WO2023054576A1 - Electrolytic cell - Google Patents

Electrolytic cell Download PDF

Info

Publication number
WO2023054576A1
WO2023054576A1 PCT/JP2022/036409 JP2022036409W WO2023054576A1 WO 2023054576 A1 WO2023054576 A1 WO 2023054576A1 JP 2022036409 W JP2022036409 W JP 2022036409W WO 2023054576 A1 WO2023054576 A1 WO 2023054576A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
gasket
nickel plating
plating layer
alkaline water
Prior art date
Application number
PCT/JP2022/036409
Other languages
French (fr)
Japanese (ja)
Inventor
康行 田中
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to CN202280065689.9A priority Critical patent/CN118043498A/en
Priority to KR1020247004525A priority patent/KR20240063863A/en
Priority to JP2023551839A priority patent/JP7496480B2/en
Publication of WO2023054576A1 publication Critical patent/WO2023054576A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/05Diaphragms; Spacing elements characterised by the material based on inorganic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/63Holders for electrodes; Positioning of the electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to an electrolytic cell for alkaline water electrolysis.
  • Alkaline water electrolysis is known as a method for producing hydrogen gas and oxygen gas.
  • a basic aqueous solution (alkaline water) in which an alkali metal hydroxide (e.g., NaOH, KOH, etc.) is dissolved is used as an electrolytic solution to electrolyze water to generate hydrogen gas from the cathode.
  • an electrolytic cell for alkaline water electrolysis an electrolytic cell which is provided with an anode chamber and a cathode chamber separated by an ion-permeable diaphragm, in which the anode is arranged in the anode chamber and the cathode is arranged in the cathode chamber.
  • the properties of the respective electrode liquids in the anode chamber and the cathode chamber of the alkaline water electrolytic cell are in the strong alkaline range.
  • an electrolytic cell that can be suitably used for the electrolysis of alkaline water, particularly the electrolysis of alkaline water under pressurized conditions, "constitutes a first electrode chamber and has a first flange portion on the outer peripheral portion.
  • a second electrolytic element forming a second pole chamber and having a second flange portion on an outer peripheral portion; the first flange portion and the second flange portion; and a diaphragm separating the first pole chamber and the second pole chamber, wherein the first flange portion is connected to the second flange a first end face facing a portion and in contact with the gasket; and the second flange portion has a second end face facing the first end face of the first flange portion and in contact with the gasket. wherein the gasket is sandwiched between the first end surface and the second end surface, and the first flange portion is in contact with the outer peripheral portion of the gasket from the outer peripheral side of the gasket.
  • Patent Document 1 describes that a rigid material having alkali resistance, such as iron, nickel, or stainless steel, is used as a material for each flange portion.
  • nickel is considered to be the most preferable material for the conductive partition walls and flanges that make up each electrode chamber.
  • the use of nickel components increases the cost of the electrolytic cell.
  • an inexpensive metal material such as carbon steel (for example, mild steel) for the structural members of the electrolytic cell.
  • carbon steel for example, mild steel
  • the electrolyte and the gas are interspersed particularly between the flange portion on the anode chamber side and the gasket. It has been found that the sealing performance of is likely to deteriorate. It was difficult to solve this problem simply by providing a nickel plating layer on the surface of the flange portion.
  • An object of the present invention is to provide an alkaline water electrolytic cell capable of suppressing deterioration of the sealability of the anolyte and the anode chamber gas.
  • the present invention includes the following forms [1] to [14].
  • a first frame which includes a conductive first partition and a first flange provided on the outer peripheral portion of the first partition, defining an anode chamber;
  • a second frame comprising a conductive second partition and a second flange portion provided on the outer peripheral portion of the second partition and defining a cathode chamber;
  • an ion-permeable diaphragm disposed between the first frame and the second frame to separate the anode chamber and the cathode chamber;
  • a gasket sandwiched between a first flange portion of the first frame and a second flange portion of the second frame to hold the diaphragm;
  • the gasket is a first gasket element contacting the first flange portion and the diaphragm;
  • the first frame is at least one steel first core;
  • the alkaline water electrolytic cell according to any one of [1] to [3], further comprising the first nickel plating layer provided on the surface of the first core material.
  • the first nickel plating layer is continuously provided on the first gasket contact surface and the surface of the first frame facing the anode chamber, [1]- The alkaline water electrolytic cell according to any one of [4].
  • the second flange includes a second gasket contact surface that contacts the second gasket element;
  • the second frame includes a second nickel-plated layer having a thickness of 27 ⁇ m or more, which is exposed on the second gasket contact surface of the second flange,
  • the alkaline water electrolytic cell according to any one of [1] to [7], wherein the surface roughness of the second gasket contact surface is 10 ⁇ m or less as arithmetic mean roughness Ra.
  • the second frame is at least one steel second core;
  • the alkaline water electrolytic cell according to any one of [8] to [10], further comprising the second nickel plating layer provided on the surface of the second core material.
  • the second nickel plating layer is continuously provided on the second gasket contact surface and the surface of the second frame facing the cathode chamber, [8]- The alkaline water electrolytic bath according to any one of [11].
  • the second frame The alkaline water electrolytic cell according to any one of [1] to [13], further comprising a conductive support member that protrudes from the second partition into the cathode chamber and supports the cathode.
  • the first frame defining the anode chamber has a nickel plating layer with a thickness of 27 ⁇ m or more exposed on the gasket contact surface of the flange, and the gasket contact
  • the surface roughness of the surface is 10 ⁇ m or less in terms of arithmetic mean roughness Ra, it is possible to suppress the deterioration of the sealing performance of the anode liquid and the anode chamber gas.
  • FIG. 4 is a cross-sectional view schematically explaining an electrolytic cell 200 according to another embodiment of the present invention. It is the figure which extracted the 3rd frame 210 from FIG.
  • the notation " E1 and/or E2 " for the elements E1 and E2 means “ E1 or E2 , or a combination thereof", and the elements E1 , ..., EN (N is 3 above integers), the notation "E 1 , ..., E N-1 , and/or E N " shall mean “E 1 , ..., E N-1 , or E N , or combinations thereof.” do.
  • FIG. 1 is a cross-sectional view schematically explaining an electrolytic cell 100 according to one embodiment of the present invention.
  • the electrolytic cell 100 is an electrolytic cell for alkaline water electrolysis.
  • the electrolytic cell 100 includes a first frame 10 that defines an anode chamber A; a second frame 20 that defines a cathode chamber C; an ion-permeable diaphragm 40 disposed between the second frame 20 and separating the anode chamber A and the cathode chamber C; sandwiched between the first frame 10 and the second frame 20, and a diaphragm an electrically insulating gasket 30 holding the peripheral edge of 40; an anode 50 located in anode chamber A and electrically connected to first partition 11; and a cathode 60 electrically connected to the partition wall 21 .
  • the first frame 10 has a conductive first partition 11 and a first flange portion 12 provided on the outer peripheral portion of the partition 11 .
  • the second frame 20 also has a conductive second partition 21 and a second flange portion 22 provided on the outer peripheral portion of the partition 21 .
  • the partition walls 11 and 21 partition the adjacent electrolytic cells and electrically connect the adjacent electrolytic cells in series.
  • the gasket 30 comprises a first gasket element 31 contacting the first flange portion 12 and the diaphragm 40 and a second gasket element 32 contacting the second flange portion 22 and the diaphragm 40 .
  • the first flange portion 12 together with the diaphragm 11, the diaphragm 40 and the gasket element 31 defines the anode chamber A and the second flange portion 22 together with the diaphragm 21, the diaphragm 40 and the gasket element 32 defines the cathode chamber C. do.
  • the first frame 10 further includes at least one conductive support member (first support member) 13, 13, . ), and the anode 50 is held by the support member 13 .
  • the support member 13 is electrically connected with the first partition 11 and the anode 50 .
  • the second frame 20 further includes conductive support members (second support members) 23, 23, .
  • the cathode 60 is held by the support member 23 .
  • the support member 23 is electrically connected with the second partition 21 and the cathode 60 .
  • the first flange portion 12 includes an anolyte supply channel for supplying the anolyte to the anode chamber A, and an anolyte for recovering the anolyte from the anolyte A and the gas generated at the anode.
  • the second flange portion 22 has a catholyte supply channel for supplying the catholyte to the cathode chamber C and a catholyte recovery channel for recovering the catholyte from the cathode chamber C and the gas generated at the cathode.
  • a rigid conductive material having alkali resistance can be used as a material for the first partition 11 and the second partition 21 .
  • single metals such as nickel and iron; steel.
  • carbon steel such as high carbon steel
  • steel such as stainless steel (for example, SUS304, SUS310, SUS310S, SUS316, SUS316L, etc.).
  • Steel materials such as steel and stainless steel can be particularly preferably employed.
  • a rigid material having alkali resistance can be used, for example, single metals such as nickel and iron;
  • Metal materials such as carbon steel, stainless steel (for example, SUS304, SUS310, SUS310S, SUS316, SUS316L, etc.), and the like can be preferably employed.
  • steel materials such as carbon steel and stainless steel are particularly preferable, and carbon steel is most preferable.
  • a rigid material having alkali resistance can be used.
  • single metals such as nickel and iron;
  • stainless steel for example, SUS304, SUS310, SUS310S, SUS316, SUS316L, etc.
  • non-metal materials such as reinforced plastics can also be used, from the viewpoint of cost reduction and strength.
  • the partition wall 11 and the flange portion 12 of the first frame 10 may be joined by welding, adhesion, or the like, or may be integrally formed of the same material.
  • the partition wall 21 and the flange portion 22 of the second frame 20 may be joined by welding, adhesion, or the like, or may be integrally formed of the same material.
  • it is preferable that the partition wall 11 and the flange portion 12 of the first frame 10 are integrally formed of the same material because it is easy to increase the resistance to the pressure inside the pole chamber. It is preferable that the partition wall 21 and the flange portion 22 of the frame 20 are integrally formed of the same material.
  • first support member 13 and the second support member 23 a support member that can be used as a conductive rib in an alkaline water electrolytic bath can be used.
  • the first support member 13 is erected from the partition wall 11 of the first frame 10
  • the second support member 23 is erected from the partition wall 21 of the second frame 20.
  • the connection method, shape, number, and arrangement of the first support members 13 are not particularly limited.
  • the connection method, shape, number and arrangement of the second support members 23 are not particularly limited.
  • a rigid conductive material having alkali resistance can be used as the material of the first support member 13 and the second support member 23 .
  • simple metals such as nickel and iron;
  • Metal materials such as medium carbon steel, carbon steel such as high carbon steel, stainless steel (e.g., SUS304, SUS310, SUS310S, SUS316, SUS316L, etc.) can be preferably employed, and from the viewpoint of cost reduction and strength, Steel materials such as carbon steel and stainless steel can be particularly preferably employed.
  • the gasket contact surface of the flange normally looks sufficiently smooth to the naked eye, but microscopically, unevenness remains. It is thought that a fine tunnel-like flow path is formed between them, through which alkaline water can enter. When alkaline water enters between the gasket contact surface of the metal flange portion and the gasket, it can corrode (ionize) the metal of the gasket contact surface. Fine pockets are generated where metal corrosion occurs, and alkaline water flows into these pockets through the existing fine tunnel-shaped flow paths to expand the metal corrosion, resulting in fine tunnel-shaped flow paths. a vicious circle of growing and/or developing.
  • Nickel has sufficient corrosion resistance against alkaline water. Therefore, even if the flange portion is made of a base metal such as iron (for example, carbon steel), if the gasket contact surface of the flange portion is nickel-plated, the gasket of the flange portion will Fine unevenness remains on the contact surface, and even if a fine tunnel is formed between the gasket and the gasket, the expansion of metal corrosion due to alkaline water is avoided, so the electrolyte and gas sealing performance is maintained.
  • a thickness of 2 to 10 ⁇ m is sufficient for the nickel plating layer, and it is simply uneconomical to provide a nickel plating layer thicker than this.
  • the metal flange is exposed to an oxidizing potential and the generation of large amounts of oxygen gas can be a problem.
  • the gas generated in the cathode chamber of the alkaline water electrolysis cell is hydrogen gas, and the cathode chamber is filled with a reducing atmosphere, whereas the gas generated in the anode chamber is oxygen gas, and the anode chamber is filled with an oxidizing atmosphere. While being filled with the atmosphere, oxygen gas also dissolves in the anolyte to a saturation level. In the vicinity of the oxygen evolution reaction potential, the oxidation reaction of nickel metal progresses thermodynamically (formula (1) or (2) below). Nickel (II) hydroxide is stable in an alkaline aqueous solution under non-oxidizing conditions, but depending on conditions such as potential and oxygen gas activity, oxidation of nickel may proceed further (for example, the following formulas (3) to (6)).
  • the dissociation pressure of oxygen from the oxide will be equal to the oxygen partial pressure of the atmosphere if the gas flow is sufficient. If the oxygen partial pressure of the atmosphere is higher than the dissociation pressure, the metal will be oxidized; if it is below the dissociation pressure, the oxide will be reduced. An oxygen partial pressure gradient occurs in the oxide film, and the partial pressure decreases as the depth of the oxide film increases. Assuming that the metal/oxide interface is in thermodynamic equilibrium, the system can be regarded as an equilibrium state in which the metal and the oxide coexist, so the oxygen partial pressure is equal to the dissociation pressure.
  • the present inventor provided a nickel plating layer having a thickness of 27 ⁇ m or more so as to be exposed on the gasket contact surface of the flange portion on the anode chamber side, and set the surface roughness of the gasket contact surface to an arithmetic mean roughness Ra of 10 ⁇ m. It has been found that the deterioration of sealing performance against the electrolytic solution and the gas can be suppressed even under severe conditions for metal corrosion on the anode chamber side of the alkaline water electrolytic cell by the following.
  • FIG. 2 is a diagram of only the first frame 10 extracted from FIG. In FIG. 2, elements that have already appeared in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and description thereof may be omitted.
  • the first flange portion 12 has a first gasket contact surface 12e that contacts the first gasket element 31 (see FIG. 1).
  • the first frame 10 has a first nickel plating layer 14 exposed on the first gasket contact surface 12 e of the first flange portion 12 .
  • the thickness of the first nickel plating layer 14 at the first gasket contact surface 12e is determined from the viewpoint of suppressing deterioration of the sealing performance of the anolyte and the anode chamber gas, and from the viewpoint of resistance to alkaline water with high oxygen gas activity.
  • the thickness is not particularly limited, it may be, for example, 100 ⁇ m or less from the viewpoint of manufacturing cost.
  • the surface roughness of the first gasket contact surface 12e is , the arithmetic mean roughness Ra specified in JIS B0601 is 10 ⁇ m or less, preferably 9 ⁇ m or less, or 8 ⁇ m or less.
  • the lower limit of the arithmetic mean roughness Ra is not particularly limited, but in one embodiment, it may be 1 ⁇ m or more, or 2 ⁇ m or more from the viewpoint of gasket fixation stability and manufacturing cost. In one embodiment, the arithmetic mean roughness Ra can be 1-10 ⁇ m, or 1-9 ⁇ m, or 1-8 ⁇ m.
  • the surface roughness of the first gasket contact surface 12e is , the maximum height Rz specified in JIS B0601 is preferably 40 ⁇ m or less, more preferably 35 ⁇ m or less.
  • the lower limit of the maximum height Rz is not particularly limited, it may be 2 ⁇ m or more, 4 ⁇ m or more, 6 ⁇ m or more, or 8 ⁇ m or more from the viewpoint of manufacturing cost in one embodiment.
  • the maximum height Rz can be 2-40 ⁇ m, or 4-40 ⁇ m, or 6-40 ⁇ m.
  • the first nickel plating layer 14 is continuously provided on the first gasket contact surface 12e and the surface of the first frame 10 facing the anode chamber A.
  • the corrosion resistance in the oxygen gas atmosphere of the anode chamber and in the oxygen gas saturated alkaline water is improved for long-term use. It becomes possible to raise it to a sufficient level at low cost.
  • the thickness of the nickel plating layer on the surface facing the anode chamber A of the first frame 10 is preferably 27 ⁇ m.
  • the upper limit of the thickness of the nickel plating layer on the surface of the first frame 10 facing the anode chamber A is not particularly limited, it may preferably be, for example, 100 ⁇ m or less from the viewpoint of cost.
  • the nickel plating layer on the surface of the first frame 10 facing the anode chamber A may be provided on the entire surface of the first frame 10 facing the anode chamber A, or may be provided only on the liquid contact portion. may have been
  • the first frame 10 includes at least one steel core 10a and a first nickel plating layer 14 provided on the surface of the core 10a.
  • the steel core 10a includes a steel core 11a forming the partition wall 11, a steel core 12a forming the flange portion 12, and a steel core forming the support member 13. material 13a.
  • the first nickel plating layer 14 is provided so as to be exposed at least on the gasket contact surface 12e of the flange portion 12, and continuously from the first gasket contact surface 12e, on the surface of the core material 10a facing the anode chamber. It may be provided on the entire surface, or may be provided on the entire surface of the core material 10a.
  • such a first frame 10 is manufactured by nickel-plating a steel core 11a forming the partition wall 11 and a steel core 12a forming the flange 12. be able to.
  • An integrated core material including the steel core material 11a that constitutes the partition wall 11 and the steel core material 12a that constitutes the flange portion 12 may be plated with nickel.
  • 11a and the steel core material 12a forming the flange portion 12 may be separately plated with nickel and then joined together.
  • the first frame 10 includes the support member 13, the steel core member 11a forming the partition wall 11 and the steel core member 13a forming the support member 13 are included, and optionally the flange portion 12 is provided.
  • Nickel plating may be applied to the integrated core material further including the steel core material 12a constituting the support member 13, and the steel core material 13a constituting the support member 13 is separately nickel-plated, and then the core material 13a and the nickel metal are plated separately.
  • a support member 13 including a plating layer may be joined to the partition wall 11 .
  • the first flange portion 12 includes an anolyte supply channel (not shown) that supplies the anolyte to the anode chamber A, and an anolyte recovery path that recovers the anolyte from the anolyte A and the gas generated at the anode. and a channel (not shown).
  • the nickel plating layer 14 is also provided on the inner surfaces of the anolyte supply channel and the anolyte recovery channel provided in the flange portion 12 .
  • the nickel plating layer 14 is preferably provided on at least the liquid-contacting portions of the inner surfaces of the anolyte supply channel and the anolyte recovery channel provided in the flange portion 12, and may be provided on the entire inner surface. .
  • FIG. 3 is a diagram of only the second frame 20 extracted from FIG. In FIG. 3, elements that have already appeared in FIGS. 1 and 2 are assigned the same reference numerals as those in FIGS. 1 and 2, and description thereof may be omitted.
  • the second flange portion 22 has a second gasket contact surface 22e that contacts the second gasket element 32 (see FIG. 1).
  • the second frame 20 includes a second nickel plating layer 24 exposed on the second gasket contact surface 22 e of the second flange portion 22 .
  • the thickness of the second nickel plating layer 24 at the second gasket contact surface 22e is preferably 27 ⁇ m or more, more preferably 30 ⁇ m or more, from the viewpoint of suppressing deterioration of the sealing performance of the catholyte and the cathode chamber gas.
  • the upper limit of the thickness is not particularly limited, it may be, for example, 100 ⁇ m or less from the viewpoint of manufacturing cost.
  • the surface roughness of the second gasket contact surface 22e is preferably 10 ⁇ m or less, more preferably 10 ⁇ m or less as the arithmetic mean roughness Ra specified in JIS B0601. is 9 ⁇ m or less, or 8 ⁇ m or less.
  • the lower limit of the arithmetic mean roughness Ra is not particularly limited, but in one embodiment, it may be 1 ⁇ m or more, or 2 ⁇ m or more from the viewpoint of gasket fixation stability and manufacturing cost. In one embodiment, the arithmetic mean roughness Ra can be 1-10 ⁇ m, or 1-9 ⁇ m, or 1-8 ⁇ m.
  • the surface roughness of the second gasket contact surface 22e is preferably 40 ⁇ m or less, more preferably 40 ⁇ m or less, more preferably 35 ⁇ m or less.
  • the lower limit of the maximum height Rz is not particularly limited, it may be 2 ⁇ m or more, 4 ⁇ m or more, 6 ⁇ m or more, or 8 ⁇ m or more from the viewpoint of manufacturing cost in one embodiment. In one embodiment, the maximum height Rz can be 2-40 ⁇ m, or 4-40 ⁇ m, or 6-40 ⁇ m.
  • the second nickel plating layer 24 is continuously provided on the second gasket contact surface 22e and the surface of the second frame 20 facing the cathode chamber C.
  • a nickel plating layer also on the surface of the second frame 20 facing the cathode chamber C, it is possible to raise the corrosion resistance of the cathode chamber under alkaline conditions to a sufficient level.
  • the nickel plating layer has a thickness that provides corrosion resistance that can withstand the alkaline conditions of the cathode chamber.
  • a thickness of 2 ⁇ m may be sufficient, preferably 10 ⁇ m or more, more preferably 27 ⁇ m or more, and in one embodiment 30 ⁇ m or more.
  • the upper limit of the thickness of the nickel plating layer on the surface of the second frame 20 facing the cathode chamber C is not particularly limited, it is preferably 100 ⁇ m or less from the viewpoint of cost.
