JPS5959890A - Method for preventing deterioration in activity of ferrous cathode of electrolytic cell - Google Patents
Method for preventing deterioration in activity of ferrous cathode of electrolytic cellInfo
- Publication number
- JPS5959890A JPS5959890A JP57169878A JP16987882A JPS5959890A JP S5959890 A JPS5959890 A JP S5959890A JP 57169878 A JP57169878 A JP 57169878A JP 16987882 A JP16987882 A JP 16987882A JP S5959890 A JPS5959890 A JP S5959890A
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- coating layer
- activity
- base material
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、アルカリ金属ハロゲン化物水溶液や、アルカ
リ水溶液等の電解に用いるのに適した電解槽の陰極の活
性低下防止方法に関するものであり、特に、袋状メツシ
ー等複雑な形状を有する陰極の活性低下防止方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing a decrease in the activity of a cathode in an electrolytic cell suitable for use in the electrolysis of an aqueous alkali metal halide solution or an aqueous alkaline solution, and particularly relates to a method for preventing a decrease in the activity of a cathode in an electrolytic cell suitable for electrolysis of an aqueous alkali metal halide solution or an aqueous alkaline solution, and is particularly concerned with The present invention relates to a method for preventing a decrease in activity of a cathode having a shape.
従来、アルカリ金属ハロゲン化物水溶液等の電解に用い
る陰極としては、鉄、軟鋼、ステンレス等が用いられて
きたが、これらtよ、水素過電圧があまり低くないので
、鉄等の表面に、ニッケルのような水素過電圧の低い金
属の多孔質層を形成して電力費の節減2図っているう
しかし、この陰v8を使用して塩化ナトリウノ・笠を電
解する際には、電解(v1内面に処理が施こされていな
いため、生成する水酸化ナトリウム等により、鉄が溶出
して陰極面」二に析出し、活性が低下し、°また、多孔
性被覆層を形成した陰極からも同様に、多孔を通して鉄
が溶出して被覆層上に析出して活性が低下してしまうと
いう欠点がある。Conventionally, iron, mild steel, stainless steel, etc. have been used as cathodes for electrolysis of aqueous solutions of alkali metal halides, etc. However, since the hydrogen overvoltage of these materials is not very low, a material such as nickel is used on the surface of iron, etc. However, when using this shade V8 to electrolyze sodium chloride/kasa, it is necessary to form a porous layer of metal with a low hydrogen overvoltage. Because iron is not coated, iron is eluted and deposited on the cathode surface by the sodium hydroxide, etc. that is produced, reducing the activity. There is a drawback that iron is eluted through the coating layer and precipitated on the coating layer, resulting in a decrease in activity.
鉄等の陰極基材上に、均一′/J:、被覆層を形成する
ことができれば後者の欠点は解消するが、従来使用され
ている溶射法あるいは電気メツキ法では、特に装状メツ
シュ等複雑な形状からなる陰極基材上に均一な被覆層を
形成することはできなかった。The latter drawback can be overcome if a uniform coating layer can be formed on a cathode substrate such as iron, but the conventional thermal spraying or electroplating methods do not produce complicated coatings, especially in the case of a covering mesh. However, it was not possible to form a uniform coating layer on the cathode base material, which had a similar shape.
つまり、溶射法によると、陰(へ而が一定方向を向いて
いないだめ溶射による被覆蔽が異なり、場所によっては
被覆が形成されず、又、′〜、気メッキ法では、陽極と
の距離の遠近により、被覆層の厚さが不均一となるので
ある。また、溶射法、電気メッキ法は比較的高価かつ煩
雑であり、経済性及び作業性の面からも好ましくない。In other words, according to the thermal spraying method, the coating due to thermal spraying will be different unless the shadow (heel) faces in a certain direction, and the coating will not be formed depending on the location. Depending on the distance, the thickness of the coating layer becomes non-uniform.Furthermore, thermal spraying and electroplating are relatively expensive and complicated, and are not preferred from the economical and workability standpoints.
