様、密着性が無いばかりか、光沢のないボソボソしためっき皮膜であった。
この理由は、ジカルボン酸塩と二価銅との錯体は液中で安定であり、放置しても金属銅としての沈殿を殆ど生じないため、密着性を付与する一価銅が得られず、密着性が得られないと考えられる。
2. Plating process:
The plating was performed in the same manner as in Example 1 except that the plating solution of Comparative Example 2 was used.
3. Adhesion test and visual observation:
The same adhesion test and visual observation as in Example 1 were conducted. As a result, when any of the electrodes a) and b) was used, as in the case of Comparative Example 1, not only there was no adhesion but also a lusterless plating film.
The reason for this is that the complex of the dicarboxylic acid salt and divalent copper is stable in the liquid and hardly precipitates as metallic copper when left to stand, so that monovalent copper which imparts adhesiveness can not be obtained. It is considered that adhesion can not be obtained.

〔実施例2〕
1.めっき液の調製:
下記化合物を脱イオン水に溶解し、水酸化ナトリウムでpH11に調整して実施例2のめっき液を調製した。
硫酸銅・5水和物(二価銅塩):
40g/L(0.16mol/L)
ヘプトン酸ナトリウム(オキシモノカルボン酸塩):
100g/L(0.40mol/L)
5,5-ジメチルヒダントイン(ヒダントイン化合物):
25g/L(0.20mol/L)
硫酸カリウム(電導性塩):
30g/L(0.17mol/L)
Example 2
1. Preparation of plating solution:
The following compound was dissolved in deionized water and adjusted to pH 11 with sodium hydroxide to prepare a plating solution of Example 2.
Copper sulfate pentahydrate (divalent copper salt):
40 g / L (0.16 mol / L)
Sodium heptonate (oxymonocarboxylate):
100 g / L (0.40 mol / L)
5,5-Dimethylhydantoin (hydantoin compound):
25 g / L (0.20 mol / L)
Potassium sulfate (conductive salt):
30 g / L (0.17 mol / L)

2.めっき工程:
被めっき体としての亜鉛ダイカスト(ZDC−2)製品を、実施例1と同様に処理した後、速やかに、実施例2のめっき液に浸漬し、電流を通し、下記条件のめっきを行った。
(1)陽極:
a)無酸素銅陽極単独使用
b)無酸素銅陽極と不溶性(SUS304)陽極の併用:
無酸素銅とSUS304の電流分配比≒8:2
(2)めっき液温度:25℃
(3)平均電流密度:0.3A/dm2
(4)めっき膜厚:1μm
2. Plating process:
After treating a zinc die cast (ZDC-2) product as a body to be plated in the same manner as in Example 1, it was immediately immersed in the plating solution of Example 2 and a current was passed to perform plating under the following conditions.
(1) Anode:
a) Use of oxygen free copper anode alone b) Combination of oxygen free copper anode and insoluble (SUS 304) anode:
Current distribution ratio of oxygen free copper and SUS304 8 8: 2
(2) Plating solution temperature: 25 ° C
(3) Average current density: 0.3 A / dm 2
(4) Plating thickness: 1 μm

3.密着性試験と目視観察:
密着性試験は、実施例1と同様にして行った結果、a),b)いずれの電極を使用した場合も、実用上十分な密着性を有していることが確認された。
また、目視による観察の結果も実施例1と同様、a),b)いずれの陽極を使用した場合も、めっき面全面に、良好な光沢が確認された
3. Adhesion test and visual observation:
The adhesion test was carried out in the same manner as in Example 1. As a result, it was confirmed that practically sufficient adhesion was obtained when any of the electrodes a) and b) was used.
Further, as a result of visual observation, good gloss was confirmed over the entire surface of the plated surface in the same manner as in Example 1, when any of the a) and b) anodes were used.