  • the nickel-plated layer on the surface of the second frame 20 facing the cathode chamber C may be provided on the entire surface of the second frame 20 facing the cathode chamber C, or may be provided only on the wetted portion. may have been
  • the second frame 20 includes at least one steel core 20a and a second nickel plating layer 24 provided on the surface of the core 20a.
  • the steel core 20a includes a steel core 21a forming the partition wall 21, a steel core 22a forming the flange portion 22, and a steel core forming the support member 23. material 23a.
  • the second nickel plating layer 24 is provided so as to be exposed at least on the gasket contact surface 22e of the flange portion 22, and continuously from the second gasket contact surface 22e on the surface of the core material 20a facing the cathode chamber. It may be provided over the entire surface of the core material 20a.
  • such a second frame 20 is manufactured by nickel-plating a steel core 21a forming the partition wall 21 and a steel core 22a forming the flange 22. be able to.
  • An integrated core material including a steel core material 21a constituting the partition wall 21 and a steel core material 22a constituting the flange portion 22 may be plated with nickel.
  • 21a and the steel core material 22a forming the flange portion 22 may be individually plated with nickel and then joined together.
  • the second frame body 20 includes the support member 23, the steel core member 21a forming the partition wall 21 and the steel core member 23a forming the support member 23 are included, and optionally the flange portion 22 is provided.
  • Nickel plating may be applied to the integrated core material further including the steel core material 22a constituting the support member 23, and the steel core material 23a constituting the support member 23 is separately nickel-plated, and then the core material 23a and the nickel metal are plated separately.
  • a support member 23 including a plating layer may be joined to the partition wall 21 .
  • the second flange portion 22 also includes a catholyte supply channel (not shown) that supplies the catholyte to the cathode chamber C, and a cathode for recovering the catholyte and the gas generated at the cathode from the cathode chamber C. and a liquid recovery channel (not shown).
  • the inner surfaces of the catholyte supply channel and the catholyte recovery channel provided in the flange portion 22 are preferably provided with the nickel plating layer 24 as well.
  • the nickel plating layer 24 is preferably provided on at least the liquid-contacting portion of the inner surfaces of the catholyte supply channel and the catholyte recovery channel provided in the flange portion 22, and may be provided on the entire inner surface. .
  • the second frame 20 is formed by nickel-plating a steel core 21a that constitutes the partition 21, and then combining the partition 21 with the core 21a and the nickel-plated layer and the non-metallic material. It can be manufactured by joining the flange portion 22 configured with.
  • the integrated core material including the steel core material 21a constituting the partition wall 21 and the steel core material 23a constituting the support member 23 is plated with nickel.
  • the steel core 21a forming the partition wall 21 and the steel core 23a forming the support member 23 may be separately plated with nickel and then joined together.
  • a known nickel plating method can be used to provide the first nickel plating layer 14 on the first frame 10 .
  • Nickel plating on the metallic core material may be performed by electroplating or by electroless plating.
  • electroless plating tends to obtain a surface that satisfies the above arithmetic mean roughness Ra in the present invention. Therefore, electroless nickel plating can be preferably used from the viewpoints of suppressing the deterioration of the sealing performance between the anolyte and the anode chamber gas and from the viewpoint of enhancing corrosion resistance in alkaline water with high oxygen gas activity.
  • Electroless nickel plating can be performed by known processes.
  • the metal An electroless nickel plating layer can be formed on the surface of the core material.
  • the electroless nickel plating may be electroless nickel-phosphorus plating or electroless nickel-boron plating. Electroless nickel-phosphorus plating is preferred from the viewpoint of further enhancing corrosion resistance in alkaline water with high gas activity.
  • the phosphorus content in the electroless nickel plating layer 14 is usually 1 to 13% by mass, and in one embodiment, 1% by mass or more and less than 5% by mass, or 5% by mass or more and less than 10% by mass, or 10% by mass. It may be more than or equal to 13% by mass or less. From the viewpoint of further suppressing the deterioration of the sealability of the anolyte and the anode chamber gas, and from the viewpoint of further increasing the corrosion resistance in alkaline water with high oxygen gas activity, the phosphorus content in the electroless nickel plating layer 14 is preferably 5 to 13% by mass, and in one embodiment can be 5% by mass or more and less than 10% by mass.
  • the electrical resistance of the electrolytic cell 100 can be further reduced.
  • the phosphorus content in the electroless nickel plating layer 14 is preferably 5% by mass or more and less than 10% by mass.
  • a known nickel plating method can be used to provide the second nickel plating layer 24 on the second frame 20 .
  • Nickel plating on the metallic core material may be performed by electroplating or by electroless plating.
  • electroless nickel plating can be preferably used from the viewpoint of further suppressing the deterioration of the sealing properties of the catholyte and the cathode chamber gas and from the viewpoint of further increasing the corrosion resistance in alkaline water.
  • Electroless nickel plating can be performed by known processes.
  • the metal An electroless nickel plating layer can be formed on the surface of the core material.
  • the electroless nickel plating may be electroless nickel-phosphorus plating or electroless nickel-boron plating. Electroless nickel-phosphorus plating is preferred from the viewpoint of further enhancing corrosion resistance in water.
  • the phosphorus content in the electroless nickel plating layer 24 is usually 1 to 13% by mass, and in one embodiment, 1% by mass or more and less than 5% by mass, or 5% by mass or more and less than 10% by mass, or 10% by mass. It may be more than or equal to 13% by mass or less. From the viewpoint of further suppressing the deterioration of the sealing properties of the catholyte and the cathode chamber gas and from the viewpoint of further increasing the corrosion resistance in alkaline water, the phosphorus content in the electroless nickel plating layer 24 is preferably 5 to 5. 13% by mass, and in one embodiment, it may be 5% by mass or more and less than 10% by mass.
  • the electrical resistance of the electrolytic cell 100 can be further reduced.
  • the phosphorus content in the electroless nickel plating layer 24 is preferably 5% by mass or more and less than 10% by mass.
  • the gasket 30 (see FIG. 1), a gasket that can be used in an electrolytic cell for alkaline water electrolysis and has electrical insulation can be used without particular limitation.
  • a cross section of the gasket 30 appears in FIG.
  • the gasket 30 has a flat shape and sandwiches the peripheral portion of the diaphragm 40 while being sandwiched between the first flange portion 12 and the second flange portion 22 .
  • the gasket 30 comprises a first gasket element 31 contacting the first flange portion 12 and the diaphragm 40 and a second gasket element 32 contacting the second flange portion 22 and the diaphragm 40 .
  • the first gasket element 31 and the second gasket element 32 are separate and distinct gasket elements.
  • first gasket element 31 and the second gasket element 32 may be joined at their outer edges to form an integral gasket.
  • the gasket 30 is preferably made of an elastomer having alkali resistance.
  • Examples of materials for the gasket 30 include natural rubber (NR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), butadiene rubber (BR), acrylonitrile-butadiene rubber (NBR), silicone rubber (SR), ethylene- Elastomers such as propylene rubber (EPT), ethylene-propylene-diene rubber (EPDM), fluororubber (FR), isobutylene-isoprene rubber (IIR), urethane rubber (UR), and chlorosulfonated polyethylene rubber (CSM).
  • NR natural rubber
  • SBR styrene-butadiene rubber
  • CR chloroprene rubber
  • BR butadiene rubber
  • NBR acrylonitrile-butadiene rubber
  • silicone rubber silicone rubber
  • ethylene- Elastomers such as propylene rubber (EPT), ethylene-propylene-diene rubber (EPDM), fluororubber (FR), isobutylene-
  • an ion-permeable diaphragm that can be used in an electrolytic cell for alkaline water electrolysis can be used without particular limitation. It is desirable that the diaphragm 40 have low gas permeability, low electrical conductivity, and high strength.
  • the diaphragm 40 include a porous membrane made of asbestos or modified asbestos, a porous diaphragm using polysulfone-based polymer, a cloth using polyphenylene sulfide fiber, a fluorine-based porous membrane, an inorganic material and an organic material.
  • a porous membrane such as a porous membrane using a hybrid material containing both of
  • an ion-exchange membrane such as a fluorine-based membrane
  • Anode 50 typically comprises a conductive substrate and a catalyst layer coating the surface of the substrate.
  • the catalyst layer is preferably porous.
  • the conductive substrate of anode 50 can be, for example, nickel, nickel alloys, nickel iron, vanadium, molybdenum, copper, silver, manganese, platinum group elements, graphite, or chromium, or combinations thereof.
  • a conductive base material made of nickel can be preferably used for the anode 50 .
  • the catalyst layer contains nickel as an element.
  • the catalyst layer preferably comprises nickel oxide, nickel metal, or nickel hydroxide, or combinations thereof, and may comprise alloys of nickel with one or more other metals. It is particularly preferred that the catalyst layer consists of metallic nickel.
  • the catalyst layer may further contain chromium, molybdenum, cobalt, tantalum, zirconium, aluminum, zinc, platinum group elements, rare earth elements, or combinations thereof. Rhodium, palladium, iridium, or ruthenium, or a combination thereof, may be further supported on the surface of the catalyst layer as an additional catalyst.
  • the conductive substrate of anode 50 may be a rigid substrate or a flexible substrate. Examples of the rigid conductive base material that constitutes the anode 50 include expanded metal and punched metal. As a flexible conductive base material that constitutes the anode 50, for example, a wire mesh woven (or knitted) with metal wires can be used.
  • Cathode 60 a cathode that can be used in an electrolytic cell for alkaline water electrolysis can be used without particular limitation.
  • Cathode 60 typically comprises a conductive substrate and a catalyst layer coating the surface of the substrate.
  • the conductive base material of the cathode 60 for example, nickel, nickel alloy, stainless steel, mild steel, nickel alloy, or a nickel-plated surface of stainless steel or mild steel can be preferably used.
  • the catalyst layer of the cathode 60 a catalyst layer made of noble metal oxides, nickel, cobalt, molybdenum, or manganese, oxides thereof, or noble metal oxides can be preferably used.
  • the conductive substrate that constitutes the cathode 60 may be, for example, a rigid substrate or a flexible substrate.
  • the rigid conductive base material that constitutes the cathode 60 include expanded metal and punched metal.
  • a flexible conductive base material constituting the cathode 60 for example, a wire mesh woven (or knitted) with metal wires can be used.
  • the first frame 10 defining the anode chamber A is exposed on the gasket contact surface 12e of the first flange portion 12 and has a thickness of 27 ⁇ m or more, more preferably 30 ⁇ m or more.
  • the first nickel plating layer 14 is provided, and the surface roughness of the gasket contact surface 12e is 10 ⁇ m or less as an arithmetic mean roughness Ra, so that it is possible to suppress the deterioration of the sealing performance of the anolyte and the anode chamber gas. is.
  • the electrolytic cell 100 having a configuration in which there are gaps between the anode 50 and the diaphragm 40 and between the cathode 60 and the diaphragm 40 is taken as an example, but the present invention is not limited to this configuration.
  • a flexible cathode is provided in the cathode chamber, a cathode current collector held by the support member 23, and a cathode current collector disposed between the cathode current collector and the diaphragm 40.
  • It comprises a supported conductive elastic body and a flexible cathode disposed between the elastic body and the diaphragm 40 , the elastic body pressing the flexible cathode toward the diaphragm 40 and the anode 50 to allow the flexible
  • a so-called zero-gap type alkaline water electrolytic cell in which the cathode and the diaphragm 40 are in direct contact and the diaphragm 40 and the anode 50 are in direct contact, is also possible.
  • the first nickel plating layer 14 is provided continuously on the first gasket contact surface 12e and the surface of the first frame 10 facing the anode chamber A.
  • the electrolytic cell 100 is taken as an example, the present invention is not limited to this form.
  • the alkaline water electrolytic bath may have a form in which only the first gasket contact surface 12e is provided with a nickel plating layer.
  • the first nickel-plated layer 14 is exposed on the first gasket contact surface 12e, and the third nickel-plated layer that is not continuous with the first nickel-plated layer 14 is provided on the first gasket contact surface 12e. It is also possible to provide an alkaline water electrolytic bath in the form of being provided on the surface of the frame 10 facing the anode chamber A.
  • the second nickel plating layer 24 is provided continuously on the second gasket contact surface 22e and the surface of the second frame 20 facing the cathode chamber C.
  • the electrolytic cell 100 is taken as an example, the present invention is not limited to this form.
  • the alkaline water electrolytic bath may have a form in which only the second gasket contact surface 22e is provided with a nickel plating layer.
  • the second nickel-plated layer 24 is exposed on the second gasket contact surface 22e, and the fourth nickel-plated layer that is not continuous with the second nickel-plated layer 24 is the second nickel-plated layer. It is also possible to provide an alkaline water electrolytic bath in which the surface of the frame facing the anode chamber C is provided.
  • the electrolytic cell 100 in which the second frame 20 defining the cathode chamber C is provided with the second nickel plating layer 24 exposed on the second gasket contact surface 22e is not limited to this form.
  • an alkaline water electrolytic bath in which the second frame 20 does not have a nickel plating layer on the second gasket contact surface 22e is also possible.
  • the electrolytic cell 100 in which the first frame 10 protrudes from the first partition wall 11 into the anode chamber A and includes the conductive support member 13 that supports the anode 50 is taken as an example.
  • the present invention is not limited to this form.
  • an alkaline water electrolytic bath without the support member 13 may be used.
  • a first conductive elastic body arranged between the first partition wall 11 and the anode 50 is provided.
  • An alkaline water electrolytic cell in which one conductive elastic body presses the anode 50 from behind toward the diaphragm 40 can be mentioned.
  • the electrolytic cell 100 in which the second frame 20 protrudes from the second partition wall 21 into the cathode chamber C and is provided with the conductive support member 23 for supporting the cathode 60 is taken as an example.
  • the present invention is not limited to this form.
  • an alkaline water electrolytic bath that does not include the support member 23 may be used.
  • a second conductive elastic body disposed between the second partition wall 21 and the cathode 60 is provided. 2 conductive elastic bodies press the cathode 60 toward the diaphragm 40 from behind.
  • the electrolytic bath 100 in the form of a single cell was taken as an example, but the present invention is not limited to this form.
  • an electrolytic cell having a configuration in which a plurality of electrolytic cells each having a set of an anode chamber A defined by the first frame 10 and a cathode chamber C defined by the second frame 20 are connected in series.
  • the flange portion 12 of the first frame 10 may also extend to the opposite side of the partition wall 11 (the right side of the paper surface in FIG. 1) to further define the cathode chamber of the adjacent electrolytic cell together with the partition wall 11.
  • FIG. 4 is a diagram schematically illustrating an alkaline water electrolytic bath 200 (hereinafter sometimes referred to as "electrolytic bath 200") according to such another embodiment.
  • electrolytic bath 200 an alkaline water electrolytic bath 200
  • the electrolytic cell 200 is an alkaline water electrolytic cell having a structure in which an electrolytic cell consisting of an anode chamber A1 and a cathode chamber C1 and an electrolytic cell consisting of an anode chamber A2 and a cathode chamber C2 are connected in series.
  • the electrolytic cell 200 includes a first frame 10 connected to the anode terminal and defining the anode chamber A1; a second frame 20 connected to the cathode terminal and defining the cathode chamber C2; and a first frame. at least one third frame 210 disposed between 10 and the second frame 20; and a plurality of gaskets 30, diaphragms 40, anodes 50, and cathodes 60, respectively.
  • the diaphragm 40 is provided between the first frame 10 and the adjacent third frame 210, between the second frame 20 and the adjacent third frame 210, and When there are a plurality of third frames 210 , they are arranged between two adjacent third frames 210 and sandwiched between gaskets 30 .
  • the first frame 10 and the third frame 210 define the anode chamber A1 and the cathode chamber C1
  • the third frame 210 and the second frame 20 define the anode chamber A2 and the cathode chamber C2.
  • An anode 50 is arranged in each of the anode chambers A1 and A2, and a cathode 60 is arranged in each of the cathode chambers C1 and C2.
  • the first frame 10 and the second frame 20 are respectively the first frame 10 (FIG. 2) and the second frame 20 (FIG. 4) in the electrolytic cell 100 (FIG. 1) described above. have the same configuration.
  • the partition 11 of the first frame 10 is connected to the anode terminal, and the partition 21 of the second frame 20 is connected to the cathode terminal.
  • the anode 50 is held by the support member 13 in the anode chamber A1 defined by the first frame 10
  • the cathode 20 is held by the support member 23 in the cathode chamber C2 defined by the second frame 20.
  • the points are the same as above.
  • the third frame 210 is a bipolar electrolytic element having a structure in which the first frame 10 and the second frame 20 are integrated. That is, the third frame 210 includes a conductive partition 211, a first flange portion 212 extending from the outer peripheral portion of the partition 211 toward the second frame 20 (left side of the paper surface of FIG. 4), and a partition 211 and a second flange portion 222 extending toward the first frame 10 (right side of the paper surface of FIG. 4). In the third frame 210, the first flange portion 212 and the second flange portion 222 are integrally formed.
  • a conductive support member (second support member) 223 is provided protruding from the partition 211 on the first frame 10 side of the partition 211 (on the right side of the paper surface of FIG. 4). .
  • the support member 223 holds the cathode 60 in the cathode chamber C1 and is electrically connected to the cathode 60 and the partition wall 211 arranged in the cathode chamber C1.
  • a conductive support member (first support member) 213 is provided protruding from the partition 211 on the side of the partition 211 toward the second frame 20 (on the left side of the paper surface of FIG. 4). .
  • the support member 213 holds the anode 50 in the anode chamber A2 and is electrically connected to the anode 50 arranged in the anode chamber A2 and the partition wall 211 of the third frame 210 .
  • the configuration of partition wall 211, first support member 213, and second support member 223 is similar to partition wall 11, first support member 13, and second support member 11, described above with respect to electrolytic cell 100 (FIG. 1). Similar to member 23 .
  • the configuration of the first flange portion 212 and the second flange portion 222 is related to the electrolytic cell 100 (FIG. 1), except that the first flange portion 212 and the second flange portion 222 are integrally formed. It is the same as the first flange portion 12 and the second flange portion 22 described above.
  • the first flange portion 212 of the third frame 210 defines the anode chamber A2 together with the partition wall 211, the diaphragm 40, and the first gasket element 31, and the second flange portion of the third frame 210 222 together with diaphragm 211, diaphragm 40 and second gasket element 32 define cathode chamber C1.
  • FIG. 5 is a diagram of only the third frame 210 extracted from FIG. In FIG. 5, elements that have already appeared in FIGS. 1 to 4 are denoted by the same reference numerals as those in FIGS. 1 to 4, and description thereof may be omitted.
  • the first flange portion 212 of the third frame 210 has a first gasket contact surface 212e that contacts the first gasket element 31 (see FIG. 1).
  • the third frame 210 has a first nickel plating layer 214 exposed on the first gasket contact surface 212 e of the first flange portion 212 .
  • the thickness of the first nickel plating layer 214 at the first gasket contact surface 212e is determined from the viewpoint of suppressing deterioration of the sealing performance of the anolyte and the anode chamber gas, and from the viewpoint of resistance to alkaline water with high oxygen gas activity. From the viewpoint of enhancing corrosiveness over a long period of time, the thickness is 27 ⁇ m or more, more preferably 30 ⁇ m or more. Although the upper limit of the thickness is not particularly limited, it may be, for example, 100 ⁇ m or less from the viewpoint of manufacturing cost.
  • the surface roughness of the first gasket contact surface 212e is , the arithmetic mean roughness Ra specified in JIS B0601 is 10 ⁇ m or less, preferably 9 ⁇ m or less, or 8 ⁇ m or less.
  • the lower limit of the arithmetic mean roughness Ra is not particularly limited, but in one embodiment, it may be 1 ⁇ m or more, or 2 ⁇ m or more from the viewpoint of gasket fixation stability and manufacturing cost. In one embodiment, the arithmetic mean roughness Ra can be 1-10 ⁇ m, or 1-9 ⁇ m, or 1-8 ⁇ m.
  • the surface roughness of the first gasket contact surface 212e is , the maximum height Rz specified in JIS B0601 is preferably 40 ⁇ m or less, more preferably 35 ⁇ m or less.
  • the lower limit of the maximum height Rz is not particularly limited, it may be 2 ⁇ m or more, 4 ⁇ m or more, 6 ⁇ m or more, or 8 ⁇ m or more from the viewpoint of manufacturing cost in one embodiment.
  • the maximum height Rz can be 2-40 ⁇ m, or 4-40 ⁇ m, or 6-40 ⁇ m.
  • the first nickel plating layer 214 is continuously provided on the first gasket contact surface 212e and the surface of the third frame 210 facing the anode chamber A2. Since the third frame 210 has such a thick nickel plating layer on the liquid-contacting portion of the anode chamber A2, the corrosion resistance in the oxygen gas atmosphere of the anode chamber and in the oxygen gas-saturated alkaline water is sufficient for long-term use. can be raised to a higher level. From the viewpoint of further enhancing the corrosion resistance in the oxygen gas atmosphere of the anode chamber and in the oxygen gas-saturated alkaline water, the thickness of the nickel plating layer on the surface of the third frame 210 facing the anode chamber A2 is preferably 27 ⁇ m.
  • the upper limit of the thickness of the nickel plating layer on the surface of the third frame 210 facing the anode chamber A2 is not particularly limited, it is preferably 100 ⁇ m or less from the viewpoint of cost.