本発明者らは、鉄系材料からなる陰極室内面と陰極基村
上に、ニッケルを無′#1工解メーツキして均一な被覆
層を形成することによυ鉄の溶出と析出による陰極の活
性低下に防止するとともに、前記陰極基利上に被11シ
た被伏層上に、多孔質ニッケル層を、電気゛メソギ及び
リーチングにより形成1〜、陰極活性を烏めることがで
きることを見い出(〜だものであり、特に、本発明は、
複雑な構造を有する電解槽に適用する際に好都合である
。The present inventors formed a uniform coating layer on the inner surface of the cathode chamber made of iron-based material and on the cathode base layer by applying nickel without any heat treatment. It was found that the cathode activity could be reduced by forming a porous nickel layer on the covering layer formed on the cathode substrate by electrolysis and leaching, while also preventing the activity from decreasing. In particular, the present invention
This is advantageous when applied to electrolytic cells with complex structures.
tなわち本発明は、鉄系材料からなる陰極室内面と陰極
基Iの表面に、ニッケルを還元剤の存在下、無IKMメ
ツ■して被覆層を形成1〜、少なくとも陰極暴利−1−
のニッケル被覆層の表面に、電気2メツキによpニッケ
ルと犠牲金属との合金被覆層を設けた後、該陰極基材を
リーチング処理し、少なくとも犠牲金属の一部を溶出除
去することを特徴とする4%槽の鉄系陰極の活性低下防
止方法であ鉄系の導゛べL性基体としてt、;2、軟鋼
、スデンレス等を用いることができる。In other words, in the present invention, a coating layer is formed on the inner surface of the cathode chamber made of an iron-based material and on the surface of the cathode group I in the presence of a reducing agent without using IKM.
After providing an alloy coating layer of p-nickel and a sacrificial metal on the surface of the nickel coating layer by electric plating, the cathode base material is subjected to a leaching treatment to elute and remove at least a part of the sacrificial metal. In the method for preventing a decrease in the activity of an iron-based cathode in a 4% tank, t,;2, mild steel, stainless steel, etc. can be used as the iron-based conductive substrate.
陰極室内面及び陰極基杓上に被覆するニッケル層pJ六
陰極室及び陰極基材の腐食を防止する上で有効であり1
3〜200μ、好1しくは5 p〜100μの厚みとす
る。このニッケル被覆層の形成には、塩化ニヅク゛ル、
硝酸ニッケル等のニッケル化合物水溶液と次亜リン酸塩
等の還元剤とからなるメッキ液中に、陰極室及び陰極基
材を浸I7、ニッケル陽イオンを還元しで、ニッケルの
単体を陰極室内面及び陰極基体上に析出させる無電解メ
ッキ法を採用する。この無7115解メツキ法は、操作
がメッキ液中に陰極室及び陰極暴利を浸すというきわめ
て簡単なものでおシ、かつ陰極室や陰極基材が複雑な形
状であっても、メッキ液とまんべんなく接触するため、
被覆層を均一な厚さとして被覆することができ、陰極室
内面及び陰極基体を外部から遮蔽し、電解の際に鉄等が
溶出するの缶完全に防止することができる。なお、ニッ
ケルの被Oi屑を形成するのに先立って、陰極室及び陰
極基体に、脱脂、脱錆、酸洗、プラスト処理等の表面処
理を施し、ニッケルがメッキされやすくしておくことが
望ましい。なお、電解槽としては、隔膜式電解槽及びフ
ィルタープレス型電解槽のいずれをも使用することがで
きる。The nickel layer coated on the inside of the cathode chamber and on the cathode base plate is effective in preventing corrosion of the cathode chamber and cathode base material.
The thickness is 3 to 200μ, preferably 5p to 100μ. To form this nickel coating layer, nitrogen chloride,
The cathode chamber and cathode base material are immersed in a plating solution consisting of an aqueous solution of a nickel compound such as nickel nitrate and a reducing agent such as hypophosphite. And an electroless plating method is adopted in which the material is deposited on the cathode substrate. This 7115-free plating method is extremely simple in that it involves immersing the cathode chamber and cathode base material in the plating solution, and even if the cathode chamber or cathode base material has a complicated shape, it can be applied evenly to the plating solution. In order to contact
The coating layer can be coated with a uniform thickness, shielding the inner surface of the cathode chamber and the cathode substrate from the outside, and completely preventing iron and the like from being leached during electrolysis. In addition, before forming the nickel Oi scrap, it is desirable to perform surface treatments such as degreasing, derusting, pickling, and plasting on the cathode chamber and cathode substrate to make it easier to plate with nickel. . Note that as the electrolytic cell, both a diaphragm type electrolytic cell and a filter press type electrolytic cell can be used.