4.厚付けめっき:
上記3の密着性試験で、実用上十分な密着性を有することを確認した後、実施例1と同様に、上記めっき後の亜鉛ダイカスト製品に対し、ピロリン酸銅85g/L、ピロリン酸カリウム325g/L、pH8.8の浴を調製し、アンモニア、光沢剤(日本化学産業社製商品名“ピロニッカES”)を添加しためっき液を用い、上記2のめっき工程と同様にして膜厚8μmの厚付けめっきを行った。
厚付けめっき後の亜鉛ダイカスト製品につき、実施例1と同様に、折り曲げ試験を行い、破断面の剥離の有無を目視観察した。この結果、a)、b)いずれの電極を使用した場合も、剥離は全く無く、厚付けめっきにおいても極めて優れた密着性を有することが確認できた。
4. Plating plating:
After confirming in the adhesion test 3 above that the coating has sufficient adhesion, 85 g / L of copper pyrophosphate and 325 g of potassium pyrophosphate are applied to the zinc die-cast product after the plating as in Example 1. Prepare a bath of pH / L, pH 8.8, and use a plating solution to which ammonia and brightener (trade name "Pyronicca ES" manufactured by Nippon Chemical Industrial Co., Ltd.) have been added, in the same manner as in the plating step 2 above, using a plating solution Thick plating was performed.
The zinc die cast product after thick plating was subjected to a bending test in the same manner as in Example 1 to visually observe the presence or absence of peeling of the fractured surface. As a result, in the case of using any of the electrodes a) and b), it was confirmed that there was no peeling at all and that the electrode had extremely excellent adhesion even in thick plating.

〔実施例3〕
1.めっき液の調製:
下記化合物を脱イオン水に溶解し、水酸化ナトリウムでpH11に調整して実施例3のめっき液を調製した。
硫酸銅・5水和物(二価銅塩):
40g/L(0.16mol/L)
乳酸ナトリウム(オキシモノカルボン酸塩):
100g/L(0.89mol/L)
ヒダントイン(ヒダントイン化合物):
20g/L(0.20mol/L)
硫酸カリウム(電導性塩):
30g/L(0.17mol/L)
[Example 3]
1. Preparation of plating solution:
The following compound was dissolved in deionized water and adjusted to pH 11 with sodium hydroxide to prepare a plating solution of Example 3.
Copper sulfate pentahydrate (divalent copper salt):
40 g / L (0.16 mol / L)
Sodium lactate (oxymonocarboxylate):
100 g / L (0.89 mol / L)
Hydantoin (hydantoin compound):
20 g / L (0.20 mol / L)
Potassium sulfate (conductive salt):
30 g / L (0.17 mol / L)

2.めっき工程:
被めっき体としての亜鉛ダイカスト(ZDC−2)製品を、実施例1と同様に処理した後、速やかに、実施例3のめっき液に浸漬し、電流を通し、下記条件のめっきを行った。
(1)陽極:
a)無酸素銅陽極単独使用
b)無酸素銅陽極と不溶性(カーボン)陽極の併用:
無酸素銅とカーボンの電流分配比≒8:2
(2)めっき液温度:25℃
(3)平均電流密度:0.3A/dm2
(4)めっき膜厚:1μm
2. Plating process:
A zinc die cast (ZDC-2) product as a body to be plated was treated in the same manner as in Example 1, and then immediately dipped in the plating solution of Example 3 to pass current for plating under the following conditions.
(1) Anode:
a) Use of oxygen free copper anode alone b) Combination of oxygen free copper anode and insoluble (carbon) anode:
Current distribution ratio of oxygen free copper and carbon 8 8: 2
(2) Plating solution temperature: 25 ° C
(3) Average current density: 0.3 A / dm 2
(4) Plating thickness: 1 μm

3.密着性試験と目視観察:
密着性試験は、実施例1と同様にして行った結果、a),b)いずれの電極を使用した場合も、実用上十分な密着性を有していることが確認された。
また、目視による観察の結果も実施例1,2と同様、a),b)いずれの陽極を使用した場合も、めっき面全面に、良好な光沢が確認された
3. Adhesion test and visual observation:
The adhesion test was carried out in the same manner as in Example 1. As a result, it was confirmed that practically sufficient adhesion was obtained when any of the electrodes a) and b) was used.
In addition, as a result of visual observation, good gloss was confirmed over the entire surface of the plated surface in the same manner as in Examples 1 and 2, when any of the a) and b) anodes were used.