  • the nickel plating layer on the surface of the third frame 210 facing the anode chamber A2 may be provided on the entire surface of the third frame 210 facing the anode chamber A2, or may be provided only on the liquid contact portion. may have been
  • the third frame 210 includes at least one steel core 210a and a first nickel plating layer 214 provided on the surface of the core 210a.
  • the steel core material 210a of the third frame 210 constitutes the steel core material 211a constituting the partition wall 211, the first flange portion 212, and the second flange portion 222, respectively. It includes steel cores 212a and 222a, and steel cores 213a and 223a that form the first support member 213 and the second support member 223, respectively.
  • the steel core 212a forming the first flange portion 212 and the steel core 222a forming the second flange portion 222 are integrally formed.
  • the first nickel plating layer 214 is provided so as to be exposed at least on the gasket contact surface 212e of the first flange portion 212, and is continuous from the first gasket contact surface 212e to form the anode chamber A2 of the core member 210a. may be provided on the entire surface facing the core member 210a.
  • the second flange portion 222 of the third frame 210 has a second gasket contact surface 222e that contacts the second gasket element 32 (see FIG. 4).
  • the third frame 210 has a second nickel plating layer 224 exposed on the second gasket contact surface 222 e of the second flange portion 222 .
  • the thickness of the second nickel plating layer 224 at the second gasket contact surface 222e is preferably 27 ⁇ m or more, more preferably 30 ⁇ m or more, from the viewpoint of suppressing deterioration of the sealing performance of the catholyte and the cathode chamber gas. .
  • the upper limit of the thickness is not particularly limited, it may be, for example, 100 ⁇ m or less from the viewpoint of manufacturing cost.
  • the surface roughness of the second gasket contact surface 222e is preferably 10 ⁇ m or less, more preferably 10 ⁇ m or less as the arithmetic mean roughness Ra specified in JIS B0601. is 9 ⁇ m or less, or 8 ⁇ m or less.
  • the lower limit of the arithmetic mean roughness Ra is not particularly limited, but in one embodiment, it may be 1 ⁇ m or more, or 2 ⁇ m or more from the viewpoint of gasket fixation stability and manufacturing cost. In one embodiment, the arithmetic mean roughness Ra can be 1-10 ⁇ m, or 1-9 ⁇ m, or 1-8 ⁇ m.
  • the surface roughness of the second gasket contact surface 222e is preferably 40 ⁇ m or less, more preferably 40 ⁇ m or less, more preferably 35 ⁇ m or less.
  • the lower limit of the maximum height Rz is not particularly limited, it may be 2 ⁇ m or more, 4 ⁇ m or more, 6 ⁇ m or more, or 8 ⁇ m or more from the viewpoint of manufacturing cost in one embodiment. In one embodiment, the maximum height Rz can be 2-40 ⁇ m, or 4-40 ⁇ m, or 6-40 ⁇ m.
  • the second nickel plating layer 224 is continuously provided on the second gasket contact surface 222e and the surface of the third frame 210 facing the cathode chamber C1.
  • a nickel plating layer also on the surface of the third frame body 210 facing the cathode chamber C1
  • the nickel plating layer has a thickness that provides corrosion resistance that can withstand the alkaline conditions of the cathode chamber.
  • a thickness of 2 ⁇ m may be sufficient, preferably 10 ⁇ m or more, more preferably 27 ⁇ m or more, and in one embodiment 30 ⁇ m or more.
  • the upper limit of the thickness of the nickel plating layer on the surface of the third frame 210 facing the cathode chamber C1 is not particularly limited, it is preferably 100 ⁇ m or less from the viewpoint of cost.
  • the nickel plating layer on the surface of the third frame 210 facing the cathode chamber C1 may be provided on the entire surface of the third frame 210 facing the cathode chamber C1, or may be provided only on the wetted portion. may have been
  • the third frame body 210 includes at least one steel core material 210a, and the first nickel plating layer 214 and the second nickel plating layer provided on the surface of the core material 210a. and layer 224 .
  • the steel core material 210a of the third frame 210 constitutes the steel core material 211a constituting the partition wall 211, the first flange portion 212, and the second flange portion 222, respectively. It includes steel cores 212a and 222a, and steel cores 213a and 223a that form the first support member 213 and the second support member 223, respectively.
  • the steel core 212a forming the first flange portion 212 and the steel core 222a forming the second flange portion 222 are integrally formed.
  • the second nickel plating layer 224 is provided so as to be exposed at least on the gasket contact surface 222e of the second flange portion 222, and further continuously from the second gasket contact surface 222e, the cathode chamber C1 of the core member 210a. may be provided on the entire surface facing the core member 210a.
  • such a third frame 210 includes a steel core 211a forming the partition wall 211 and a steel core 212a forming the first flange portion 212, and optionally, It can be manufactured by nickel-plating the steel core material 222 a that constitutes the second flange portion 222 .
  • An integral core material including a steel core 211a forming the partition 211 and steel cores 212a and 222a forming the flanges 212 and 222 may be plated with nickel.
  • the core material 211a made of steel, the steel core material 212a constituting the first flange part 212, and the steel core material 222a constituting the second flange part 222 are individually plated with nickel, and then the two are joined together. May be joined.
  • the steel core members 211a and 213a and 223a that form the partition wall 211 and the support members 213 and 223 are included.
  • Nickel plating may be applied to the integrated core material further including the steel core materials 212a and 222a that form the flange portions 212 and 222, and the steel core materials 213a and 223a that form the support members 213 and 223. are separately plated with nickel, and then the first support member 213 including the core material 213a and the nickel plating layer and the second support member 223 including the core material 223a and the nickel plating layer are respectively joined to the partition wall 211.
  • the flanges 212 and 222 form an anode liquid supply channel (not shown) that supplies the anode liquid to the anode chamber A2 and an anode liquid supply channel (not shown).
  • an anolyte recovery channel (not shown) for recovering the anolyte and the gas generated at the anode from the cathode chamber C1;
  • a catholyte supply channel (not shown) for supplying the catholyte to the cathode chamber C1;
  • a catholyte recovery channel (not shown) for recovering gas generated at the cathode is provided.
  • the anolyte supply channel and the anolyte recovery channel provided in the third frame 210 are connected to the first frame through through holes (not shown) provided in the gasket 30 and the diaphragm 40, respectively. It is in fluid communication with an anolyte supply channel and an anolyte recovery channel provided in the body 10, respectively.
  • the catholyte supply channel and the catholyte recovery channel provided in the third frame 210 are provided in the second frame 20 through through holes (not shown) provided in the gasket 30 and the diaphragm 40, respectively. are in fluid communication with the catholyte supply and return channels, respectively.
  • the anolyte supply channel and the anolyte recovery channel are not in fluid communication with the cathode chambers C1 and C2, and no electrolyte or gas flows between them.
  • the catholyte supply channel and the catholyte recovery channel are not in fluid communication with the anode chambers A1 and A2, and there is no electrolyte or gas flow between them.
  • the nickel plating layer 214 is also provided on the inner surfaces of the anolyte supply channel and the anolyte recovery channel provided in the flanges 212 and 222.
  • the nickel plating layer 224 is also provided on the inner surfaces of the catholyte supply channel and the catholyte recovery channel provided in the flange portions 212 and 222 .
  • the nickel plating layer 214 is preferably provided on at least the liquid-contacting portions of the inner surfaces of the anolyte supply channel and the anolyte recovery channel provided in the flange portions 212 and 222, and is provided on the entire inner surfaces.
  • the nickel plating layer 224 is preferably provided at least on the liquid-contacting portions of the inner surfaces of the catholyte supply channel and the catholyte recovery channel provided in the flange portions 212 and 222, and is provided on the entire inner surfaces.
  • the first nickel plating layer 214 and the second nickel plating layer 224 may be a continuous nickel plating layer.
  • the first nickel-plated layer 214 and the second nickel-plated layer 224 form the anolyte supply channel and the anolyte recovery channel provided in the first flange portion 212 and the second flange portion 222 and the cathode.
  • An integral continuous nickel plating layer may be formed through the inner surfaces of the liquid supply channel and the catholyte recovery channel.
  • the first nickel plating layer 214 and the second nickel plating layer 224 may form an integral continuous nickel plating layer through the outer peripheral surfaces of the flange portions 212 and 222 .
  • the first frame 10 that defines the anode chamber A1 is exposed on the gasket contact surface 12e of the first flange portion 12 and has a thickness of 27 ⁇ m or more, more preferably 30 ⁇ m or more.
  • the thickness of the plating layer was measured using an electromagnetic film thickness meter (LE-373, manufactured by Kett Scientific Laboratory Co., Ltd.).
  • the surface roughness was measured using a surface roughness profiler (Surfcom 480A, manufactured by Tokyo Seimitsu Co., Ltd.).
  • a plurality of types of steel sheet samples were prepared by intentionally adjusting the surface roughness of the steel sheet so that the surface roughness after plating was changed, and a plurality of sheets for each type were prepared. Steel plate samples with different surface roughness were produced by shot blasting using brown alumina (No. 2000 to No. 4000) as an abrasive.
  • the surface roughness in the shot blasting was adjusted by adjusting the grade of the abrasive and the shot time.
  • Each steel plate sample was nickel-plated by electroless nickel plating or electric nickel plating to prepare nickel-plated steel plate samples having different plating thicknesses and surface roughnesses.
  • the electroless plating treatment was performed according to the general electroless nickel plating treatment procedure.
  • a steel plate sample was immersed in an acetone solution and ultrasonically degreased for 10 minutes. After that, it was washed with pure water and then immersed in 10% dilute hydrochloric acid for 5 minutes for acid washing. After washing the steel sheet with pure water, it was immersed in an electroless nickel-phosphorus plating solution (medium phosphorus type, "Top Nicolon" (registered trademark) manufactured by Okuno Chemical Industry Co., Ltd.).
  • the temperature of the plating solution was maintained at 90°C.
  • the plating solution was gently stirred while the steel plate was immersed in the plating solution. In order to suppress changes in the composition of the plating bath, the plating solution was replaced as appropriate.
  • the plating film thickness was adjusted by changing the immersion time of the steel sheet in the plating solution. After the steel sheet was pulled out of the plating solution, it was washed with pure water and dried to obtain an electroless nickel-plated test piece. The plating thickness and surface roughness (arithmetic mean roughness Ra and maximum height Rz) of the obtained test piece were measured.
  • the electroplating treatment was performed in accordance with a general procedure for nickel electroplating.
  • a steel plate sample was immersed in an acetone solution and ultrasonically degreased for 10 minutes. After that, it was washed with pure water and then immersed in 10% dilute hydrochloric acid for 5 minutes for acid washing. After washing the steel sheet with pure water, it was immersed in an electrolytic nickel plating bath solution (Watt bath, nickel sulfate 280 g/L, nickel chloride 45 g/L, boric acid 35 g/L) to an electrodeposition current density of 10 A/ dm2.
  • a nickel plating layer was electrodeposited. During the plating process, the temperature of the plating bath solution was maintained at 45° C. and the plating solution was gently stirred.
  • the plating solution was replaced as appropriate. After a nickel plating layer was electrodeposited until a predetermined plating film thickness was obtained, the steel sheet was pulled out of the plating bath, washed with pure water and dried to obtain an electro-nickel-plated test piece. The plating thickness and surface roughness (arithmetic mean roughness Ra and maximum height Rz) of the obtained test piece were measured.
  • a flat gasket (made of EPDM, 30 mm long x 50 mm wide x 3 mm thick) was sandwiched between two test pieces that had the same surface roughness and were electroless nickel plated or electronic nickel plated.
  • a sample for immersion was produced by tightening and fixing with a press surface pressure (1.5 kgf/cm 2 ) equivalent to that of an actual machine.
  • Tables 1 and 2 show the properties of each immersion sample before and after plating.
  • Each immersion sample was immersed in an alkaline solution (30% by mass aqueous potassium hydroxide solution, 100° C.) for 240 hours. This is a more severe condition for metal corrosion than normal electrolytes in alkaline water electrolysers.
  • After the sample for immersion was pulled out of the alkaline solution, it was disassembled, washed with water and dried.
  • the surface where the test piece was in contact with the gasket was subjected to a salt spray test using a neutral sodium chloride aqueous solution in accordance with JIS Z2371.
  • test pieces of Examples 1 to 5 showed good results in the alkali immersion-salt water spray test.
  • Example 6 and Comparative Examples 6-7> Alkaline immersion-salt spray test (2)
  • Table 3 shows the properties of each immersion sample before and after plating.
  • Each immersion sample was immersed in an alkaline solution (48% by mass potassium hydroxide aqueous solution, 120° C.) for 2000 hours. This is a more severe condition for metal corrosion than the conditions in Examples 1-5 and Comparative Examples 1-5.
  • After the sample for immersion was pulled out of the alkaline solution, it was disassembled, washed with water and dried.
  • the surface of the test piece in contact with the gasket was subjected to the same salt spray test as described above, and the surface condition of the surface to be tested was evaluated after 72 hours. Table 3 shows the results.
  • the alkaline water electrolytic cell of the present invention can suppress the deterioration of the sealing performance between the anolyte and the anode chamber gas even on the anode chamber side, where conditions for metal corrosion are severe. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

An alkali water electrolytic cell comprising: a first frame that is provided with a conductive first partition wall and a first flange part having a first gasket contact surface, and that demarcates an anode chamber; a second frame provided with a conductive second partition wall and a second flange part, and demarcating a cathode chamber; a diaphragm arranged between the first frame body and the second frame body, and demarcating the anode chamber and the cathode chamber; a gasket sandwiched between the first flange part and the second flange part, and holding the diaphragm; an anode arranged inside the anode chamber; and a cathode arranged inside the cathode chamber. The gasket comprises a first and a second gasket element, the first frame is provided with a first nickel-plated layer having a thickness of 27 μm or greater and provided exposed to the first gasket contact surface, and the surface roughness of the first gasket contact surface is 10 μm or less, as the arithmetic mean roughness Ra.

Description

電解槽electrolytic cell
 本発明は、アルカリ水電解用の電解槽に関する。 The present invention relates to an electrolytic cell for alkaline water electrolysis.
 水素ガスおよび酸素ガスの製造方法として、アルカリ水電解法が知られている。アルカリ水電解法においては、アルカリ金属水酸化物(例えばNaOH、KOH等。)が溶解した塩基性の水溶液(アルカリ水)を電解液として用いて水を電気分解することにより、陰極から水素ガスが発生し、陽極から酸素ガスが発生する。アルカリ水電解用の電解槽としては、イオン透過性の隔膜によって区画された陽極室および陰極室を備え、陽極室に陽極が、陰極室に陰極がそれぞれ配置された電解槽が知られている。アルカリ水電解槽の陽極室及び陰極室中の各極液の液性は、強アルカリ域である。 Alkaline water electrolysis is known as a method for producing hydrogen gas and oxygen gas. In the alkaline water electrolysis method, a basic aqueous solution (alkaline water) in which an alkali metal hydroxide (e.g., NaOH, KOH, etc.) is dissolved is used as an electrolytic solution to electrolyze water to generate hydrogen gas from the cathode. Then, oxygen gas is generated from the anode. As an electrolytic cell for alkaline water electrolysis, an electrolytic cell is known which is provided with an anode chamber and a cathode chamber separated by an ion-permeable diaphragm, in which the anode is arranged in the anode chamber and the cathode is arranged in the cathode chamber. The properties of the respective electrode liquids in the anode chamber and the cathode chamber of the alkaline water electrolytic cell are in the strong alkaline range.
特開2019-99845号公報JP 2019-99845 A 国際公開第2019/111832号WO2019/111832 国際公開第2019/188260号WO2019/188260 国際公開第2019/188261号WO2019/188261 国際公開第2021/085334号WO2021/085334 国際公開第2013/191140号WO2013/191140 特開2016-094650号公報JP 2016-094650 A 特開昭57-137486号公報JP-A-57-137486 特開平1-119687号公報JP-A-1-119687 特許第6404685号公報Japanese Patent No. 6404685 特許第6621970号公報Japanese Patent No. 6621970 国際公開第2015/064644号WO2015/064644
 本発明者は、アルカリ水の電解、特に加圧条件下でのアルカリ水の電解に好適に用いることのできる電解槽として、「第1の極室を構成し、外周部に第1のフランジ部を有する、第1の電解エレメントと、第2の極室を構成し、外周部に第2のフランジ部を有する、第2の電解エレメントと、前記第1のフランジ部と前記第2のフランジ部との間に挟持された、電気絶縁性を有するガスケットと、前記第1の極室と前記第2の極室とを隔てる隔膜とを含み、前記第1のフランジ部は、前記第2のフランジ部に向かい合い且つ前記ガスケットと接する、第1の端面を有し、前記第2のフランジ部は、前記第1のフランジ部の前記第1の端面に向かい合い且つ前記ガスケットと接する、第2の端面を有し、前記ガスケットは、前記第1の端面と前記第2の端面との間に挟持され、前記第1のフランジ部が、前記ガスケットの外周部に前記ガスケットの外周側から接する、ガスケット押さえ部を備え、前記ガスケット押さえ部は、前記第1の電解エレメント及び前記第2の電解エレメントの積層方向において、前記第2の電解エレメント側に向けて前記第1の端面よりも突出して延在し、前記第2のフランジ部は、該第2のフランジ部の外周部において、前記積層方向において前記第1の電解エレメントとは反対側に向けて、前記第2の端面から後退した後退部を有し、前記後退部は、前記ガスケット押さえ部の少なくとも一部を受け容れることが可能に形成されている、電解槽」を発明し、出願している(特許文献1)。特許文献1には、各フランジ部の材料として、鉄、ニッケル、ステンレス鋼等の、アルカリ耐性を有する剛性の材料を用いることが記載されている。 The inventors of the present invention have found that an electrolytic cell that can be suitably used for the electrolysis of alkaline water, particularly the electrolysis of alkaline water under pressurized conditions, "constitutes a first electrode chamber and has a first flange portion on the outer peripheral portion. a second electrolytic element forming a second pole chamber and having a second flange portion on an outer peripheral portion; the first flange portion and the second flange portion; and a diaphragm separating the first pole chamber and the second pole chamber, wherein the first flange portion is connected to the second flange a first end face facing a portion and in contact with the gasket; and the second flange portion has a second end face facing the first end face of the first flange portion and in contact with the gasket. wherein the gasket is sandwiched between the first end surface and the second end surface, and the first flange portion is in contact with the outer peripheral portion of the gasket from the outer peripheral side of the gasket. wherein the gasket retainer extends toward the second electrolytic element in the stacking direction of the first electrolytic element and the second electrolytic element, protruding from the first end face, The second flange portion has a receding portion receding from the second end face toward the side opposite to the first electrolytic element in the stacking direction at the outer peripheral portion of the second flange portion. and the recessed portion is formed so as to be able to receive at least a part of the gasket pressing portion”, and filed a patent application (Patent Document 1). Patent Literature 1 describes that a rigid material having alkali resistance, such as iron, nickel, or stainless steel, is used as a material for each flange portion.
 各極室を構成する導電性の隔壁およびフランジ部の材料としては、アルカリ耐性および導電性の観点からは、ニッケルが最も好ましいと考えられる。しかしながら、ニッケル部材の採用は電解槽のコストを増大させる。電解槽の低コスト化の観点からは、電解槽の構造部材には炭素鋼(例えば軟鋼等。)等の安価な金属材料を用いることが好ましい。しかしながら、本発明者がさらに検討したところ、炭素鋼等の安価な金属材料をフランジ部に採用したアルカリ水電解槽においては、特に陽極室側のフランジ部とガスケットとの間で、電解液およびガスのシール性が低下しやすいことが判明した。この問題は、単にフランジ部の表面にニッケルめっき層を設けることによっては、解決することが困難であった。 From the standpoint of alkali resistance and conductivity, nickel is considered to be the most preferable material for the conductive partition walls and flanges that make up each electrode chamber. However, the use of nickel components increases the cost of the electrolytic cell. From the viewpoint of cost reduction of the electrolytic cell, it is preferable to use an inexpensive metal material such as carbon steel (for example, mild steel) for the structural members of the electrolytic cell. However, as a result of further investigation by the present inventors, it has been found that, in an alkaline water electrolyzer in which an inexpensive metal material such as carbon steel is used for the flange portion, the electrolyte and the gas are interspersed particularly between the flange portion on the anode chamber side and the gasket. It has been found that the sealing performance of is likely to deteriorate. It was difficult to solve this problem simply by providing a nickel plating layer on the surface of the flange portion.
 本発明は、陽極液および陽極室ガスのシール性の低下を抑制することが可能な、アルカリ水電解槽を提供することを課題とする。 An object of the present invention is to provide an alkaline water electrolytic cell capable of suppressing deterioration of the sealability of the anolyte and the anode chamber gas.
 本発明は、次の[1]~[14]の形態を包含する。
[1] 導電性の第1の隔壁と、該第1の隔壁の外周部に設けられた第1のフランジ部とを備え、陽極室を画定する、第1の枠体と、
 導電性の第2の隔壁と、該第2の隔壁の外周部に設けられた第2のフランジ部とを備え、陰極室を画定する、第2の枠体と、
 前記第1の枠体と前記第2の枠体との間に配置され、前記陽極室と前記陰極室とを区画する、イオン透過性の隔膜と、
 前記第1の枠体の第1のフランジ部と、前記第2の枠体の第2のフランジ部との間に挟持され、前記隔膜を保持する、ガスケットと、
 前記陽極室内に配置され、前記第1の隔壁と電気的に接続された、陽極と、
 前記陰極室内に配置され、前記第2の隔壁と電気的に接続された、陰極と、
を備え、
 前記ガスケットは、
  前記第1のフランジ部および前記隔膜に接触する、第1のガスケット要素と、
  前記第2のフランジ部および前記隔膜に接触する、第2のガスケット要素と
を備え、
 前記第1のフランジ部は、前記第1のガスケット要素と接触する、第1のガスケット接触面を備え、
 前記第1の枠体は、前記第1のフランジ部の前記第1のガスケット接触面に露出して設けられた、厚さ27μm以上の第1のニッケルめっき層を備え、
 前記第1のガスケット接触面の表面粗さが、算術平均粗さRaとして10μm以下である、アルカリ水電解槽。
The present invention includes the following forms [1] to [14].