次に、陰極基体上に被覆したニッケル被覆層の表面に、
電気メッキによりニック゛ルと、犠牲金に鴬の合金層を
形成する。ここでI随性金属等のリーチングにより溶出
除去しうる金属をいう。この電気メッキの際に&:t、
、塩化ニッケル、硝酸ニッケル等のニッケル化合物と、
塩化亜鉛、硝酸亜鉛等の亜鉛化合物等の混合水溶液中に
、ニッケルを無電解メッキした陰極暴利を浸して、電気
メッキ用の陰極とし、白金、ニッケル等を陽極としで、
酸性下、1〜10A/dm″程度の屯流密商で電気メッ
キを行う。Next, on the surface of the nickel coating layer coated on the cathode substrate,
Electroplating forms a nickel and an alloy layer on the sacrificial gold. Here, it refers to metals that can be eluted and removed by leaching, such as I-associated metals. During this electroplating &:t,
, nickel compounds such as nickel chloride and nickel nitrate,
A cathode electrolessly plated with nickel is immersed in a mixed aqueous solution of zinc compounds such as zinc chloride and zinc nitrate to serve as a cathode for electroplating, and platinum, nickel, etc. are used as an anode.
Electroplating is carried out under acidic conditions at a flow rate of about 1 to 10 A/dm''.
合金層の11さけ、陰極としての活性持続性合作つため
、30 p以上、好ましくは50μ〜300 pとする
。The thickness of the alloy layer should be 30 μm or more, preferably 50 μm to 300 μm, in order to maintain its activity as a cathode.
ニッケルと亜鉛等との重量比は、亜鉛等が少なすぎると
ニッケルの多孔性被覆形成の効果が少なくなり、まだ多
すぎると被覆層がもろく、陰極としての寿命が短くなる
ため、90:10〜50 : 50とすることが94ま
しい。The weight ratio of nickel to zinc, etc. should be 90:10 or more, because if there is too little zinc, the effect of forming a porous nickel coating will be reduced, and if it is too much, the coating layer will be brittle and the life of the cathode will be shortened. 50:50 is 94 preferable.
」−記のようにして、ニック゛ルど亜鉛等とからなる合
金層を被覆した後、冶金層中から亜鉛等をリーチングに
より溶出除去する。この溶出し)2、カセイソーダ等の
アルカリ中に浸漬するとどVこよ9行われる。溶出の条
件eよ、合金層(V成分によって異なるが、例えば5〜
20重n%のカセイソーダ水溶液中に40〜80℃で、
2〜5時間浸漬するのが適当である。After coating the metallurgical layer with an alloy layer consisting of nickeled zinc and the like as described above, zinc and the like are leached and removed from the metallurgical layer. This elution is carried out by immersing it in an alkali such as caustic soda. Elution condition e, alloy layer (varies depending on the V component, but for example 5~
in a 20% by weight aqueous caustic soda solution at 40 to 80°C,
It is appropriate to soak for 2 to 5 hours.