4.厚付けめっき:
上記3の密着性試験で、実用上十分な密着性を有することを確認した後、実施例1と同様に、上記めっき後の亜鉛ダイカスト製品に対し、ピロリン酸銅85g/L、ピロリン酸カリウム325g/L、pH8.8の浴を調製し、アンモニア、光沢剤(日本化学産業社製商品名“ピロニッカES”)を添加しためっき液を用い、上記2のめっき工程と同様にして膜厚8μmの厚付けめっきを行った。
厚付けめっき後の亜鉛ダイカスト製品につき、実施例1と同様に、折り曲げ試験を行い、破断面の剥離の有無を目視観察した。この結果、a)、b)いずれの電極を使用した場合も、剥離は全く無く、厚付けめっきにおいても極めて優れた密着性を有することが確認できた。
4. Plating plating:
After confirming in the adhesion test 3 above that the coating has sufficient adhesion, 85 g / L of copper pyrophosphate and 325 g of potassium pyrophosphate are applied to the zinc die-cast product after the plating as in Example 1. Prepare a bath of pH / L, pH 8.8, and use a plating solution to which ammonia and brightener (trade name "Pyronicca ES" manufactured by Nippon Chemical Industrial Co., Ltd.) have been added, in the same manner as in the plating step 2 above, using a plating solution Thick plating was performed.
The zinc die cast product after thick plating was subjected to a bending test in the same manner as in Example 1 to visually observe the presence or absence of peeling of the fractured surface. As a result, in the case of using any of the electrodes a) and b), it was confirmed that there was no peeling at all and that the electrode had extremely excellent adhesion even in thick plating.

〔実施例4〕
被めっき体を鉄(SPCC)製品とする以外は、実施例1,2,3と同様のめっき試験を行った。これらの結果、いずれのめっき液を用いた場合も、実施例1〜3と同様の密着性に優れためっき製品を得ることができた。
Example 4
The same plating test as in Examples 1, 2 and 3 was conducted except that the body to be plated was made of iron (SPCC). As a result, even when any plating solution was used, a plated product having excellent adhesion as in Examples 1 to 3 could be obtained.

〔実施例5〕
無酸素銅陽極と不溶性(IrO2)陽極併用の場合の電流分配比率を、無酸素銅:IrO2=6:4とする以外は、実施例1,2,3,4と同様のめっき試験を行った。これらの結果、いずれの場合も、実施例1〜4と同様の密着性に優れためっき製品を得ることができた。
[Example 5]
The same plating test as in Examples 1, 2, 3 and 4 was carried out except that the current distribution ratio in the case of using an oxygen free copper anode and an insoluble (IrO 2 ) anode in combination was set to oxygen free copper: IrO 2 = 6: 4. went. As a result of these, in any case, a plated product having excellent adhesion as in Examples 1 to 4 could be obtained.

〔参考例〕
硫酸銅・5水和物濃度を20g/L(0.08mol/L)とする以外は、実施例1の条件を設定し、このままめっきを繰り返し行い、めっき液中の電解量に対する銅濃度の関係を測定した。結果は図1に示す通りであり、無酸素銅陽極と不溶性(IrO2)陽極を併用した場合、銅濃度が一定に保持されることが分かる。従って、無酸素銅陽極単独使用の場合は、銅濃度が一定となる制御を、めっき中持続させ、銅濃度を一定に維持することが、密着性、光沢性により優れためっきを得る上で好ましい。
[Reference example]
The conditions of Example 1 were set except that the concentration of copper sulfate pentahydrate was 20 g / L (0.08 mol / L), plating was repeated as it was, and the relationship between the copper concentration and the amount of electrolysis in the plating solution Was measured. The results are as shown in FIG. 1, and it can be seen that the copper concentration is kept constant when an oxygen free copper anode and an insoluble (IrO 2 ) anode are used in combination. Therefore, in the case of using an oxygen-free copper anode alone, it is preferable to maintain control to keep the copper concentration constant during plating and maintain the copper concentration constant, in order to obtain a plating superior in adhesion and gloss. .