[1] a first frame, which includes a conductive first partition and a first flange provided on the outer peripheral portion of the first partition, defining an anode chamber;
a second frame comprising a conductive second partition and a second flange portion provided on the outer peripheral portion of the second partition and defining a cathode chamber;
an ion-permeable diaphragm disposed between the first frame and the second frame to separate the anode chamber and the cathode chamber;
a gasket sandwiched between a first flange portion of the first frame and a second flange portion of the second frame to hold the diaphragm;
an anode disposed in the anode chamber and electrically connected to the first partition;
a cathode disposed in the cathode chamber and electrically connected to the second partition;
with
The gasket is
a first gasket element contacting the first flange portion and the diaphragm;
a second gasket element contacting the second flange and the diaphragm;
the first flange portion comprises a first gasket contact surface in contact with the first gasket element;
The first frame includes a first nickel-plated layer having a thickness of 27 μm or more, which is exposed on the first gasket contact surface of the first flange,
The alkaline water electrolytic bath, wherein the surface roughness of the first gasket contact surface is 10 µm or less as an arithmetic mean roughness Ra.
[2] 前記第1のガスケット接触面の表面粗さが、最大高さRzとして40μm以下である、[1]に記載のアルカリ水電解槽。 [2] The alkaline water electrolytic cell according to [1], wherein the surface roughness of the first gasket contact surface is 40 µm or less as the maximum height Rz.
[3] 前記第1のニッケルめっき層が、無電解ニッケルめっき層である、[1]又は[2]に記載のアルカリ水電解槽。 [3] The alkaline water electrolytic bath according to [1] or [2], wherein the first nickel plating layer is an electroless nickel plating layer.
[4] 前記第1の枠体が、
  少なくとも1つの鋼製の第1の芯材と、
  前記第1の芯材の表面に設けられた前記第1のニッケルめっき層と
を含む、[1]~[3]のいずれかに記載のアルカリ水電解槽。
[4] The first frame is
at least one steel first core;
The alkaline water electrolytic cell according to any one of [1] to [3], further comprising the first nickel plating layer provided on the surface of the first core material.
[5] 前記第1のニッケルめっき層が、前記第1のガスケット接触面、及び、前記第1の枠体の前記陽極室に面した表面に、連続して設けられている、[1]~[4]のいずれかに記載のアルカリ水電解槽。 [5] The first nickel plating layer is continuously provided on the first gasket contact surface and the surface of the first frame facing the anode chamber, [1]- The alkaline water electrolytic cell according to any one of [4].
[6] 前記第1のニッケルめっき層の厚みが、30~100μmである、[1]~[5]のいずれかに記載のアルカリ水電解槽。 [6] The alkaline water electrolytic cell according to any one of [1] to [5], wherein the first nickel plating layer has a thickness of 30 to 100 μm.
[7] 前記第1の枠体は、
  前記第1の隔壁から前記陽極室に突出して設けられ、前記陽極を支持する、導電性の支持部材
をさらに備える、[1]~[6]のいずれかに記載のアルカリ水電解槽。
[7] The first frame,
The alkaline water electrolytic cell according to any one of [1] to [6], further comprising a conductive support member that protrudes from the first partition into the anode chamber and supports the anode.
[8] 前記第2のフランジ部は、前記第2のガスケット要素と接触する、第2のガスケット接触面を備え、
 前記第2の枠体は、前記第2のフランジ部の前記第2のガスケット接触面に露出して設けられた、厚さ27μm以上の第2のニッケルめっき層を備え、
 前記第2のガスケット接触面の表面粗さが、算術平均粗さRaとして10μm以下である、[1]~[7]のいずれかに記載のアルカリ水電解槽。
[8] the second flange includes a second gasket contact surface that contacts the second gasket element;
The second frame includes a second nickel-plated layer having a thickness of 27 μm or more, which is exposed on the second gasket contact surface of the second flange,
The alkaline water electrolytic cell according to any one of [1] to [7], wherein the surface roughness of the second gasket contact surface is 10 μm or less as arithmetic mean roughness Ra.
[9] 前記第2のガスケット接触面の表面粗さが、最大高さRzとして40μm以下である、[8]に記載のアルカリ水電解槽。 [9] The alkaline water electrolytic cell according to [8], wherein the surface roughness of the second gasket contact surface is 40 µm or less as the maximum height Rz.
[10] 前記第2のニッケルめっき層が、無電解ニッケルめっき層である、[8]又は[9]に記載のアルカリ水電解槽。 [10] The alkaline water electrolytic bath according to [8] or [9], wherein the second nickel plating layer is an electroless nickel plating layer.
[11] 前記第2の枠体が、
  少なくとも1つの鋼製の第2の芯材と、
  前記第2の芯材の表面に設けられた前記第2のニッケルめっき層と
を含む、[8]~[10]のいずれかに記載のアルカリ水電解槽。
[11] The second frame is
at least one steel second core;
The alkaline water electrolytic cell according to any one of [8] to [10], further comprising the second nickel plating layer provided on the surface of the second core material.
[12] 前記第2のニッケルめっき層が、前記第2のガスケット接触面、及び、前記第2の枠体の前記陰極室に面した表面に、連続して設けられている、[8]~[11]のいずれかに記載のアルカリ水電解槽。 [12] The second nickel plating layer is continuously provided on the second gasket contact surface and the surface of the second frame facing the cathode chamber, [8]- The alkaline water electrolytic bath according to any one of [11].
[13] 前記第2のニッケルめっき層の厚みが、50~100μmである、[8]~[12]のいずれかに記載のアルカリ水電解槽。 [13] The alkaline water electrolytic cell according to any one of [8] to [12], wherein the second nickel plating layer has a thickness of 50 to 100 μm.
[14] 前記第2の枠体は、
  前記第2の隔壁から前記陰極室に突出して設けられ、前記陰極を支持する、導電性の支持部材
をさらに備える、[1]~[13]のいずれかに記載のアルカリ水電解槽。
[14] The second frame,
The alkaline water electrolytic cell according to any one of [1] to [13], further comprising a conductive support member that protrudes from the second partition into the cathode chamber and supports the cathode.
 本発明のアルカリ水電解槽によれば、陽極室を画定する第1の枠体が、フランジ部のガスケット接触面に露出して設けられた厚さ27μm以上のニッケルめっき層を備え、該ガスケット接触面の表面粗さが算術平均粗さRaとして10μm以下であることにより、陽極液および陽極室ガスのシール性の低下を抑制することが可能である。 According to the alkaline water electrolytic cell of the present invention, the first frame defining the anode chamber has a nickel plating layer with a thickness of 27 μm or more exposed on the gasket contact surface of the flange, and the gasket contact When the surface roughness of the surface is 10 μm or less in terms of arithmetic mean roughness Ra, it is possible to suppress the deterioration of the sealing performance of the anode liquid and the anode chamber gas.
本発明の一の実施形態に係る電解槽100を模式的に説明する断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which illustrates typically the electrolytic cell 100 which concerns on embodiment of 1 of this invention. 図1から第1の枠体10を抜き出した図である。It is the figure which extracted the 1st frame 10 from FIG. 図1から第2の枠体20を抜き出した図である。It is the figure which extracted the 2nd frame 20 from FIG. 本発明の他の一の実施形態に係る電解槽200を模式的に説明する断面図である。FIG. 4 is a cross-sectional view schematically explaining an electrolytic cell 200 according to another embodiment of the present invention; 図4から第3の枠体210を抜き出した図である。It is the figure which extracted the 3rd frame 210 from FIG.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。ただし、本発明はこれらの形態に限定されるものではない。なお、図面は必ずしも正確な寸法を反映したものではない。また図では、一部の符号を省略することがある。本明細書においては特に断らない限り、数値A及びBについて「A~B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。また「又は」及び「若しくは」の語は、特に断りのない限り論理和を意味するものとする。また要素E及びEについて「E及び/又はE」という表記は「E若しくはE、又はそれらの組み合わせ」を意味するものとし、要素E、…、E(Nは3以上の整数)について「E、…、EN-1、及び/又はE」という表記は「E、…、EN-1、若しくはE、又はそれらの組み合わせ」を意味するものとする。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to these forms. The drawings do not necessarily reflect exact dimensions. Also, in the drawings, some symbols may be omitted. In this specification, unless otherwise specified, the notation "A to B" for numerical values A and B means "A or more and B or less". If a unit is attached only to the numerical value B in such notation, the unit is applied to the numerical value A as well. Also, the terms "or" and "or" shall mean logical sum unless otherwise specified. In addition, the notation " E1 and/or E2 " for the elements E1 and E2 means " E1 or E2 , or a combination thereof", and the elements E1 , ..., EN (N is 3 above integers), the notation "E 1 , ..., E N-1 , and/or E N " shall mean "E 1 , ..., E N-1 , or E N , or combinations thereof." do.
 図1は、本発明の一の実施形態に係る電解槽100を模式的に説明する断面図である。電解槽100は、アルカリ水電解用の電解槽である。図1に示すように、電解槽100は、陽極室Aを画定する、第1の枠体10と;陰極室Cを画定する、第2の枠体20と;第1の枠体10と第2の枠体20との間に配置され、陽極室Aと陰極室Cとを区画するイオン透過性の隔膜40と;第1の枠体10と第2の枠体20とに挟持され、隔膜40の周縁部を保持する、電気絶縁性のガスケット30と;陽極室Aに配置され、第1の隔壁11と電気的に接続された、陽極50と;陰極室Cに配置され、第2の隔壁21と電気的に接続された、陰極60と、を備えている。第1の枠体10は、導電性の第1の隔壁11と、隔壁11の外周部に設けられた第1のフランジ部12とを有する。第2の枠体20も、導電性の第2の隔壁21と、隔壁21の外周部に設けられた第2のフランジ部22とを有する。隔壁11、21は、隣接する電解セル同士を区画し、かつ、隣接する電解セル同士を電気的に直列に接続する。ガスケット30は、第1のフランジ部12及び隔膜40に接触する、第1のガスケット要素31と、第2のフランジ部22及び隔膜40に接触する、第2のガスケット要素32とを備える。第1のフランジ部12は、隔壁11、隔膜40、及びガスケット要素31とともに陽極室Aを画定し、第2のフランジ部22は、隔壁21、隔膜40、及びガスケット要素32とともに陰極室Cを画定する。 FIG. 1 is a cross-sectional view schematically explaining an electrolytic cell 100 according to one embodiment of the present invention. The electrolytic cell 100 is an electrolytic cell for alkaline water electrolysis. As shown in FIG. 1, the electrolytic cell 100 includes a first frame 10 that defines an anode chamber A; a second frame 20 that defines a cathode chamber C; an ion-permeable diaphragm 40 disposed between the second frame 20 and separating the anode chamber A and the cathode chamber C; sandwiched between the first frame 10 and the second frame 20, and a diaphragm an electrically insulating gasket 30 holding the peripheral edge of 40; an anode 50 located in anode chamber A and electrically connected to first partition 11; and a cathode 60 electrically connected to the partition wall 21 . The first frame 10 has a conductive first partition 11 and a first flange portion 12 provided on the outer peripheral portion of the partition 11 . The second frame 20 also has a conductive second partition 21 and a second flange portion 22 provided on the outer peripheral portion of the partition 21 . The partition walls 11 and 21 partition the adjacent electrolytic cells and electrically connect the adjacent electrolytic cells in series. The gasket 30 comprises a first gasket element 31 contacting the first flange portion 12 and the diaphragm 40 and a second gasket element 32 contacting the second flange portion 22 and the diaphragm 40 . The first flange portion 12 together with the diaphragm 11, the diaphragm 40 and the gasket element 31 defines the anode chamber A and the second flange portion 22 together with the diaphragm 21, the diaphragm 40 and the gasket element 32 defines the cathode chamber C. do.
 第1の枠体10はさらに、隔壁11から突き出すように設けられた少なくとも1つの導電性の支持部材(第1の支持部材)13、13、…(以下において「支持部材13」ということがある。)を備え、陽極50は支持部材13によって保持されている。支持部材13は第1の隔壁11及び陽極50と電気的に導通している。第2の枠体20はさらに、隔壁21から突き出すように設けられた導電性の支持部材(第2の支持部材)23、23、…(以下において「支持部材23」ということがある。)を備え、陰極60は支持部材23によって保持されている。支持部材23は第2の隔壁21及び陰極60と電気的に導通している。なお図1には示していないが、第1のフランジ部12は陽極室Aに陽極液を供給する陽極液供給流路と、陽極液Aから陽極液および陽極で発生したガスを回収する陽極液回収流路とを備えている。また第2のフランジ部22は陰極室Cに陰極液を供給する陰極液供給流路と、陰極室Cから陰極液および陰極で発生したガスを回収する陰極液回収流路とを備えている。 The first frame 10 further includes at least one conductive support member (first support member) 13, 13, . ), and the anode 50 is held by the support member 13 . The support member 13 is electrically connected with the first partition 11 and the anode 50 . The second frame 20 further includes conductive support members (second support members) 23, 23, . In addition, the cathode 60 is held by the support member 23 . The support member 23 is electrically connected with the second partition 21 and the cathode 60 . Although not shown in FIG. 1, the first flange portion 12 includes an anolyte supply channel for supplying the anolyte to the anode chamber A, and an anolyte for recovering the anolyte from the anolyte A and the gas generated at the anode. and a recovery channel. The second flange portion 22 has a catholyte supply channel for supplying the catholyte to the cathode chamber C and a catholyte recovery channel for recovering the catholyte from the cathode chamber C and the gas generated at the cathode.
 第1の隔壁11及び第2の隔壁21の材質としては、アルカリ耐性を有する剛性の導電性材料を用いることができ、例えばニッケル、鉄等の単体金属;普通鋼(すなわち低炭素鋼および中炭素鋼。)、高炭素鋼等の炭素鋼、ステンレス鋼(例えばSUS304、SUS310、SUS310S、SUS316、SUS316L等。)等の鋼、等の金属材料を好ましく採用でき、コスト低減および強度の観点からは炭素鋼、ステンレス鋼等の鋼材を特に好ましく採用できる。
 第1のフランジ部12の材質としては、アルカリ耐性を有する剛性の材料を用いることができ、例えばニッケル、鉄等の単体金属;普通鋼(すなわち低炭素鋼および中炭素鋼。)、高炭素鋼等の炭素鋼、ステンレス鋼(例えばSUS304、SUS310、SUS310S、SUS316、SUS316L等。)の鋼、等の金属材料を好ましく採用できる。コスト低減および強度の観点の他、前記したガスケットとの間で、電解液およびガスのシール性が低下する問題が生じ易く、これを防止する本発明の効果がより顕著に発揮され易いことから、炭素鋼、ステンレス鋼等の鋼材を特に好ましく採用でき、炭素鋼が最も好適である。
 第2のフランジ部22の材質としては、アルカリ耐性を有する剛性の材料を用いることができ、例えばニッケル、鉄等の単体金属;普通鋼(すなわち低炭素鋼および中炭素鋼。)、高炭素鋼等の炭素鋼、ステンレス鋼(例えばSUS304、SUS310、SUS310S、SUS316、SUS316L等。)の鋼、等の金属材料のほか、強化プラスチック等の非金属材料も用いることができ、コスト低減および強度の観点からは炭素鋼、ステンレス鋼等の鋼材を特に好ましく採用できる。
 第1の枠体10の隔壁11とフランジ部12とは溶接や接着等で接合されていてもよく、同一の材料で一体に形成されていてもよい。同様に第2の枠体20の隔壁21とフランジ部22とは溶接や接着等で接合されていてもよく、同一の材料で一体に形成されていてもよい。ただし、極室内部の圧力に対する耐性を高めることが容易である点で、第1の枠体10の隔壁11とフランジ部12とは同一の材料で一体に形成されていることが好ましく、第2の枠体20の隔壁21とフランジ部22とは同一の材料で一体に形成されていることが好ましい。
As a material for the first partition 11 and the second partition 21, a rigid conductive material having alkali resistance can be used. For example, single metals such as nickel and iron; steel.), carbon steel such as high carbon steel, steel such as stainless steel (for example, SUS304, SUS310, SUS310S, SUS316, SUS316L, etc.). Steel materials such as steel and stainless steel can be particularly preferably employed.
As the material of the first flange portion 12, a rigid material having alkali resistance can be used, for example, single metals such as nickel and iron; Metal materials such as carbon steel, stainless steel (for example, SUS304, SUS310, SUS310S, SUS316, SUS316L, etc.), and the like can be preferably employed. In addition to cost reduction and strength, the problem of deterioration in the sealing performance of the electrolyte and gas between the gasket and the gasket described above is likely to occur, and the effect of the present invention to prevent this is likely to be exhibited more remarkably. Steel materials such as carbon steel and stainless steel are particularly preferable, and carbon steel is most preferable.
As the material of the second flange portion 22, a rigid material having alkali resistance can be used. For example, single metals such as nickel and iron; In addition to metal materials such as carbon steel, stainless steel (for example, SUS304, SUS310, SUS310S, SUS316, SUS316L, etc.), non-metal materials such as reinforced plastics can also be used, from the viewpoint of cost reduction and strength. Steel materials such as carbon steel, stainless steel, etc. can be particularly preferably employed.
The partition wall 11 and the flange portion 12 of the first frame 10 may be joined by welding, adhesion, or the like, or may be integrally formed of the same material. Similarly, the partition wall 21 and the flange portion 22 of the second frame 20 may be joined by welding, adhesion, or the like, or may be integrally formed of the same material. However, it is preferable that the partition wall 11 and the flange portion 12 of the first frame 10 are integrally formed of the same material because it is easy to increase the resistance to the pressure inside the pole chamber. It is preferable that the partition wall 21 and the flange portion 22 of the frame 20 are integrally formed of the same material.
 第1の支持部材13及び第2の支持部材23としては、アルカリ水電解槽において導電性リブとして使用可能な支持部材を用いることができる。電解槽100において、第1の支持部材13は第1の枠体10の隔壁11から立設されており、第2の支持部材23は第2の枠体20の隔壁21から立設されている。第1の支持部材13が陽極50を第1の枠体10に対して固定および保持できる限りにおいて、第1の支持部材13の接続方法、形状、数、及び配置は特に制限されない。また第2の支持部材23が陰極60を第2の枠体20に対して固定および保持できる限りにおいて、第2の支持部材23の接続方法、形状、数、及び配置も特に制限されない。
 第1の支持部材13及び第2の支持部材23の材質としては、アルカリ耐性を有する剛性の導電性材料を用いることができ、例えばニッケル、鉄等の単体金属;普通鋼(すなわち低炭素鋼および中炭素鋼。)、高炭素鋼等の炭素鋼、ステンレス鋼(例えばSUS304、SUS310、SUS310S、SUS316、SUS316L等。)の鋼、等の金属材料を好ましく採用でき、コスト低減および強度の観点からは炭素鋼、ステンレス鋼等の鋼材を特に好ましく採用できる。
As the first support member 13 and the second support member 23, a support member that can be used as a conductive rib in an alkaline water electrolytic bath can be used. In the electrolytic cell 100, the first support member 13 is erected from the partition wall 11 of the first frame 10, and the second support member 23 is erected from the partition wall 21 of the second frame 20. . As long as the first support members 13 can fix and hold the anode 50 to the first frame 10, the connection method, shape, number, and arrangement of the first support members 13 are not particularly limited. As long as the second support members 23 can fix and hold the cathode 60 to the second frame 20, the connection method, shape, number and arrangement of the second support members 23 are not particularly limited.
As the material of the first support member 13 and the second support member 23, a rigid conductive material having alkali resistance can be used. For example, simple metals such as nickel and iron; Metal materials such as medium carbon steel, carbon steel such as high carbon steel, stainless steel (e.g., SUS304, SUS310, SUS310S, SUS316, SUS316L, etc.) can be preferably employed, and from the viewpoint of cost reduction and strength, Steel materials such as carbon steel and stainless steel can be particularly preferably employed.