本発明は、陰極室内面及び陰極基材の表面に、ニッケル
を無電、解メッキし2、陰極基材のニッケル被覆層上に
、ニッケルと犠牲金属との合金層を形成した後、混合層
中の犠牲金属をリーグーングにより溶出させるようにし
てあり、ニッケルの被伴層を設けることにより、陰極室
及び陰極基体から鉄が腐食して溶解することを防止する
ことができ、鉄が陰極表面に析出する仁とがなく、陰極
とじでの活性持続性を長期に亘って保持することができ
る。また、この場合、ニッケルの被覆層を無電解メッキ
によシ被覆するようにしであるため、陰極基体が袋状メ
ツシー等の複雑な形状であっても均一に被覆することが
でき、溶射法あるいは陽極との距離の遠近により被覆層
に差が生ずる′[b、気メッキ法と異なり、−j(等の
溶解を確実に阻止することができ、しかも安価かつ存易
に被農層を形成できるため、1.量的用途に使用するの
に有用である。In the present invention, nickel is electrolessly plated on the inside of the cathode chamber and on the surface of the cathode base material2, an alloy layer of nickel and a sacrificial metal is formed on the nickel coating layer of the cathode base material, and then a mixed layer is formed. The sacrificial metal is eluted by leagueing, and by providing a nickel entrained layer, it is possible to prevent iron from corroding and dissolving from the cathode chamber and cathode substrate, and prevent iron from depositing on the cathode surface. It does not have any stains and can maintain its activity over a long period of time when it is cathode bound. In addition, in this case, the nickel coating layer is coated by electroless plating, so even if the cathode substrate has a complicated shape such as a bag-like mesh, it can be coated uniformly, and it can be coated using thermal spraying or Differences occur in the coating layer depending on the distance from the anode. Unlike the plating method, it is possible to reliably prevent the dissolution of -j(, Therefore, 1. It is useful for quantitative applications.
実施例
軟鋼製の袋状メソシーの陰極基体と、軟鋼製の隔膜弐竜
屏槽を1−村上挙株式会社製の二〕・デン5Xの5倍希
釈液に8【〕℃、4時間UrRしで、二、・ケルの被覆
層を形成したう
ニッケルの被覆層を形成1ツた陰極基体に次のメッキ争
注で、ニッケルと亜鉛の合金層を形成した、メ;11浴
組成 NiC1x250 V / 1ZnC1,45
y /l
pH,4,5(ILClで調整)
電流密度 3A/dm’
温 度 45℃
時 間 2時間
合金層を被覆した陰極基体を10重量%のカセイソ・−
ダ中に40x〕で8時間浸漬し、混合層中の亜鉛を溶出
除去して陰極を製造した。Example: A bag-shaped mesocye cathode substrate made of mild steel and a diaphragm tank made of mild steel were subjected to UrR treatment in a 5-fold diluted solution of 1-Den 5X manufactured by Murakami Kyoto Co., Ltd. at 8[]°C for 4 hours. Then, in the next plating process, an alloy layer of nickel and zinc was formed on the cathode substrate that had been coated with a nickel coating layer.Bath composition NiC1x250V/ 1ZnC1,45
y/l pH, 4,5 (adjusted with ILCl) Current density: 3 A/dm' Temperature: 45°C Time: 2 hours The cathode substrate coated with the alloy layer was treated with 10 wt.
The mixed layer was immersed for 8 hours at 40x for 8 hours, and the zinc in the mixed layer was eluted and removed to produce a cathode.
上記のように製造17た陰極と陰極室を使用し、次の条
件で食塩電解を行った。Using the cathode and cathode chamber manufactured as described above, salt electrolysis was carried out under the following conditions.
供給食塩水P度 300 ?/1
水酸化ナトリウノ・濃度 52q4イオン交換
膜 Du Pant社I’J Nd1on 901電
流 密 度 30 A/dm’電解槽
温に85℃
6力月経過後の鉄の溶出量は0.02 ppm以下で、
水素過電圧は6ケ月の運転期間中[+、 I Vで変化
は見られなかった。Supply saline water P degree 300? /1 Sodium hydroxide Concentration 52q4 ion exchange membrane Du Pant I'J Nd1on 901 Current Density 30 A/dm' Electrolytic bath temperature 85℃ After 6 months elution amount of iron is 0.02 ppm or less in,
No change in hydrogen overvoltage was observed during the 6-month operation period [+, IV.
比較例
ニッケルの被覆層を形成していない陰極室と陰極を用い
、実施例と同様の条件で食塩型Mを行ったところ、6力
月経過後の鉄の溶出量は3 ppmであつ/?二。Comparative Example Using a cathode chamber and a cathode on which no nickel coating layer was formed, salt type M was carried out under the same conditions as in the example, and the amount of iron eluted after 6 months was 3 ppm. two.