本発明のストライク銅めっき液は、安全性が高く、人体や環境に対する悪影響が少ない点でその有用性が高い。
また、本発明のめっき液を用いれば、特に鉄や亜鉛ダイカスト等の卑な金属材料に対してきわめて密着性が良好で、かつ均一で優れた外観を呈するストライク皮膜を形成することができる。
The strike copper plating solution of the present invention is highly useful in that it is highly safe and has less adverse effects on the human body and the environment.
Moreover, if the plating solution of the present invention is used, it is possible to form a strike film which exhibits very good adhesion to particularly simple metallic materials such as iron and zinc die-casts, and exhibits a uniform and excellent appearance.

Claims (2)

二価銅の塩、オキシモノカルボン酸塩、ヒダントイン化合物、及び電導性塩を含有し、pH10〜12であって、シアンイオンを含まないことを特徴とするストライク銅めっき液。   A strike copper plating solution comprising a divalent copper salt, an oxymonocarboxylate, a hydantoin compound, and a conductive salt, having a pH of 10 to 12, and containing no cyanide ion. 請求項1記載のストライク銅めっき液により、陽極として、無酸素銅単独使用、又は無酸素銅と他の不溶性陽極との併用下においてめっきすることを特徴とするストライク銅めっき方法 The strike copper plating solution according to claim 1, as an anode, oxygen-free copper alone, or feature and to Luz trike copper plating method that plating in combination under the oxygen-free copper and other insoluble anodes.
JP2014243791A 2013-12-17 2014-12-02 Strike copper plating solution and strike copper plating method Active JP6517501B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014243791A JP6517501B2 (en) 2013-12-17 2014-12-02 Strike copper plating solution and strike copper plating method
CN201410784800.7A CN104711648B (en) 2013-12-17 2014-12-17 Flash copper plating solution

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013259866 2013-12-17
JP2013259866 2013-12-17
JP2014243791A JP6517501B2 (en) 2013-12-17 2014-12-02 Strike copper plating solution and strike copper plating method

Publications (2)

Publication Number Publication Date
JP2015134960A JP2015134960A (en) 2015-07-27
JP6517501B2 true JP6517501B2 (en) 2019-05-22

Family

ID=53766984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014243791A Active JP6517501B2 (en) 2013-12-17 2014-12-02 Strike copper plating solution and strike copper plating method

Country Status (1)

Country Link
JP (1) JP6517501B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7436071B1 (en) 2022-11-25 2024-02-21 株式会社シミズ Non-cyanide brass plating bath and plating method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750018A (en) * 1997-03-18 1998-05-12 Learonal, Inc. Cyanide-free monovalent copper electroplating solutions

Also Published As

Publication number Publication date
JP2015134960A (en) 2015-07-27

Similar Documents

Publication Publication Date Title
TWI677600B (en) A method for electrolytically passivating an outermost chromium or outermost chromium alloy layer to increase corrosion resistance thereof
KR101624759B1 (en) Cyanide free electrolyte composition for the galvanic deposition of a copper layer
JP5299887B2 (en) Electrolytic solution for trivalent chromium plating film
JP2008045194A (en) Hard gold alloy plating liquid
TWI452179B (en) Gold plating solution
JP5336762B2 (en) Copper-zinc alloy electroplating bath and plating method using the same
WO2012067725A1 (en) Electrolytic dissolution of chromium from chromium electrodes
JP5652585B2 (en) Trivalent chromium plating bath
EP3168332B1 (en) Electrolytic stripping agent for removing palladium from a jig
JP6517501B2 (en) Strike copper plating solution and strike copper plating method
JPH0436498A (en) Surface treatment of steel wire
Zhu et al. Copper coating electrodeposited directly onto AZ31 magnesium alloy
CN104711648B (en) Flash copper plating solution
JP4517177B2 (en) Treatment method of electroless nickel plating solution
EP3191616B1 (en) Metal connector or adaptor for hydraulic or oil dynamic application at high pressure and relative galvanic treatment for corrosion protection
JP3646805B2 (en) Method for producing black chrome plating film
JP3698341B2 (en) Method for producing single-sided copper-plated steel strip
TW202336294A (en) Aqueous stripping composition for electrolytically removing a metal deposit from a substrate
JP2010150606A (en) Electrolytic regeneration type electroless tin plating method
JPH07207487A (en) Iron electroplating liquid
JP2014240506A (en) Regeneration method of anode for plating trivalent chromium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190418

R150 Certificate of patent or registration of utility model

Ref document number: 6517501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250