 アルカリ水電解槽の陽極室側において、フランジ部のガスケット接触面に単にニッケルめっき層を設けただけでは、フランジ部のガスケット接触面におけるニッケル腐食の進行による陽極液および陽極室ガスのシール性の低下を防ぐことができない理由について、本発明者は次のように考察している。アルカリ水電解槽の陽極室及び陰極室中の各極液の極性は、強アルカリ域である。このようなアルカリ水は、溶存酸素ガス(O)の還元反応をカソード(局部電池の正極)反応として、鉄等の卑金属に対して腐食性を示す。フランジ部のガスケット接触面は通常、目視では十分に平滑に見えるが、微視的には凹凸が残存しており、フランジ部がガスケットとともに締結された際には、ガスケット接触面の凹部とガスケットとの間に、アルカリ水が浸入することが可能な微細なトンネル状の流路が形成されると考えられる。アルカリ水が金属製のフランジ部のガスケット接触面とガスケットとの間に浸入すると、ガスケット接触面の金属を腐食(イオン化)させ得る。金属腐食が起きた箇所には微細なポケットが発生し、このポケットに既存の微細なトンネル状の流路を通じてさらにアルカリ水が流入して金属腐食を拡大させることにより、微細なトンネル状の流路が拡大および/または進展する悪循環になると考えられる。このトンネル状の流路が十分に発達すると、フランジ部のガスケット接触面の外周部までアルカリ水、及び、夥しい場合にはガスが浸透することが可能になり、電解液およびガスのシール性が低下すると考えられる。 Simply providing a nickel plating layer on the gasket contact surface of the flange on the anode chamber side of the alkaline water electrolyzer will cause nickel corrosion on the gasket contact surface of the flange, resulting in a decrease in sealing performance between the anolyte and the anode chamber gas. The inventor considers the reason why this cannot be prevented as follows. The polarities of the respective electrode liquids in the anode and cathode compartments of the alkaline water electrolytic cell are in the strongly alkaline range. Such alkaline water exhibits corrosiveness to base metals such as iron, with the reduction reaction of dissolved oxygen gas (O 2 ) as the cathode (positive electrode of local battery) reaction. The gasket contact surface of the flange normally looks sufficiently smooth to the naked eye, but microscopically, unevenness remains. It is thought that a fine tunnel-like flow path is formed between them, through which alkaline water can enter. When alkaline water enters between the gasket contact surface of the metal flange portion and the gasket, it can corrode (ionize) the metal of the gasket contact surface. Fine pockets are generated where metal corrosion occurs, and alkaline water flows into these pockets through the existing fine tunnel-shaped flow paths to expand the metal corrosion, resulting in fine tunnel-shaped flow paths. a vicious circle of growing and/or developing. When this tunnel-like flow path is sufficiently developed, it becomes possible for alkaline water and, in the case of a large amount, gas to permeate up to the outer periphery of the gasket contact surface of the flange, and the electrolyte and gas sealing performance decreases. It is thought that
 ニッケルはアルカリ水に対して十分な耐腐食性を有している。したがって、フランジ部が鉄等の卑金属(例えば炭素鋼等。)で形成されている場合であっても、フランジ部のガスケット接触面にニッケルめっきが施されている場合には、仮にフランジ部のガスケット接触面に微細な凹凸が残存しており、ガスケットとの間に微細なトンネルが形成されたとしても、アルカリ水による金属腐食が拡大することは避けられるので、電解液およびガスのシール性は維持されると考えられる。その目的において、ニッケルめっき層の厚さは2~10μmもあれば十分であり、これを超えて厚いニッケルめっき層を設けても単に不経済と考えられる。しかしながら、アルカリ水電解槽の陽極室においては、金属製のフランジ部が酸化的電位に置かれること、及び、酸素ガスが多量に発生することが問題になり得る。  Nickel has sufficient corrosion resistance against alkaline water. Therefore, even if the flange portion is made of a base metal such as iron (for example, carbon steel), if the gasket contact surface of the flange portion is nickel-plated, the gasket of the flange portion will Fine unevenness remains on the contact surface, and even if a fine tunnel is formed between the gasket and the gasket, the expansion of metal corrosion due to alkaline water is avoided, so the electrolyte and gas sealing performance is maintained. is considered to be For that purpose, a thickness of 2 to 10 μm is sufficient for the nickel plating layer, and it is simply uneconomical to provide a nickel plating layer thicker than this. However, in the anode compartment of an alkaline water electrolyzer, the metal flange is exposed to an oxidizing potential and the generation of large amounts of oxygen gas can be a problem.
 特に、アルカリ水電解槽の陰極室で発生するガスは水素ガスであり、陰極室は還元的雰囲気で満たされるのに対して、陽極室で発生するガスは酸素ガスであり、陽極室は酸化的雰囲気で満たされるとともに、陽極液にも酸素ガスが飽和レベルまで溶解する。酸素発生反応電位の付近では熱力学的にニッケル金属の酸化反応が進行する(下記式(1)又は(2))。水酸化ニッケル(II)は非酸化的条件下ではアルカリ水溶液中で安定であるが、電位および酸素ガス活量等の条件に応じてニッケルの酸化がさらに進行し得る(例えば下記式(3)~(6))。
Ni+2OH→Ni(OH)+2e   …(1)
Ni+(1/2)O+HO→Ni(OH)   …(2)
Ni(OH)+OH→NiOOH+HO+e   …(3)
2Ni(OH)+(1/2)O→2NiOOH+HO   …(4)
NiOOH+OH→NiO+HO+e   …(5)
2NiOOH+(1/2)O→2NiO+HO   …(6)
このようなニッケルの酸化反応は、主としてニッケルの表面及びその近傍で進行する。一般に、酸化物皮膜/雰囲気ガス界面では、ガス流れが十分であれば、酸化物からの酸素の解離圧は雰囲気の酸素分圧に等しくなる。雰囲気の酸素分圧が解離圧より高ければ金属は酸化され、解離圧未満であれば酸化物は還元される。酸化物皮膜中では酸素分圧の勾配が生じ、酸化物皮膜の深部ほど分圧が低下する。金属/酸化物界面で熱力学平衡が成立していると仮定すると、系は金属と酸化物とが共存する平衡状態とみなせるので、酸素分圧は解離圧に等しくなる。したがって酸化物皮膜に接する相中の酸素ガスの活量が高いほど、金属/酸化物平衡は酸化物の側に傾いて酸化物皮膜は厚くなると考えられる。これらのニッケルの酸化反応は可逆反応であるので、アルカリ水電解槽の運転が停止された際には、ニッケルの酸化反応の逆反応(還元反応)が進行し得る。陽極室から酸素ガスが回収されることによる陽極室中の酸素ガス活量の低下も、該逆反応を後押しすると考えられる。ニッケル表面及びその近傍でのニッケルの酸化反応およびその逆反応は、結晶構造の変化を通じて、ニッケル表面及びその近傍での局所的な応力変化をもたらし得る。ニッケル表面及びその近傍におけるニッケルの酸化反応及びその逆反応の繰り返しは、局所的な応力変化の繰り返しを通じて、ニッケルめっき皮膜の劣化を促進し得る。この問題は、アルカリ水電解槽の運転及び停止が頻繁に繰り返される条件において特に顕著になり得る。そのような運転条件の例としては、アルカリ水電解槽の電流源として、再生可能エネルギー(例えば太陽光発電、風力発電、潮力発電等。)等の不安定電源が、二次電池等で安定化されることなく用いられる場合を挙げることができる。ニッケルめっき皮膜が劣化すると、表面の凹凸も進展し、これが究極的にはフランジ部とガスケットとの間の電解液およびガスのシール性を低下させると考えられる。
In particular, the gas generated in the cathode chamber of the alkaline water electrolysis cell is hydrogen gas, and the cathode chamber is filled with a reducing atmosphere, whereas the gas generated in the anode chamber is oxygen gas, and the anode chamber is filled with an oxidizing atmosphere. While being filled with the atmosphere, oxygen gas also dissolves in the anolyte to a saturation level. In the vicinity of the oxygen evolution reaction potential, the oxidation reaction of nickel metal progresses thermodynamically (formula (1) or (2) below). Nickel (II) hydroxide is stable in an alkaline aqueous solution under non-oxidizing conditions, but depending on conditions such as potential and oxygen gas activity, oxidation of nickel may proceed further (for example, the following formulas (3) to (6)).
Ni+2OH →Ni(OH) 2 +2e (1)
Ni+(1/2)O 2 +H 2 O→Ni(OH) 2 (2)
Ni(OH) 2 +OH →NiOOH+H 2 O+e (3)
2Ni(OH) 2+ (1/2) O2- >2NiOOH+ H2O (4)
NiOOH+OH →NiO 2 +H 2 O+e (5)
2NiOOH+(1/2) O22NiO2 + H2O (6)
Such an oxidation reaction of nickel proceeds mainly on the surface of nickel and its vicinity. In general, at the oxide film/atmosphere gas interface, the dissociation pressure of oxygen from the oxide will be equal to the oxygen partial pressure of the atmosphere if the gas flow is sufficient. If the oxygen partial pressure of the atmosphere is higher than the dissociation pressure, the metal will be oxidized; if it is below the dissociation pressure, the oxide will be reduced. An oxygen partial pressure gradient occurs in the oxide film, and the partial pressure decreases as the depth of the oxide film increases. Assuming that the metal/oxide interface is in thermodynamic equilibrium, the system can be regarded as an equilibrium state in which the metal and the oxide coexist, so the oxygen partial pressure is equal to the dissociation pressure. Therefore, it is considered that the higher the activity of oxygen gas in the phase in contact with the oxide film, the more the metal/oxide equilibrium is tilted toward the oxide side and the thicker the oxide film. Since these nickel oxidation reactions are reversible reactions, a reverse reaction (reduction reaction) of the nickel oxidation reaction can proceed when the operation of the alkaline water electrolytic cell is stopped. A decrease in oxygen gas activity in the anode chamber due to recovery of oxygen gas from the anode chamber is also believed to promote the reverse reaction. Nickel oxidation reactions and their reverse reactions at and near the nickel surface can lead to localized stress changes at and near the nickel surface through changes in the crystal structure. Repeated oxidation of nickel and its reverse reaction on and near the surface of nickel can promote deterioration of the nickel plating film through repeated local stress changes. This problem can be particularly pronounced under conditions where the alkaline water electrolyzer is frequently turned on and off. Examples of such operating conditions include unstable power sources such as renewable energy sources (e.g., solar power generation, wind power generation, tidal power generation, etc.) as current sources for alkaline water electrolyzers, and stable power sources such as secondary batteries. The case where it is used without being modified can be mentioned. When the nickel plating film deteriorates, the unevenness of the surface also develops, which is thought to ultimately reduce the electrolyte and gas sealing performance between the flange portion and the gasket.
 本発明者は、陽極室側のフランジ部のガスケット接触面に露出するように、厚さ27μm以上のニッケルめっき層を設けるとともに、該ガスケット接触面の表面粗さを、算術平均粗さRaとして10μm以下とすることにより、アルカリ水電解槽の陽極室側という金属腐食について厳しい条件下においても、電解液およびガスのシール性の低下を抑制できることを見出した。 The present inventor provided a nickel plating layer having a thickness of 27 μm or more so as to be exposed on the gasket contact surface of the flange portion on the anode chamber side, and set the surface roughness of the gasket contact surface to an arithmetic mean roughness Ra of 10 μm. It has been found that the deterioration of sealing performance against the electrolytic solution and the gas can be suppressed even under severe conditions for metal corrosion on the anode chamber side of the alkaline water electrolytic cell by the following.
 図2は、図1から第1の枠体10のみを抜き出した図である。図2において、図1に既に表れた要素には図1における符号と同一の符号を付し、説明を省略することがある。第1のフランジ部12は、第1のガスケット要素31(図1参照。)と接触する、第1のガスケット接触面12eを有する。第1の枠体10は、第1のフランジ部12の第1のガスケット接触面12eに露出して設けられた、第1のニッケルめっき層14を備えている。第1のニッケルめっき層14の、第1のガスケット接触面12eにおける厚さは、陽極液および陽極室ガスのシール性の低下を抑制する観点、及び、酸素ガス活量の高いアルカリ水中での耐腐食性を長期にわたって高める観点から、27μm以上であり、より好ましくは30μm以上である。当該厚さの上限は特に制限されるものではないが、製造コストの観点から例えば100μm以下であり得る。 FIG. 2 is a diagram of only the first frame 10 extracted from FIG. In FIG. 2, elements that have already appeared in FIG. 1 are denoted by the same reference numerals as those in FIG. 1, and description thereof may be omitted. The first flange portion 12 has a first gasket contact surface 12e that contacts the first gasket element 31 (see FIG. 1). The first frame 10 has a first nickel plating layer 14 exposed on the first gasket contact surface 12 e of the first flange portion 12 . The thickness of the first nickel plating layer 14 at the first gasket contact surface 12e is determined from the viewpoint of suppressing deterioration of the sealing performance of the anolyte and the anode chamber gas, and from the viewpoint of resistance to alkaline water with high oxygen gas activity. From the viewpoint of increasing corrosiveness over a long period of time, it is 27 μm or more, more preferably 30 μm or more. Although the upper limit of the thickness is not particularly limited, it may be, for example, 100 μm or less from the viewpoint of manufacturing cost.
 陽極液および陽極室ガスのシール性の低下を抑制する観点、及び、酸素ガス活量の高いアルカリ水中での耐腐食性を長期にわたって高める観点から、第1のガスケット接触面12eの表面粗さは、JIS B0601に規定の算術平均粗さRaとして10μm以下であり、好ましくは9μm以下、又は8μm以下である。当該算術平均粗さRaの下限は特に制限されるものではないが、ガスケットの固定の安定性及び製造コストの観点からは、一の実施形態において1μm以上、又は2μm以上であり得る。一の実施形態において、当該算術平均粗さRaは、1~10μm、又は1~9μm、又は1~8μmであり得る。 From the viewpoint of suppressing the deterioration of the sealing performance of the anolyte and the anode chamber gas, and from the viewpoint of increasing the corrosion resistance in alkaline water with high oxygen gas activity over a long period of time, the surface roughness of the first gasket contact surface 12e is , the arithmetic mean roughness Ra specified in JIS B0601 is 10 μm or less, preferably 9 μm or less, or 8 μm or less. The lower limit of the arithmetic mean roughness Ra is not particularly limited, but in one embodiment, it may be 1 μm or more, or 2 μm or more from the viewpoint of gasket fixation stability and manufacturing cost. In one embodiment, the arithmetic mean roughness Ra can be 1-10 μm, or 1-9 μm, or 1-8 μm.
 陽極液および陽極室ガスのシール性の低下をさらに抑制する観点、及び、酸素ガス活量の高いアルカリ水中での耐腐食性をさらに高める観点から、第1のガスケット接触面12eの表面粗さは、JIS B0601に規定の最大高さRzとして、好ましくは40μm以下、より好ましくは35μm以下である。当該最大高さRzの下限は特に制限されるものではないが、製造コストの観点からは、一の実施形態において2μm以上、又は4μm以上、又は6μm以上、又は8μm以上であり得る。一の実施形態において、当該最大高さRzは、2~40μm、又は4~40μm、又は6~40μmであり得る。 From the viewpoint of further suppressing the deterioration of the sealing performance of the anolyte and the anode chamber gas, and from the viewpoint of further increasing the corrosion resistance in alkaline water with high oxygen gas activity, the surface roughness of the first gasket contact surface 12e is , the maximum height Rz specified in JIS B0601 is preferably 40 μm or less, more preferably 35 μm or less. Although the lower limit of the maximum height Rz is not particularly limited, it may be 2 μm or more, 4 μm or more, 6 μm or more, or 8 μm or more from the viewpoint of manufacturing cost in one embodiment. In one embodiment, the maximum height Rz can be 2-40 μm, or 4-40 μm, or 6-40 μm.
 電解槽100において、第1のニッケルめっき層14は、第1のガスケット接触面12e、及び、第1の枠体10の陽極室Aに面した表面に、連続して設けられている。第1の枠体10が陽極室Aに面した表面にもこのような厚いニッケルめっき層を備えることにより、陽極室の酸素ガス雰囲気および酸素ガス飽和アルカリ水中での耐腐食性を長期にわたる使用に十分な水準まで安価に高めることが可能になる。陽極室の酸素ガス雰囲気および酸素ガス飽和アルカリ水中での耐腐食性をさらに高める観点からは、第1の枠体10の陽極室Aに面した表面におけるニッケルめっき層の厚さは、好ましくは27μm以上、より好ましくは30μm以上、特に好ましくは50μm以上である。第1の枠体10の陽極室Aに面した表面におけるニッケルめっき層の厚さの上限は特に制限されるものではないが、コストの観点から好ましくは例えば100μm以下であり得る。第1の枠体10の陽極室Aに面した表面におけるニッケルめっき層は、第1の枠体10の陽極室Aに面した表面の全体に設けられていてもよく、接液部のみに設けられていてもよい。 In the electrolytic cell 100, the first nickel plating layer 14 is continuously provided on the first gasket contact surface 12e and the surface of the first frame 10 facing the anode chamber A. By providing such a thick nickel plating layer also on the surface of the first frame 10 facing the anode chamber A, the corrosion resistance in the oxygen gas atmosphere of the anode chamber and in the oxygen gas saturated alkaline water is improved for long-term use. It becomes possible to raise it to a sufficient level at low cost. From the viewpoint of further enhancing the corrosion resistance in the oxygen gas atmosphere of the anode chamber and in the oxygen gas saturated alkaline water, the thickness of the nickel plating layer on the surface facing the anode chamber A of the first frame 10 is preferably 27 μm. Above, more preferably 30 μm or more, particularly preferably 50 μm or more. Although the upper limit of the thickness of the nickel plating layer on the surface of the first frame 10 facing the anode chamber A is not particularly limited, it may preferably be, for example, 100 μm or less from the viewpoint of cost. The nickel plating layer on the surface of the first frame 10 facing the anode chamber A may be provided on the entire surface of the first frame 10 facing the anode chamber A, or may be provided only on the liquid contact portion. may have been
 一の好ましい実施形態において、第1の枠体10は、少なくとも1つの鋼製の芯材10aと、該芯材10aの表面に設けられた第1のニッケルめっき層14とを含む。電解槽100において、鋼製の芯材10aは、隔壁11を構成する鋼製の芯材11aと、フランジ部12を構成する鋼製の芯材12aと、支持部材13を構成する鋼製の芯材13aとを含む。第1のニッケルめっき層14は、少なくともフランジ部12のガスケット接触面12eに露出するように設けられ、さらに第1のガスケット接触面12eから連続して、芯材10aのうち陽極室に面した表面全体に設けられていてもよく、芯材10aの表面全体に設けられていてもよい。 In one preferred embodiment, the first frame 10 includes at least one steel core 10a and a first nickel plating layer 14 provided on the surface of the core 10a. In the electrolytic cell 100, the steel core 10a includes a steel core 11a forming the partition wall 11, a steel core 12a forming the flange portion 12, and a steel core forming the support member 13. material 13a. The first nickel plating layer 14 is provided so as to be exposed at least on the gasket contact surface 12e of the flange portion 12, and continuously from the first gasket contact surface 12e, on the surface of the core material 10a facing the anode chamber. It may be provided on the entire surface, or may be provided on the entire surface of the core material 10a.
 一の実施形態において、このような第1の枠体10は、隔壁11を構成する鋼製の芯材11a及びフランジ部12を構成する鋼製の芯材12aにニッケルめっきを施すことにより製造することができる。隔壁11を構成する鋼製の芯材11aとフランジ部12を構成する鋼製の芯材12aとを含む一体の芯材にニッケルめっきを施してもよく、隔壁11を構成する鋼製の芯材11a及びフランジ部12を構成する鋼製の芯材12aにそれぞれ別個にニッケルめっきを施してから両者を接合してもよい。また第1の枠体10が支持部材13を備える場合、隔壁11を構成する鋼製の芯材11aと支持部材13を構成する鋼製の芯材13aとを含み、任意的にフランジ部12を構成する鋼製の芯材12aをさらに含む一体の芯材にニッケルめっきを施してもよく、支持部材13を構成する鋼製の芯材13aに別個にニッケルめっきを施してから芯材13aとニッケルめっき層とを備える支持部材13を隔壁11に接合してもよい。なお上記の通り、第1のフランジ部12は陽極室Aに陽極液を供給する陽極液供給流路(不図示)と、陽極液Aから陽極液および陽極で発生したガスを回収する陽極液回収流路(不図示)とを備えている。フランジ部12が鋼製の芯材12aを備える場合、フランジ部12に備えられる陽極液供給流路および陽極液回収流路の内表面にも上記ニッケルめっき層14が設けられることが好ましい。該ニッケルめっき層14はフランジ部12に備えられる陽極液供給流路および陽極液回収流路の内表面の少なくとも接液部に設けられることが好ましく、当該内表面の全体に設けられていてもよい。 In one embodiment, such a first frame 10 is manufactured by nickel-plating a steel core 11a forming the partition wall 11 and a steel core 12a forming the flange 12. be able to. An integrated core material including the steel core material 11a that constitutes the partition wall 11 and the steel core material 12a that constitutes the flange portion 12 may be plated with nickel. 11a and the steel core material 12a forming the flange portion 12 may be separately plated with nickel and then joined together. When the first frame 10 includes the support member 13, the steel core member 11a forming the partition wall 11 and the steel core member 13a forming the support member 13 are included, and optionally the flange portion 12 is provided. Nickel plating may be applied to the integrated core material further including the steel core material 12a constituting the support member 13, and the steel core material 13a constituting the support member 13 is separately nickel-plated, and then the core material 13a and the nickel metal are plated separately. A support member 13 including a plating layer may be joined to the partition wall 11 . As described above, the first flange portion 12 includes an anolyte supply channel (not shown) that supplies the anolyte to the anode chamber A, and an anolyte recovery path that recovers the anolyte from the anolyte A and the gas generated at the anode. and a channel (not shown). In the case where the flange portion 12 has a core material 12 a made of steel, it is preferable that the nickel plating layer 14 is also provided on the inner surfaces of the anolyte supply channel and the anolyte recovery channel provided in the flange portion 12 . The nickel plating layer 14 is preferably provided on at least the liquid-contacting portions of the inner surfaces of the anolyte supply channel and the anolyte recovery channel provided in the flange portion 12, and may be provided on the entire inner surface. .