Claims (1)
ケルを碩元剤の存在下、無電Mメッギしてニッケル被覆
層を形成し、少なくとも陰極基材上のニッケル被覆層の
表面に、電気メッキによりニッケルと犠牲金属との合金
被覆層を設けた後、該陰極基材をリーヂング処理し、少
なくとも犠牲金への一部を溶出除去することを特徴とす
る電解槽の鉄系陰極の活性低下防止方法。A nickel coating layer is formed on the inner surface of the cathode chamber made of an iron-based material and on the surface of the cathode base material by applying electroless M-Megging with nickel in the presence of a sifting agent, and at least on the surface of the nickel coating layer on the cathode base material, Activation of an iron-based cathode of an electrolytic cell characterized in that after providing an alloy coating layer of nickel and a sacrificial metal by electroplating, the cathode base material is subjected to a leading treatment to elute and remove at least a part of the sacrificial metal. How to prevent decline.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57169878A JPS5959890A (en) | 1982-09-30 | 1982-09-30 | Method for preventing deterioration in activity of ferrous cathode of electrolytic cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57169878A JPS5959890A (en) | 1982-09-30 | 1982-09-30 | Method for preventing deterioration in activity of ferrous cathode of electrolytic cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5959890A true JPS5959890A (en) | 1984-04-05 |
Family
ID=15894630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57169878A Pending JPS5959890A (en) | 1982-09-30 | 1982-09-30 | Method for preventing deterioration in activity of ferrous cathode of electrolytic cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5959890A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6299488A (en) * | 1985-10-25 | 1987-05-08 | Osaka Soda Co Ltd | Method for plating structural member of electrolytic cell |
WO2023054576A1 (en) * | 2021-10-01 | 2023-04-06 | 株式会社トクヤマ | Electrolytic cell |
-
1982
- 1982-09-30 JP JP57169878A patent/JPS5959890A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6299488A (en) * | 1985-10-25 | 1987-05-08 | Osaka Soda Co Ltd | Method for plating structural member of electrolytic cell |
JPH0244906B2 (en) * | 1985-10-25 | 1990-10-05 | Daisow Co Ltd | |
WO2023054576A1 (en) * | 2021-10-01 | 2023-04-06 | 株式会社トクヤマ | Electrolytic cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950011405B1 (en) | Cathode for electrolysis and process for producing the same | |
US5882723A (en) | Durable electrode coatings | |
US3480523A (en) | Deposition of platinum-group metals | |
US3309292A (en) | Method for obtaining thick adherent coatings of platinum metals on refractory metals | |
JPS6013074B2 (en) | Electrolytic cathode and its manufacturing method | |
US4162204A (en) | Plated metallic cathode | |
NL7905374A (en) | CATALYTIC ELECTRODE AND METHOD OF MANUFACTURE THEREOF. | |
US5164062A (en) | Electrocatalytic cathodes and method of preparation | |
CN113463148A (en) | Method for electroplating gold on surface of titanium or titanium alloy substrate | |
JPH0436498A (en) | Surface treatment of steel wire | |
JPS5959890A (en) | Method for preventing deterioration in activity of ferrous cathode of electrolytic cell | |
US3467584A (en) | Plating platinum metals on chromium | |
CN112111765B (en) | Method for forming nickel-tungsten alloy coating | |
US4230543A (en) | Cathode for electrolysis of aqueous solution of alkali metal halide | |
GB1445553A (en) | Process for producing an adherent metal coating on an article | |
US5066380A (en) | Electrocatalytic cathodes and method of preparation | |
US1497265A (en) | Zinc-electroplated articles | |
JPS589988A (en) | Electrolytic cell | |
US4177129A (en) | Plated metallic cathode | |
JP2544678B2 (en) | Inner Sn plated copper pipe for water / hot water supply and method for manufacturing the same | |
JPS6364518B2 (en) | ||
JPH0244906B2 (en) | ||
JPS5846553B2 (en) | Method of manufacturing activated electrodes | |
JPS58185788A (en) | Manufacture of electrode | |
JPS5834185A (en) | Cathode for electrolysis |