 図3は、図1から第2の枠体20のみを抜き出した図である。図3において、図1~2に既に表れた要素には図1~2における符号と同一の符号を付し、説明を省略することがある。第2のフランジ部22は、第2のガスケット要素32(図1参照。)と接触する、第2のガスケット接触面22eを有する。第2の枠体20は、第2のフランジ部22の第2のガスケット接触面22eに露出して設けられた、第2のニッケルめっき層24を備えている。第2のニッケルめっき層24の、第2のガスケット接触面22eにおける厚さは、陰極液および陰極室ガスのシール性の低下を抑制する観点から、好ましくは27μm以上、より好ましくは30μm以上である。当該厚さの上限は特に制限されるものではないが、製造コストの観点から例えば100μm以下であり得る。 FIG. 3 is a diagram of only the second frame 20 extracted from FIG. In FIG. 3, elements that have already appeared in FIGS. 1 and 2 are assigned the same reference numerals as those in FIGS. 1 and 2, and description thereof may be omitted. The second flange portion 22 has a second gasket contact surface 22e that contacts the second gasket element 32 (see FIG. 1). The second frame 20 includes a second nickel plating layer 24 exposed on the second gasket contact surface 22 e of the second flange portion 22 . The thickness of the second nickel plating layer 24 at the second gasket contact surface 22e is preferably 27 μm or more, more preferably 30 μm or more, from the viewpoint of suppressing deterioration of the sealing performance of the catholyte and the cathode chamber gas. . Although the upper limit of the thickness is not particularly limited, it may be, for example, 100 μm or less from the viewpoint of manufacturing cost.
 陰極液および陰極室ガスのシール性の低下を抑制する観点から、第2のガスケット接触面22eの表面粗さは、JIS B0601に規定の算術平均粗さRaとして好ましくは10μm以下であり、より好ましくは9μm以下、又は8μm以下である。当該算術平均粗さRaの下限は特に制限されるものではないが、ガスケットの固定の安定性及び製造コストの観点からは、一の実施形態において1μm以上、又は2μm以上であり得る。一の実施形態において、当該算術平均粗さRaは、1~10μm、又は1~9μm、又は1~8μmであり得る。 From the viewpoint of suppressing the deterioration of the sealing performance of the catholyte and the cathode chamber gas, the surface roughness of the second gasket contact surface 22e is preferably 10 μm or less, more preferably 10 μm or less as the arithmetic mean roughness Ra specified in JIS B0601. is 9 μm or less, or 8 μm or less. The lower limit of the arithmetic mean roughness Ra is not particularly limited, but in one embodiment, it may be 1 μm or more, or 2 μm or more from the viewpoint of gasket fixation stability and manufacturing cost. In one embodiment, the arithmetic mean roughness Ra can be 1-10 μm, or 1-9 μm, or 1-8 μm.
 陰極液および陰極室ガスのシール性の低下をさらに抑制する観点から、第2のガスケット接触面22eの表面粗さは、JIS B0601に規定の最大高さRzとして、好ましくは40μm以下、より好ましくは35μm以下である。当該最大高さRzの下限は特に制限されるものではないが、製造コストの観点からは、一の実施形態において2μm以上、又は4μm以上、又は6μm以上、又は8μm以上であり得る。一の実施形態において、当該最大高さRzは、2~40μm、又は4~40μm、又は6~40μmであり得る。 From the viewpoint of further suppressing the deterioration of the sealing properties of the catholyte and the cathode chamber gas, the surface roughness of the second gasket contact surface 22e is preferably 40 μm or less, more preferably 40 μm or less, more preferably 35 μm or less. Although the lower limit of the maximum height Rz is not particularly limited, it may be 2 μm or more, 4 μm or more, 6 μm or more, or 8 μm or more from the viewpoint of manufacturing cost in one embodiment. In one embodiment, the maximum height Rz can be 2-40 μm, or 4-40 μm, or 6-40 μm.
 電解槽100において、第2のニッケルめっき層24は、第2のガスケット接触面22e、及び、第2の枠体20の陰極室Cに面した表面に、連続して設けられている。第2の枠体20が陰極室Cに面した表面にもニッケルめっき層を備えることにより、陰極室のアルカリ条件下での耐腐食性を十分な水準まで高めることが可能になる。第2の枠体20の陰極室Cに面した表面において、ニッケルめっき層は、陰極室のアルカリ条件に耐えることが可能な耐腐食性をもたらす厚さを有する。その厚さは2μmもあれば十分であり、好ましくは10μm以上、より好ましくは27μm以上、一の実施形態において30μm以上であり得る。第2の枠体20の陰極室Cに面した表面におけるニッケルめっき層の厚さの上限は特に制限されるものではないが、コストの観点から好ましくは例えば100μm以下であり得る。第2の枠体20の陰極室Cに面した表面におけるニッケルめっき層は、第2の枠体20の陰極室Cに面した表面の全体に設けられていてもよく、接液部のみに設けられていてもよい。 In the electrolytic cell 100, the second nickel plating layer 24 is continuously provided on the second gasket contact surface 22e and the surface of the second frame 20 facing the cathode chamber C. By providing a nickel plating layer also on the surface of the second frame 20 facing the cathode chamber C, it is possible to raise the corrosion resistance of the cathode chamber under alkaline conditions to a sufficient level. On the surface of the second frame 20 facing the cathode chamber C, the nickel plating layer has a thickness that provides corrosion resistance that can withstand the alkaline conditions of the cathode chamber. A thickness of 2 μm may be sufficient, preferably 10 μm or more, more preferably 27 μm or more, and in one embodiment 30 μm or more. Although the upper limit of the thickness of the nickel plating layer on the surface of the second frame 20 facing the cathode chamber C is not particularly limited, it is preferably 100 μm or less from the viewpoint of cost. The nickel-plated layer on the surface of the second frame 20 facing the cathode chamber C may be provided on the entire surface of the second frame 20 facing the cathode chamber C, or may be provided only on the wetted portion. may have been
 一の好ましい実施形態において、第2の枠体20は、少なくとも1つの鋼製の芯材20aと、該芯材20aの表面に設けられた第2のニッケルめっき層24とを含む。電解槽100において、鋼製の芯材20aは、隔壁21を構成する鋼製の芯材21aと、フランジ部22を構成する鋼製の芯材22aと、支持部材23を構成する鋼製の芯材23aとを含む。第2のニッケルめっき層24は、少なくともフランジ部22のガスケット接触面22eに露出するように設けられ、さらに第2のガスケット接触面22eから連続して、芯材20aのうち陰極室に面した表面全体に設けられていてもよく、芯材20aの表面全体に設けられていてもよい。 In one preferred embodiment, the second frame 20 includes at least one steel core 20a and a second nickel plating layer 24 provided on the surface of the core 20a. In the electrolytic cell 100, the steel core 20a includes a steel core 21a forming the partition wall 21, a steel core 22a forming the flange portion 22, and a steel core forming the support member 23. material 23a. The second nickel plating layer 24 is provided so as to be exposed at least on the gasket contact surface 22e of the flange portion 22, and continuously from the second gasket contact surface 22e on the surface of the core material 20a facing the cathode chamber. It may be provided over the entire surface of the core material 20a.
 一の実施形態において、このような第2の枠体20は、隔壁21を構成する鋼製の芯材21a及びフランジ部22を構成する鋼製の芯材22aにニッケルめっきを施すことにより製造することができる。隔壁21を構成する鋼製の芯材21aとフランジ部22を構成する鋼製の芯材22aとを含む一体の芯材にニッケルめっきを施してもよく、隔壁21を構成する鋼製の芯材21a及びフランジ部22を構成する鋼製の芯材22aにそれぞれ別個にニッケルめっきを施してから両者を接合してもよい。また第2の枠体20が支持部材23を備える場合、隔壁21を構成する鋼製の芯材21aと支持部材23を構成する鋼製の芯材23aとを含み、任意的にフランジ部22を構成する鋼製の芯材22aをさらに含む一体の芯材にニッケルめっきを施してもよく、支持部材23を構成する鋼製の芯材23aに別個にニッケルめっきを施してから芯材23aとニッケルめっき層とを備える支持部材23を隔壁21に接合してもよい。なお上記の通り、第2のフランジ部22はまた、陰極室Cに陰極液を供給する陰極液供給流路(不図示)と、陰極室Cから陰極液および陰極で発生したガスを回収する陰極液回収流路(不図示)とを備えている。フランジ部22が鋼製の芯材22aを備える場合、フランジ部22に備えられる陰極液供給流路および陰極液回収流路の内表面にも上記ニッケルめっき層24が設けられることが好ましい。該ニッケルめっき層24はフランジ部22に備えられる陰極液供給流路および陰極液回収流路の内表面の少なくとも接液部に設けられることが好ましく、当該内表面の全体に設けられていてもよい。 In one embodiment, such a second frame 20 is manufactured by nickel-plating a steel core 21a forming the partition wall 21 and a steel core 22a forming the flange 22. be able to. An integrated core material including a steel core material 21a constituting the partition wall 21 and a steel core material 22a constituting the flange portion 22 may be plated with nickel. 21a and the steel core material 22a forming the flange portion 22 may be individually plated with nickel and then joined together. When the second frame body 20 includes the support member 23, the steel core member 21a forming the partition wall 21 and the steel core member 23a forming the support member 23 are included, and optionally the flange portion 22 is provided. Nickel plating may be applied to the integrated core material further including the steel core material 22a constituting the support member 23, and the steel core material 23a constituting the support member 23 is separately nickel-plated, and then the core material 23a and the nickel metal are plated separately. A support member 23 including a plating layer may be joined to the partition wall 21 . As described above, the second flange portion 22 also includes a catholyte supply channel (not shown) that supplies the catholyte to the cathode chamber C, and a cathode for recovering the catholyte and the gas generated at the cathode from the cathode chamber C. and a liquid recovery channel (not shown). When the flange portion 22 has a steel core 22a, the inner surfaces of the catholyte supply channel and the catholyte recovery channel provided in the flange portion 22 are preferably provided with the nickel plating layer 24 as well. The nickel plating layer 24 is preferably provided on at least the liquid-contacting portion of the inner surfaces of the catholyte supply channel and the catholyte recovery channel provided in the flange portion 22, and may be provided on the entire inner surface. .
 他の一の実施形態において、第2の枠体20は、隔壁21を構成する鋼製の芯材21aにニッケルめっきを施した後、芯材21a及びニッケルめっき層を備える隔壁21と非金属材料で構成されたフランジ部22とを接合することにより製造することができる。第2の枠体20が支持部材23を備える場合、隔壁21を構成する鋼製の芯材21aと支持部材23を構成する鋼製の芯材23aとを含む一体の芯材にニッケルめっきを施してもよく、隔壁21を構成する鋼製の芯材21a及び支持部材23を構成する鋼製の芯材23aにそれぞれ別個にニッケルめっきを施してから両者を接合してもよい。 In another embodiment, the second frame 20 is formed by nickel-plating a steel core 21a that constitutes the partition 21, and then combining the partition 21 with the core 21a and the nickel-plated layer and the non-metallic material. It can be manufactured by joining the flange portion 22 configured with. When the second frame 20 is provided with the support member 23, the integrated core material including the steel core material 21a constituting the partition wall 21 and the steel core material 23a constituting the support member 23 is plated with nickel. Alternatively, the steel core 21a forming the partition wall 21 and the steel core 23a forming the support member 23 may be separately plated with nickel and then joined together.
 第1の枠体10に第1のニッケルめっき層14を設けるにあたっては、公知のニッケルめっき方法を採用できる。金属製の芯材に対するニッケルめっきは電解めっきにより行ってもよく、無電解めっきにより行ってもよい。ただし、電解めっきは一般に表面が粗くなるところ、無電解めっきは、本発明における上記算術平均粗さRaの要件を満足する表面を得やすい。このため、陽極液および陽極室ガスのシール性の低下を抑制する観点、及び、酸素ガス活量の高いアルカリ水中での耐腐食性を高める観点からは、無電解ニッケルめっきを好ましく採用できる。無電解ニッケルめっきは公知のプロセスにより行うことができる。例えば、金属製の芯材に対し、酸洗処理工程、脱脂処理工程、電解脱脂処理工程、酸活性工程、無電解ニッケルめっき析出工程、及びめっき後熱処理工程を上記順に行うことにより、金属製の芯材の表面に無電解ニッケルめっき層を形成できる。無電解ニッケルめっきは無電解ニッケル-リンめっきであってもよく、無電解ニッケル-ホウ素めっきであってもよいが、陽極液および陽極室ガスのシール性の低下をさらに抑制する観点、及び、酸素ガス活量の高いアルカリ水中での耐腐食性をさらに高める観点からは、無電解ニッケル-リンめっきが好ましい。無電解ニッケルめっき層14中のリン含有量は、通常1~13質量%であり、一の実施形態において1質量%以上5質量%未満、又は5質量%以上10質量%未満、又は10質量%以上13質量%以下であり得る。陽極液および陽極室ガスのシール性の低下をさらに抑制する観点、及び、酸素ガス活量の高いアルカリ水中での耐腐食性をさらに高める観点からは、無電解ニッケルめっき層14中のリン含有量は、好ましくは5~13質量%であり、一の実施形態において5質量%以上10質量%未満であり得る。特に第1のガスケット接触面12e及び第1の枠体10の陽極室Aに面した表面に連続して第1のニッケルめっき層14を設ける場合には、さらに電解槽100の電気抵抗を低減してエネルギー効率を高める観点から、無電解ニッケルめっき層14中のリン含有量は、好ましくは5質量%以上10質量%未満である。 A known nickel plating method can be used to provide the first nickel plating layer 14 on the first frame 10 . Nickel plating on the metallic core material may be performed by electroplating or by electroless plating. However, while electrolytic plating generally results in a rough surface, electroless plating tends to obtain a surface that satisfies the above arithmetic mean roughness Ra in the present invention. Therefore, electroless nickel plating can be preferably used from the viewpoints of suppressing the deterioration of the sealing performance between the anolyte and the anode chamber gas and from the viewpoint of enhancing corrosion resistance in alkaline water with high oxygen gas activity. Electroless nickel plating can be performed by known processes. For example, by performing the pickling treatment step, the degreasing treatment step, the electrolytic degreasing treatment step, the acid activation step, the electroless nickel plating deposition step, and the post-plating heat treatment step on the metal core material in the above order, the metal An electroless nickel plating layer can be formed on the surface of the core material. The electroless nickel plating may be electroless nickel-phosphorus plating or electroless nickel-boron plating. Electroless nickel-phosphorus plating is preferred from the viewpoint of further enhancing corrosion resistance in alkaline water with high gas activity. The phosphorus content in the electroless nickel plating layer 14 is usually 1 to 13% by mass, and in one embodiment, 1% by mass or more and less than 5% by mass, or 5% by mass or more and less than 10% by mass, or 10% by mass. It may be more than or equal to 13% by mass or less. From the viewpoint of further suppressing the deterioration of the sealability of the anolyte and the anode chamber gas, and from the viewpoint of further increasing the corrosion resistance in alkaline water with high oxygen gas activity, the phosphorus content in the electroless nickel plating layer 14 is preferably 5 to 13% by mass, and in one embodiment can be 5% by mass or more and less than 10% by mass. In particular, when the first nickel plating layer 14 is provided continuously on the first gasket contact surface 12e and the surface of the first frame 10 facing the anode chamber A, the electrical resistance of the electrolytic cell 100 can be further reduced. From the viewpoint of improving energy efficiency by using the electroless nickel plating layer 14, the phosphorus content in the electroless nickel plating layer 14 is preferably 5% by mass or more and less than 10% by mass.
 第2の枠体20に第2のニッケルめっき層24を設けるにあたっては、公知のニッケルめっき方法を採用できる。金属製の芯材に対するニッケルめっきは電解めっきにより行ってもよく、無電解めっきにより行ってもよい。ただし、陰極液および陰極室ガスのシール性の低下をさらに抑制する観点、及び、アルカリ水中での耐腐食性をさらに高める観点からは、無電解ニッケルめっきを好ましく採用できる。無電解ニッケルめっきは公知のプロセスにより行うことができる。例えば、金属製の芯材に対し、酸洗処理工程、脱脂処理工程、電解脱脂処理工程、酸活性工程、無電解ニッケルめっき析出工程、及びめっき後熱処理工程を上記順に行うことにより、金属製の芯材の表面に無電解ニッケルめっき層を形成できる。無電解ニッケルめっきは無電解ニッケル-リンめっきであってもよく、無電解ニッケル-ホウ素めっきであってもよいが、陰極液および陰極室ガスのシール性の低下をさらに抑制する観点、及び、アルカリ水中での耐腐食性をさらに高める観点からは、無電解ニッケル-リンめっきが好ましい。無電解ニッケルめっき層24中のリン含有量は、通常1~13質量%であり、一の実施形態において1質量%以上5質量%未満、又は5質量%以上10質量%未満、又は10質量%以上13質量%以下であり得る。陰極液および陰極室ガスのシール性の低下をさらに抑制する観点、及び、アルカリ水中での耐腐食性をさらに高める観点からは、無電解ニッケルめっき層24中のリン含有量は、好ましくは5~13質量%であり、一の実施形態において5質量%以上10質量%未満であり得る。特に第2のガスケット接触面22e及び第2の枠体20の陽極室Aに面した表面に連続して第2のニッケルめっき層24を設ける場合には、さらに電解槽100の電気抵抗を低減してエネルギー効率を高める観点から、無電解ニッケルめっき層24中のリン含有量は、好ましくは5質量%以上10質量%未満である。 A known nickel plating method can be used to provide the second nickel plating layer 24 on the second frame 20 . Nickel plating on the metallic core material may be performed by electroplating or by electroless plating. However, electroless nickel plating can be preferably used from the viewpoint of further suppressing the deterioration of the sealing properties of the catholyte and the cathode chamber gas and from the viewpoint of further increasing the corrosion resistance in alkaline water. Electroless nickel plating can be performed by known processes. For example, by performing the pickling treatment step, the degreasing treatment step, the electrolytic degreasing treatment step, the acid activation step, the electroless nickel plating deposition step, and the post-plating heat treatment step on the metal core material in the above order, the metal An electroless nickel plating layer can be formed on the surface of the core material. The electroless nickel plating may be electroless nickel-phosphorus plating or electroless nickel-boron plating. Electroless nickel-phosphorus plating is preferred from the viewpoint of further enhancing corrosion resistance in water. The phosphorus content in the electroless nickel plating layer 24 is usually 1 to 13% by mass, and in one embodiment, 1% by mass or more and less than 5% by mass, or 5% by mass or more and less than 10% by mass, or 10% by mass. It may be more than or equal to 13% by mass or less. From the viewpoint of further suppressing the deterioration of the sealing properties of the catholyte and the cathode chamber gas and from the viewpoint of further increasing the corrosion resistance in alkaline water, the phosphorus content in the electroless nickel plating layer 24 is preferably 5 to 5. 13% by mass, and in one embodiment, it may be 5% by mass or more and less than 10% by mass. In particular, when the second nickel plating layer 24 is provided continuously on the second gasket contact surface 22e and the surface of the second frame 20 facing the anode chamber A, the electrical resistance of the electrolytic cell 100 can be further reduced. From the viewpoint of improving energy efficiency by using the electroless nickel plating layer 24, the phosphorus content in the electroless nickel plating layer 24 is preferably 5% by mass or more and less than 10% by mass.
 ガスケット30(図1参照。)としては、アルカリ水電解用の電解槽に使用可能であり、電気絶縁性を有するガスケットを特に制限なく用いることができる。図1にはガスケット30の断面が表れている。ガスケット30は平坦な形状を有し、隔膜40の周縁部を挟持する一方で、第1のフランジ部12と第2のフランジ部22との間に挟持される。ガスケット30は、第1のフランジ部12及び隔膜40に接触する、第1のガスケット要素31と、第2のフランジ部22及び隔膜40に接触する、第2のガスケット要素32とを備える。一の実施形態において、第1のガスケット要素31と第2のガスケット要素32とは、分離した別個のガスケット要素である。他の実施形態において、第1のガスケット要素31と第2のガスケット要素32とは、外縁部で接合されて一体のガスケットを形成していてもよい。そのような一体型のガスケットによれば、電解液およびガスのシール性をさらに高めることが可能になる。ガスケット30は、耐アルカリ性を有するエラストマーによって形成されていることが好ましい。ガスケット30の材料の例としては、天然ゴム(NR)、スチレンブタジエンゴム(SBR)、クロロプレンゴム(CR)、ブタジエンゴム(BR)、アクリロニトリル-ブタジエンゴム(NBR)、シリコーンゴム(SR)、エチレン-プロピレンゴム(EPT)、エチレン-プロピレン-ジエンゴム(EPDM)、フッ素ゴム(FR)、イソブチレン-イソプレンゴム(IIR)、ウレタンゴム(UR)、クロロスルホン化ポリエチレンゴム(CSM)等のエラストマーを挙げることができる。また、アルカリ耐性を有しないガスケット材料を使用する場合、該ガスケット材料の表面に耐アルカリ性を有する材料の層を被覆等により設けても良い。 As the gasket 30 (see FIG. 1), a gasket that can be used in an electrolytic cell for alkaline water electrolysis and has electrical insulation can be used without particular limitation. A cross section of the gasket 30 appears in FIG. The gasket 30 has a flat shape and sandwiches the peripheral portion of the diaphragm 40 while being sandwiched between the first flange portion 12 and the second flange portion 22 . The gasket 30 comprises a first gasket element 31 contacting the first flange portion 12 and the diaphragm 40 and a second gasket element 32 contacting the second flange portion 22 and the diaphragm 40 . In one embodiment, the first gasket element 31 and the second gasket element 32 are separate and distinct gasket elements. In other embodiments, the first gasket element 31 and the second gasket element 32 may be joined at their outer edges to form an integral gasket. Such a one-piece gasket makes it possible to further improve the electrolyte and gas sealing properties. The gasket 30 is preferably made of an elastomer having alkali resistance. Examples of materials for the gasket 30 include natural rubber (NR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), butadiene rubber (BR), acrylonitrile-butadiene rubber (NBR), silicone rubber (SR), ethylene- Elastomers such as propylene rubber (EPT), ethylene-propylene-diene rubber (EPDM), fluororubber (FR), isobutylene-isoprene rubber (IIR), urethane rubber (UR), and chlorosulfonated polyethylene rubber (CSM). can. Moreover, when using a gasket material that does not have alkali resistance, a layer of a material having alkali resistance may be provided by coating or the like on the surface of the gasket material.
 隔膜40としては、アルカリ水電解用の電解槽に使用可能なイオン透過性の隔膜を特に制限なく用いることができる。隔膜40は、ガス透過性が低く、電気伝導度が小さく、強度が高いことが望ましい。隔膜40の例としては、アスベストや変性アスベストからなる多孔質膜、ポリスルホン系ポリマーを用いた多孔質隔膜、ポリフェニレンスルファイド繊維を用いた布、フッ素系多孔質膜、無機系材料と有機系材料との両方を含むハイブリッド材料を用いた多孔質膜等の多孔質隔膜を挙げることができる。またこれらの多孔質隔膜以外にも、フッ素系等のイオン交換膜を隔膜40として用いることも可能である。 As the diaphragm 40, an ion-permeable diaphragm that can be used in an electrolytic cell for alkaline water electrolysis can be used without particular limitation. It is desirable that the diaphragm 40 have low gas permeability, low electrical conductivity, and high strength. Examples of the diaphragm 40 include a porous membrane made of asbestos or modified asbestos, a porous diaphragm using polysulfone-based polymer, a cloth using polyphenylene sulfide fiber, a fluorine-based porous membrane, an inorganic material and an organic material. A porous membrane such as a porous membrane using a hybrid material containing both of In addition to these porous diaphragms, it is also possible to use an ion-exchange membrane such as a fluorine-based membrane as the diaphragm 40 .
 陽極50としては、アルカリ水電解用の電解槽に使用可能な陽極を特に制限なく用いることができる。陽極50は通常、導電性基材と、該基材の表面を被覆する触媒層とを備える。触媒層は多孔質であることが好ましい。陽極50の導電性基材としては、例えば、ニッケル、ニッケル合金、ニッケル鉄、バナジウム、モリブデン、銅、銀、マンガン、白金族元素、黒鉛、若しくはクロム、又はそれらの組み合わせを用いることができる。陽極50においてはニッケルからなる導電性基材を好ましく用いることができる。触媒層は元素としてニッケルを含む。触媒層は、酸化ニッケル、金属ニッケル、若しくは水酸化ニッケル、又はそれらの組み合わせを含むことが好ましく、ニッケルと他の1種以上の金属との合金を含んでもよい。触媒層は金属ニッケルからなることが特に好ましい。なお、触媒層は、クロム、モリブデン、コバルト、タンタル、ジルコニウム、アルミニウム、亜鉛、白金族元素、もしくは希土類元素、またはそれらの組み合わせをさらに含んでもよい。触媒層の表面に、ロジウム、パラジウム、イリジウム、若しくはルテニウム、又はそれらの組み合わせが追加的な触媒としてさらに担持されていてもよい。陽極50の導電性基材は剛性の基材であってもよく、可撓性の基材であってもよい。陽極50を構成する剛性の導電性基材としては、例えばエキスパンドメタル、パンチドメタル等を挙げることができる。また陽極50を構成する可撓性の導電性基材としては、例えば金属ワイヤーで織った(又は編んだ)金網等を挙げることができる。 As the anode 50, any anode that can be used in an electrolytic cell for alkaline water electrolysis can be used without particular limitation. Anode 50 typically comprises a conductive substrate and a catalyst layer coating the surface of the substrate. The catalyst layer is preferably porous. The conductive substrate of anode 50 can be, for example, nickel, nickel alloys, nickel iron, vanadium, molybdenum, copper, silver, manganese, platinum group elements, graphite, or chromium, or combinations thereof. A conductive base material made of nickel can be preferably used for the anode 50 . The catalyst layer contains nickel as an element. The catalyst layer preferably comprises nickel oxide, nickel metal, or nickel hydroxide, or combinations thereof, and may comprise alloys of nickel with one or more other metals. It is particularly preferred that the catalyst layer consists of metallic nickel. The catalyst layer may further contain chromium, molybdenum, cobalt, tantalum, zirconium, aluminum, zinc, platinum group elements, rare earth elements, or combinations thereof. Rhodium, palladium, iridium, or ruthenium, or a combination thereof, may be further supported on the surface of the catalyst layer as an additional catalyst. The conductive substrate of anode 50 may be a rigid substrate or a flexible substrate. Examples of the rigid conductive base material that constitutes the anode 50 include expanded metal and punched metal. As a flexible conductive base material that constitutes the anode 50, for example, a wire mesh woven (or knitted) with metal wires can be used.
 陰極60としては、アルカリ水電解用の電解槽に使用可能な陰極を特に制限なく用いることができる。陰極60は通常、導電性基材と、該基材の表面を被覆する触媒層とを備える。陰極60の導電性基材としては、例えば、ニッケル、ニッケル合金、ステンレススチール、軟鋼、ニッケル合金、又は、ステンレススチール若しくは軟鋼の表面にニッケルめっきを施したものを好ましく採用できる。陰極60の触媒層としては、貴金属酸化物、ニッケル、コバルト、モリブデン、若しくはマンガン、若しくはそれらの酸化物、又は貴金属酸化物からなる触媒層を好ましく採用できる。陰極60を構成する導電性基材は例えば剛性の基材であってもよく、可撓性の基材であってもよい。陰極60を構成する剛性の導電性基材としては、例えばエキスパンドメタル、パンチドメタル等を挙げることができる。また陰極60を構成する可撓性の導電性基材としては、例えば金属ワイヤーで織った(又は編んだ)金網等を挙げることができる。 As the cathode 60, a cathode that can be used in an electrolytic cell for alkaline water electrolysis can be used without particular limitation. Cathode 60 typically comprises a conductive substrate and a catalyst layer coating the surface of the substrate. As the conductive base material of the cathode 60, for example, nickel, nickel alloy, stainless steel, mild steel, nickel alloy, or a nickel-plated surface of stainless steel or mild steel can be preferably used. As the catalyst layer of the cathode 60, a catalyst layer made of noble metal oxides, nickel, cobalt, molybdenum, or manganese, oxides thereof, or noble metal oxides can be preferably used. The conductive substrate that constitutes the cathode 60 may be, for example, a rigid substrate or a flexible substrate. Examples of the rigid conductive base material that constitutes the cathode 60 include expanded metal and punched metal. Moreover, as a flexible conductive base material constituting the cathode 60, for example, a wire mesh woven (or knitted) with metal wires can be used.
 電解槽100によれば、陽極室Aを画定する第1の枠体10が、第1のフランジ部12のガスケット接触面12eに露出して設けられた厚さ27μm以上、より好ましくは30μm以上の第1のニッケルめっき層14を備え、該ガスケット接触面12eの表面粗さが算術平均粗さRaとして10μm以下であることにより、陽極液および陽極室ガスのシール性の低下を抑制することが可能である。 According to the electrolytic cell 100, the first frame 10 defining the anode chamber A is exposed on the gasket contact surface 12e of the first flange portion 12 and has a thickness of 27 μm or more, more preferably 30 μm or more. The first nickel plating layer 14 is provided, and the surface roughness of the gasket contact surface 12e is 10 μm or less as an arithmetic mean roughness Ra, so that it is possible to suppress the deterioration of the sealing performance of the anolyte and the anode chamber gas. is.
 本発明に関する上記説明では、陽極50と隔膜40との間、及び、陰極60と隔膜40との間に隙間がある形態の電解槽100を例に挙げたが、本発明は当該形態に限定されない。例えば、剛性の陰極60に代えて柔軟な陰極が陰極室に備えられ、支持部材23に保持された陰極集電体と、陰極集電体と隔膜40との間に配置され陰極集電体に支持された導電性の弾性体と、該弾性体と隔膜40との間に配置された柔軟な陰極とを備え、弾性体が柔軟な陰極を隔膜40及び陽極50に向けて押し付けることにより、柔軟な陰極と隔膜40とが直接に接触するとともに、隔膜40と陽極50とが直接に接している形態の、いわゆるゼロギャップ型のアルカリ水電解槽とすることも可能である。 In the above description of the present invention, the electrolytic cell 100 having a configuration in which there are gaps between the anode 50 and the diaphragm 40 and between the cathode 60 and the diaphragm 40 is taken as an example, but the present invention is not limited to this configuration. . For example, instead of the rigid cathode 60, a flexible cathode is provided in the cathode chamber, a cathode current collector held by the support member 23, and a cathode current collector disposed between the cathode current collector and the diaphragm 40. It comprises a supported conductive elastic body and a flexible cathode disposed between the elastic body and the diaphragm 40 , the elastic body pressing the flexible cathode toward the diaphragm 40 and the anode 50 to allow the flexible A so-called zero-gap type alkaline water electrolytic cell, in which the cathode and the diaphragm 40 are in direct contact and the diaphragm 40 and the anode 50 are in direct contact, is also possible.
 本発明に関する上記説明では、第1のニッケルめっき層14が、第1のガスケット接触面12e、及び、第1の枠体10の陽極室Aに面した表面に連続して設けられている形態の電解槽100を例に挙げたが、本発明は当該形態に限定されない。例えば、第1の枠体10において、第1のガスケット接触面12eのみにニッケルめっき層が設けられている形態のアルカリ水電解槽とすることも可能である。また例えば、第1のニッケルめっき層14が第1のガスケット接触面12eに露出して設けられているとともに、第1のニッケルめっき層14と連続していない第3のニッケルめっき層が、第1の枠体10の陽極室Aに面した表面に設けられている形態のアルカリ水電解槽とすることも可能である。 In the above description of the present invention, the first nickel plating layer 14 is provided continuously on the first gasket contact surface 12e and the surface of the first frame 10 facing the anode chamber A. Although the electrolytic cell 100 is taken as an example, the present invention is not limited to this form. For example, in the first frame 10, the alkaline water electrolytic bath may have a form in which only the first gasket contact surface 12e is provided with a nickel plating layer. Further, for example, the first nickel-plated layer 14 is exposed on the first gasket contact surface 12e, and the third nickel-plated layer that is not continuous with the first nickel-plated layer 14 is provided on the first gasket contact surface 12e. It is also possible to provide an alkaline water electrolytic bath in the form of being provided on the surface of the frame 10 facing the anode chamber A.
 本発明に関する上記説明では、第2のニッケルめっき層24が、第2のガスケット接触面22e、及び、第2の枠体20の陰極室Cに面した表面に連続して設けられている形態の電解槽100を例に挙げたが、本発明は当該形態に限定されない。例えば、第2の枠体20において、第2のガスケット接触面22eのみにニッケルめっき層が設けられている形態のアルカリ水電解槽とすることも可能である。また例えば、第2のニッケルめっき層24が第2のガスケット接触面22eに露出して設けられているとともに、第2のニッケルめっき層24と連続していない第4のニッケルめっき層が、第2の枠体の陽極室Cに面した表面に設けられている形態のアルカリ水電解槽とすることも可能である。 In the above description of the present invention, the second nickel plating layer 24 is provided continuously on the second gasket contact surface 22e and the surface of the second frame 20 facing the cathode chamber C. Although the electrolytic cell 100 is taken as an example, the present invention is not limited to this form. For example, in the second frame 20, the alkaline water electrolytic bath may have a form in which only the second gasket contact surface 22e is provided with a nickel plating layer. Further, for example, the second nickel-plated layer 24 is exposed on the second gasket contact surface 22e, and the fourth nickel-plated layer that is not continuous with the second nickel-plated layer 24 is the second nickel-plated layer. It is also possible to provide an alkaline water electrolytic bath in which the surface of the frame facing the anode chamber C is provided.
 本発明に関する上記説明では、陰極室Cを画定する第2の枠体20が、第2のガスケット接触面22eに露出して設けられた第2のニッケルめっき層24を備える形態の電解槽100を例に挙げたが、本発明は当該形態に限定されない。例えば、第2の枠体20が第2のガスケット接触面22eにニッケルめっき層を備えない形態のアルカリ水電解槽とすることも可能である。 In the above description of the present invention, the electrolytic cell 100 in which the second frame 20 defining the cathode chamber C is provided with the second nickel plating layer 24 exposed on the second gasket contact surface 22e. Although given as an example, the invention is not limited to this form. For example, an alkaline water electrolytic bath in which the second frame 20 does not have a nickel plating layer on the second gasket contact surface 22e is also possible.
 本発明に関する上記説明では、第1の枠体10が、第1の隔壁11から陽極室Aに突出して設けられ、陽極50を支持する導電性の支持部材13を備える形態の電解槽100を例に挙げたが、本発明は当該形態に限定されない。例えば、支持部材13を備えない形態のアルカリ水電解槽とすることも可能である。そのようなアルカリ水電解槽の例としては、導電性の支持部材13に代えて、第1の隔壁11と陽極50との間に配置された第1の導電性の弾性体を備え、該第1の導電性の弾性体が、陽極50を背後から隔膜40に向けて押し付けている形態のアルカリ水電解槽を挙げることができる。 In the above description of the present invention, the electrolytic cell 100 in which the first frame 10 protrudes from the first partition wall 11 into the anode chamber A and includes the conductive support member 13 that supports the anode 50 is taken as an example. , the present invention is not limited to this form. For example, an alkaline water electrolytic bath without the support member 13 may be used. As an example of such an alkaline water electrolytic bath, instead of the conductive support member 13, a first conductive elastic body arranged between the first partition wall 11 and the anode 50 is provided. An alkaline water electrolytic cell in which one conductive elastic body presses the anode 50 from behind toward the diaphragm 40 can be mentioned.
 本発明に関する上記説明では、第2の枠体20が、第2の隔壁21から陰極室Cに突出して設けられ、陰極60を支持する導電性の支持部材23を備える形態の電解槽100を例に挙げたが、本発明は当該形態に限定されない。例えば、支持部材23を備えない形態のアルカリ水電解槽とすることも可能である。そのようなアルカリ水電解槽の例としては、導電性の支持部材13に代えて、第2の隔壁21と陰極60との間に配置された第2の導電性の弾性体を備え、該第2の導電性の弾性体が、陰極60を背後から隔膜40に向けて押し付けている形態のアルカリ水電解槽を挙げることができる。 In the above description of the present invention, the electrolytic cell 100 in which the second frame 20 protrudes from the second partition wall 21 into the cathode chamber C and is provided with the conductive support member 23 for supporting the cathode 60 is taken as an example. , the present invention is not limited to this form. For example, an alkaline water electrolytic bath that does not include the support member 23 may be used. As an example of such an alkaline water electrolytic bath, instead of the conductive support member 13, a second conductive elastic body disposed between the second partition wall 21 and the cathode 60 is provided. 2 conductive elastic bodies press the cathode 60 toward the diaphragm 40 from behind.
 本発明に関する上記説明では、単一のセルからなる形態の電解槽100を例に挙げたが、本発明は当該形態に限定されない。例えば、第1の枠体10によって画定される陽極室A及び第2の枠体20によって画定される陰極室Cの組によって構成された電解セルが複数直列に接続された形態の電解槽とすることも可能である。また例えば、第1の枠体10のフランジ部12は隔壁11の反対側(図1における紙面右側)にも延在して、隔壁11とともに隣接する電解セルの陰極室をさらに画定してもよく、また第2の枠体20のフランジ部22は隔壁21の反対側(図1における紙面左側)にも延在して、隔壁21とともに隣接する電解セルの陽極室をさらに画定してもよい。図4は、そのような他の一の実施形態に係るアルカリ水電解槽200(以下において「電解槽200」ということがある。)を模式的に説明する図である。図4において、図1~3に既に表れた要素には図1~3における符号と同一の符号を付し、説明を省略することがある。電解槽200は、陽極室A1及び陰極室C1からなる電解セルと、陽極室A2及び陰極室C2からなる電解セルとが直列に接続された構造を有するアルカリ水電解槽である。電解槽200は、陽極端子に接続され、陽極室A1を画定する第1の枠体10と;陰極端子に接続され、陰極室C2を画定する第2の枠体20と;第1の枠体10と第2の枠体20との間に配置された、少なくとも1つの第3の枠体210と;それぞれ複数のガスケット30、隔膜40、陽極50、及び陰極60と、を備える。隔膜40は、第1の枠体10と、これに隣接する第3の枠体210との間、第2の枠体20と、これに隣接する第3の枠体210との間、及び、第3の枠体210が複数存在する場合には隣接する2つの第3の枠体210の間に配置され、それぞれガスケット30に挟持されている。第1の枠体10と第3の枠体210とによって陽極室A1及び陰極室C1が画定され、第3の枠体210と第2の枠体20とによって陽極室A2及び陰極室C2が画定されている。陽極室A1及びA2のそれぞれに陽極50が配置され、陰極室C1及びC2のそれぞれに陰極60が配置されている。 In the above description of the present invention, the electrolytic bath 100 in the form of a single cell was taken as an example, but the present invention is not limited to this form. For example, an electrolytic cell having a configuration in which a plurality of electrolytic cells each having a set of an anode chamber A defined by the first frame 10 and a cathode chamber C defined by the second frame 20 are connected in series. is also possible. Further, for example, the flange portion 12 of the first frame 10 may also extend to the opposite side of the partition wall 11 (the right side of the paper surface in FIG. 1) to further define the cathode chamber of the adjacent electrolytic cell together with the partition wall 11. Also, the flange portion 22 of the second frame 20 may extend to the opposite side of the partition wall 21 (the left side of the paper surface in FIG. 1) to further define the anode chamber of the adjacent electrolytic cell together with the partition wall 21 . FIG. 4 is a diagram schematically illustrating an alkaline water electrolytic bath 200 (hereinafter sometimes referred to as "electrolytic bath 200") according to such another embodiment. In FIG. 4, elements that have already appeared in FIGS. 1 to 3 are denoted by the same reference numerals as those in FIGS. 1 to 3, and description thereof may be omitted. The electrolytic cell 200 is an alkaline water electrolytic cell having a structure in which an electrolytic cell consisting of an anode chamber A1 and a cathode chamber C1 and an electrolytic cell consisting of an anode chamber A2 and a cathode chamber C2 are connected in series. The electrolytic cell 200 includes a first frame 10 connected to the anode terminal and defining the anode chamber A1; a second frame 20 connected to the cathode terminal and defining the cathode chamber C2; and a first frame. at least one third frame 210 disposed between 10 and the second frame 20; and a plurality of gaskets 30, diaphragms 40, anodes 50, and cathodes 60, respectively. The diaphragm 40 is provided between the first frame 10 and the adjacent third frame 210, between the second frame 20 and the adjacent third frame 210, and When there are a plurality of third frames 210 , they are arranged between two adjacent third frames 210 and sandwiched between gaskets 30 . The first frame 10 and the third frame 210 define the anode chamber A1 and the cathode chamber C1, and the third frame 210 and the second frame 20 define the anode chamber A2 and the cathode chamber C2. It is An anode 50 is arranged in each of the anode chambers A1 and A2, and a cathode 60 is arranged in each of the cathode chambers C1 and C2.
 第1の枠体10及び第2の枠体20は、それぞれ、上記説明した電解槽100(図1)における第1の枠体10(図2)及び第2の枠体20(図4)と同一の構成を有する。第1の枠体10の隔壁11が陽極端子に接続されており、第2の枠体20の隔壁21が陰極端子に接続されている。また第1の枠体10が画定する陽極室A1において陽極50は支持部材13に保持されており、第2の枠体20が画定する陰極室C2において陰極20は支持部材23に保持されている点についても上記同様である。 The first frame 10 and the second frame 20 are respectively the first frame 10 (FIG. 2) and the second frame 20 (FIG. 4) in the electrolytic cell 100 (FIG. 1) described above. have the same configuration. The partition 11 of the first frame 10 is connected to the anode terminal, and the partition 21 of the second frame 20 is connected to the cathode terminal. The anode 50 is held by the support member 13 in the anode chamber A1 defined by the first frame 10, and the cathode 20 is held by the support member 23 in the cathode chamber C2 defined by the second frame 20. The points are the same as above.
 第3の枠体210は、第1の枠体10と第2の枠体20とが一体となった構造を有する、複極式電解エレメントである。すなわち、第3の枠体210は、導電性の隔壁211と、隔壁211の外周部から第2の枠体20側(図4の紙面左側)に延在する第1のフランジ部212と、隔壁211の外周部から第1の枠体10側(図4の紙面右側)に延在する第2のフランジ部222と、を備える。第3の枠体210において、第1のフランジ部212と第2のフランジ部222とは一体に形成されている。第3の枠体210において、隔壁211の第1の枠体10側(図4の紙面右側)には導電性の支持部材(第2の支持部材)223が隔壁211から突出して設けられている。支持部材223は陰極室C1において陰極60を保持しており、陰極室C1に配置された陰極60及び隔壁211と電気的に導通している。第3の枠体210において、隔壁211の第2の枠体20側(図4の紙面左側)には導電性の支持部材(第1の支持部材)213が隔壁211から突出して設けられている。支持部材213は陽極室A2において陽極50を保持しており、陽極室A2に配置された陽極50及び第3の枠体210の隔壁211と電気的に導通している。隔壁211、第1の支持部材213、及び第2の支持部材223の構成は、電解槽100(図1)に関連して上記説明した隔壁11、第1の支持部材13、及び第2の支持部材23と同様である。第1のフランジ部212及び第2のフランジ部222の構成は、第1のフランジ部212と第2のフランジ部222とが一体に形成されているほかは、電解槽100(図1)に関連して上記説明した第1のフランジ部12及び第2のフランジ部22とそれぞれ同様である。第3の枠体210の第1のフランジ部212は、隔壁211、隔膜40、及び第1のガスケット要素31とともに陽極室A2を画定しており、第3の枠体210の第2のフランジ部222は、隔壁211、隔膜40、及び第2のガスケット要素32とともに陰極室C1を画定している。 The third frame 210 is a bipolar electrolytic element having a structure in which the first frame 10 and the second frame 20 are integrated. That is, the third frame 210 includes a conductive partition 211, a first flange portion 212 extending from the outer peripheral portion of the partition 211 toward the second frame 20 (left side of the paper surface of FIG. 4), and a partition 211 and a second flange portion 222 extending toward the first frame 10 (right side of the paper surface of FIG. 4). In the third frame 210, the first flange portion 212 and the second flange portion 222 are integrally formed. In the third frame 210, a conductive support member (second support member) 223 is provided protruding from the partition 211 on the first frame 10 side of the partition 211 (on the right side of the paper surface of FIG. 4). . The support member 223 holds the cathode 60 in the cathode chamber C1 and is electrically connected to the cathode 60 and the partition wall 211 arranged in the cathode chamber C1. In the third frame 210, a conductive support member (first support member) 213 is provided protruding from the partition 211 on the side of the partition 211 toward the second frame 20 (on the left side of the paper surface of FIG. 4). . The support member 213 holds the anode 50 in the anode chamber A2 and is electrically connected to the anode 50 arranged in the anode chamber A2 and the partition wall 211 of the third frame 210 . The configuration of partition wall 211, first support member 213, and second support member 223 is similar to partition wall 11, first support member 13, and second support member 11, described above with respect to electrolytic cell 100 (FIG. 1). Similar to member 23 . The configuration of the first flange portion 212 and the second flange portion 222 is related to the electrolytic cell 100 (FIG. 1), except that the first flange portion 212 and the second flange portion 222 are integrally formed. It is the same as the first flange portion 12 and the second flange portion 22 described above. The first flange portion 212 of the third frame 210 defines the anode chamber A2 together with the partition wall 211, the diaphragm 40, and the first gasket element 31, and the second flange portion of the third frame 210 222 together with diaphragm 211, diaphragm 40 and second gasket element 32 define cathode chamber C1.
 図5は、図4から第3の枠体210のみを抜き出した図である。図5において、図1~4に既に表れた要素には図1~4における符号と同一の符号を付し、説明を省略することがある。第3の枠体210の第1のフランジ部212は、第1のガスケット要素31(図1参照。)と接触する、第1のガスケット接触面212eを有する。第3の枠体210は、第1のフランジ部212の第1のガスケット接触面212eに露出して設けられた、第1のニッケルめっき層214を備えている。第1のニッケルめっき層214の、第1のガスケット接触面212eにおける厚さは、陽極液および陽極室ガスのシール性の低下を抑制する観点、及び、酸素ガス活量の高いアルカリ水中での耐腐食性を長期にわたって高める観点から、27μm以上、より好ましくは30μm以上である。当該厚さの上限は特に制限されるものではないが、製造コストの観点から例えば100μm以下であり得る。 FIG. 5 is a diagram of only the third frame 210 extracted from FIG. In FIG. 5, elements that have already appeared in FIGS. 1 to 4 are denoted by the same reference numerals as those in FIGS. 1 to 4, and description thereof may be omitted. The first flange portion 212 of the third frame 210 has a first gasket contact surface 212e that contacts the first gasket element 31 (see FIG. 1). The third frame 210 has a first nickel plating layer 214 exposed on the first gasket contact surface 212 e of the first flange portion 212 . The thickness of the first nickel plating layer 214 at the first gasket contact surface 212e is determined from the viewpoint of suppressing deterioration of the sealing performance of the anolyte and the anode chamber gas, and from the viewpoint of resistance to alkaline water with high oxygen gas activity. From the viewpoint of enhancing corrosiveness over a long period of time, the thickness is 27 μm or more, more preferably 30 μm or more. Although the upper limit of the thickness is not particularly limited, it may be, for example, 100 μm or less from the viewpoint of manufacturing cost.
 陽極液および陽極室ガスのシール性の低下を抑制する観点、及び、酸素ガス活量の高いアルカリ水中での耐腐食性を長期にわたって高める観点から、第1のガスケット接触面212eの表面粗さは、JIS B0601に規定の算術平均粗さRaとして10μm以下であり、好ましくは9μm以下、又は8μm以下である。当該算術平均粗さRaの下限は特に制限されるものではないが、ガスケットの固定の安定性及び製造コストの観点からは、一の実施形態において1μm以上、又は2μm以上であり得る。一の実施形態において、当該算術平均粗さRaは、1~10μm、又は1~9μm、又は1~8μmであり得る。 From the viewpoint of suppressing the deterioration of the sealing performance of the anolyte and the anode chamber gas, and from the viewpoint of increasing the corrosion resistance in alkaline water with high oxygen gas activity over a long period of time, the surface roughness of the first gasket contact surface 212e is , the arithmetic mean roughness Ra specified in JIS B0601 is 10 μm or less, preferably 9 μm or less, or 8 μm or less. The lower limit of the arithmetic mean roughness Ra is not particularly limited, but in one embodiment, it may be 1 μm or more, or 2 μm or more from the viewpoint of gasket fixation stability and manufacturing cost. In one embodiment, the arithmetic mean roughness Ra can be 1-10 μm, or 1-9 μm, or 1-8 μm.
 陽極液および陽極室ガスのシール性の低下をさらに抑制する観点、及び、酸素ガス活量の高いアルカリ水中での耐腐食性をさらに高める観点から、第1のガスケット接触面212eの表面粗さは、JIS B0601に規定の最大高さRzとして、好ましくは40μm以下、より好ましくは35μm以下である。当該最大高さRzの下限は特に制限されるものではないが、製造コストの観点からは、一の実施形態において2μm以上、又は4μm以上、又は6μm以上、又は8μm以上であり得る。一の実施形態において、当該最大高さRzは、2~40μm、又は4~40μm、又は6~40μmであり得る。 From the viewpoint of further suppressing the deterioration of the sealability of the anolyte and the anode chamber gas, and from the viewpoint of further increasing the corrosion resistance in alkaline water with high oxygen gas activity, the surface roughness of the first gasket contact surface 212e is , the maximum height Rz specified in JIS B0601 is preferably 40 μm or less, more preferably 35 μm or less. Although the lower limit of the maximum height Rz is not particularly limited, it may be 2 μm or more, 4 μm or more, 6 μm or more, or 8 μm or more from the viewpoint of manufacturing cost in one embodiment. In one embodiment, the maximum height Rz can be 2-40 μm, or 4-40 μm, or 6-40 μm.
 電解槽200において、第1のニッケルめっき層214は、第1のガスケット接触面212e、及び、第3の枠体210の陽極室A2に面した表面に、連続して設けられている。第3の枠体210が陽極室A2の接液部にこのような厚いニッケルめっき層を備えることにより、陽極室の酸素ガス雰囲気および酸素ガス飽和アルカリ水中での耐腐食性を長期にわたる使用に十分な水準まで高めることが可能になる。陽極室の酸素ガス雰囲気および酸素ガス飽和アルカリ水中での耐腐食性をさらに高める観点からは、第3の枠体210の陽極室A2に面した表面におけるニッケルめっき層の厚さは、好ましくは27μm以上、より好ましくは30μm以上、特に好ましくは50μm以上である。第3の枠体210の陽極室A2に面した表面におけるニッケルめっき層の厚さの上限は特に制限されるものではないが、コストの観点から好ましくは例えば100μm以下であり得る。第3の枠体210の陽極室A2に面した表面におけるニッケルめっき層は、第3の枠体210の陽極室A2に面した表面の全体に設けられていてもよく、接液部のみに設けられていてもよい。 In the electrolytic cell 200, the first nickel plating layer 214 is continuously provided on the first gasket contact surface 212e and the surface of the third frame 210 facing the anode chamber A2. Since the third frame 210 has such a thick nickel plating layer on the liquid-contacting portion of the anode chamber A2, the corrosion resistance in the oxygen gas atmosphere of the anode chamber and in the oxygen gas-saturated alkaline water is sufficient for long-term use. can be raised to a higher level. From the viewpoint of further enhancing the corrosion resistance in the oxygen gas atmosphere of the anode chamber and in the oxygen gas-saturated alkaline water, the thickness of the nickel plating layer on the surface of the third frame 210 facing the anode chamber A2 is preferably 27 μm. Above, more preferably 30 μm or more, particularly preferably 50 μm or more. Although the upper limit of the thickness of the nickel plating layer on the surface of the third frame 210 facing the anode chamber A2 is not particularly limited, it is preferably 100 μm or less from the viewpoint of cost. The nickel plating layer on the surface of the third frame 210 facing the anode chamber A2 may be provided on the entire surface of the third frame 210 facing the anode chamber A2, or may be provided only on the liquid contact portion. may have been
 一の好ましい実施形態において、第3の枠体210は、少なくとも1つの鋼製の芯材210aと、該芯材210aの表面に設けられた第1のニッケルめっき層214とを含む。電解槽200において、第3の枠体210の鋼製の芯材210aは、隔壁211を構成する鋼製の芯材211aと、第1のフランジ部212及び第2のフランジ部222をそれぞれ構成する鋼製の芯材212a及び222aと、第1の支持部材213及び第2の支持部材223をそれぞれ構成する鋼製の芯材213a及び223aとを含む。第3の枠体210において、第1のフランジ部212を構成する鋼製の芯材212aと、第2のフランジ部222を構成する鋼製の芯材222aとは、一体に形成されている。第1のニッケルめっき層214は、少なくとも第1のフランジ部212のガスケット接触面212eに露出するように設けられ、さらに第1のガスケット接触面212eから連続して、芯材210aのうち陽極室A2に面した表面全体に設けられていてもよく、芯材210aの表面全体に設けられていてもよい。 In one preferred embodiment, the third frame 210 includes at least one steel core 210a and a first nickel plating layer 214 provided on the surface of the core 210a. In the electrolytic cell 200, the steel core material 210a of the third frame 210 constitutes the steel core material 211a constituting the partition wall 211, the first flange portion 212, and the second flange portion 222, respectively. It includes steel cores 212a and 222a, and steel cores 213a and 223a that form the first support member 213 and the second support member 223, respectively. In the third frame 210, the steel core 212a forming the first flange portion 212 and the steel core 222a forming the second flange portion 222 are integrally formed. The first nickel plating layer 214 is provided so as to be exposed at least on the gasket contact surface 212e of the first flange portion 212, and is continuous from the first gasket contact surface 212e to form the anode chamber A2 of the core member 210a. may be provided on the entire surface facing the core member 210a.
 第3の枠体210の第2のフランジ部222は、第2のガスケット要素32(図4参照。)と接触する、第2のガスケット接触面222eを有する。第3の枠体210は、第2のフランジ部222の第2のガスケット接触面222eに露出して設けられた、第2のニッケルめっき層224を備えている。第2のニッケルめっき層224の、第2のガスケット接触面222eにおける厚さは、陰極液および陰極室ガスのシール性の低下を抑制する観点から、好ましくは27μm以上、より好ましくは30μm以上である。当該厚さの上限は特に制限されるものではないが、製造コストの観点から例えば100μm以下であり得る。 The second flange portion 222 of the third frame 210 has a second gasket contact surface 222e that contacts the second gasket element 32 (see FIG. 4). The third frame 210 has a second nickel plating layer 224 exposed on the second gasket contact surface 222 e of the second flange portion 222 . The thickness of the second nickel plating layer 224 at the second gasket contact surface 222e is preferably 27 μm or more, more preferably 30 μm or more, from the viewpoint of suppressing deterioration of the sealing performance of the catholyte and the cathode chamber gas. . Although the upper limit of the thickness is not particularly limited, it may be, for example, 100 μm or less from the viewpoint of manufacturing cost.
 陰極液および陰極室ガスのシール性の低下を抑制する観点から、第2のガスケット接触面222eの表面粗さは、JIS B0601に規定の算術平均粗さRaとして好ましくは10μm以下であり、より好ましくは9μm以下、又は8μm以下である。当該算術平均粗さRaの下限は特に制限されるものではないが、ガスケットの固定の安定性及び製造コストの観点からは、一の実施形態において1μm以上、又は2μm以上であり得る。一の実施形態において、当該算術平均粗さRaは、1~10μm、又は1~9μm、又は1~8μmであり得る。 From the viewpoint of suppressing the deterioration of the sealing performance of the catholyte and the cathode chamber gas, the surface roughness of the second gasket contact surface 222e is preferably 10 μm or less, more preferably 10 μm or less as the arithmetic mean roughness Ra specified in JIS B0601. is 9 μm or less, or 8 μm or less. The lower limit of the arithmetic mean roughness Ra is not particularly limited, but in one embodiment, it may be 1 μm or more, or 2 μm or more from the viewpoint of gasket fixation stability and manufacturing cost. In one embodiment, the arithmetic mean roughness Ra can be 1-10 μm, or 1-9 μm, or 1-8 μm.
 陰極液および陰極室ガスのシール性の低下をさらに抑制する観点から、第2のガスケット接触面222eの表面粗さは、JIS B0601に規定の最大高さRzとして、好ましくは40μm以下、より好ましくは35μm以下である。当該最大高さRzの下限は特に制限されるものではないが、製造コストの観点からは、一の実施形態において2μm以上、又は4μm以上、又は6μm以上、又は8μm以上であり得る。一の実施形態において、当該最大高さRzは、2~40μm、又は4~40μm、又は6~40μmであり得る。 From the viewpoint of further suppressing the deterioration of the sealability of the catholyte and the cathode chamber gas, the surface roughness of the second gasket contact surface 222e is preferably 40 μm or less, more preferably 40 μm or less, more preferably 35 μm or less. Although the lower limit of the maximum height Rz is not particularly limited, it may be 2 μm or more, 4 μm or more, 6 μm or more, or 8 μm or more from the viewpoint of manufacturing cost in one embodiment. In one embodiment, the maximum height Rz can be 2-40 μm, or 4-40 μm, or 6-40 μm.
 電解槽200において、第2のニッケルめっき層224は、第2のガスケット接触面222e、及び、第3の枠体210の陰極室C1に面した表面に、連続して設けられている。第3の枠体210が陰極室C1に面した表面にもニッケルめっき層を備えることにより、陰極室のアルカリ条件下での耐腐食性を十分な水準まで高めることが可能になる。第3の枠体210の陰極室C1に面した表面において、ニッケルめっき層は、陰極室のアルカリ条件に耐えることが可能な耐腐食性をもたらす厚さを有する。その厚さは2μmもあれば十分であり、好ましくは10μm以上、より好ましくは27μm以上、一の実施形態において30μm以上であり得る。第3の枠体210の陰極室C1に面した表面におけるニッケルめっき層の厚さの上限は特に制限されるものではないが、コストの観点から好ましくは例えば100μm以下であり得る。第3の枠体210の陰極室C1に面した表面におけるニッケルめっき層は、第3の枠体210の陰極室C1に面した表面の全体に設けられていてもよく、接液部のみに設けられていてもよい。 In the electrolytic cell 200, the second nickel plating layer 224 is continuously provided on the second gasket contact surface 222e and the surface of the third frame 210 facing the cathode chamber C1. By providing a nickel plating layer also on the surface of the third frame body 210 facing the cathode chamber C1, it becomes possible to raise the corrosion resistance of the cathode chamber under alkaline conditions to a sufficient level. On the surface of the third frame 210 facing the cathode chamber C1, the nickel plating layer has a thickness that provides corrosion resistance that can withstand the alkaline conditions of the cathode chamber. A thickness of 2 μm may be sufficient, preferably 10 μm or more, more preferably 27 μm or more, and in one embodiment 30 μm or more. Although the upper limit of the thickness of the nickel plating layer on the surface of the third frame 210 facing the cathode chamber C1 is not particularly limited, it is preferably 100 μm or less from the viewpoint of cost. The nickel plating layer on the surface of the third frame 210 facing the cathode chamber C1 may be provided on the entire surface of the third frame 210 facing the cathode chamber C1, or may be provided only on the wetted portion. may have been
 一の好ましい実施形態において、第3の枠体210は、少なくとも1つの鋼製の芯材210aと、該芯材210aの表面に設けられた上記第1のニッケルめっき層214及び第2のニッケルめっき層224とを含む。電解槽200において、第3の枠体210の鋼製の芯材210aは、隔壁211を構成する鋼製の芯材211aと、第1のフランジ部212及び第2のフランジ部222をそれぞれ構成する鋼製の芯材212a及び222aと、第1の支持部材213及び第2の支持部材223をそれぞれ構成する鋼製の芯材213a及び223aとを含む。第3の枠体210において、第1のフランジ部212を構成する鋼製の芯材212aと、第2のフランジ部222を構成する鋼製の芯材222aとは、一体に形成されている。第2のニッケルめっき層224は、少なくとも第2のフランジ部222のガスケット接触面222eに露出するように設けられ、さらに第2のガスケット接触面222eから連続して、芯材210aのうち陰極室C1に面した表面全体に設けられていてもよく、芯材210aの表面全体に設けられていてもよい。 In one preferred embodiment, the third frame body 210 includes at least one steel core material 210a, and the first nickel plating layer 214 and the second nickel plating layer provided on the surface of the core material 210a. and layer 224 . In the electrolytic cell 200, the steel core material 210a of the third frame 210 constitutes the steel core material 211a constituting the partition wall 211, the first flange portion 212, and the second flange portion 222, respectively. It includes steel cores 212a and 222a, and steel cores 213a and 223a that form the first support member 213 and the second support member 223, respectively. In the third frame 210, the steel core 212a forming the first flange portion 212 and the steel core 222a forming the second flange portion 222 are integrally formed. The second nickel plating layer 224 is provided so as to be exposed at least on the gasket contact surface 222e of the second flange portion 222, and further continuously from the second gasket contact surface 222e, the cathode chamber C1 of the core member 210a. may be provided on the entire surface facing the core member 210a.
 一の実施形態において、このような第3の枠体210は、隔壁211を構成する鋼製の芯材211a及び第1のフランジ部212を構成する鋼製の芯材212a、並びに任意的に、第2のフランジ部222を構成する鋼製の芯材222aにニッケルめっきを施すことにより製造することができる。隔壁211を構成する鋼製の芯材211aとフランジ部212、222を構成する鋼製の芯材212a、222aとを含む一体の芯材にニッケルめっきを施してもよく、隔壁211を構成する鋼製の芯材211a、第1のフランジ部212を構成する鋼製の芯材212a、及び第2のフランジ部222を構成する鋼製の芯材222aにそれぞれ別個にニッケルめっきを施してから両者を接合してもよい。また第3の枠体210が支持部材213、223を備える場合、隔壁211を構成する鋼製の芯材211aと支持部材213、223を構成する鋼製の芯材213a、223aとを含み、任意的にフランジ部212、222を構成する鋼製の芯材212a、222aをさらに含む一体の芯材にニッケルめっきを施してもよく、支持部材213、223を構成する鋼製の芯材213a、223aに別個にニッケルめっきを施してから、芯材213aとニッケルめっき層とを備える第1の支持部材213及び芯材223aとニッケルめっき層とを備える第2の支持部材223をそれぞれ隔壁211に接合してもよい。 In one embodiment, such a third frame 210 includes a steel core 211a forming the partition wall 211 and a steel core 212a forming the first flange portion 212, and optionally, It can be manufactured by nickel-plating the steel core material 222 a that constitutes the second flange portion 222 . An integral core material including a steel core 211a forming the partition 211 and steel cores 212a and 222a forming the flanges 212 and 222 may be plated with nickel. The core material 211a made of steel, the steel core material 212a constituting the first flange part 212, and the steel core material 222a constituting the second flange part 222 are individually plated with nickel, and then the two are joined together. May be joined. Further, when the third frame 210 includes the support members 213 and 223, the steel core members 211a and 213a and 223a that form the partition wall 211 and the support members 213 and 223 are included. Nickel plating may be applied to the integrated core material further including the steel core materials 212a and 222a that form the flange portions 212 and 222, and the steel core materials 213a and 223a that form the support members 213 and 223. are separately plated with nickel, and then the first support member 213 including the core material 213a and the nickel plating layer and the second support member 223 including the core material 223a and the nickel plating layer are respectively joined to the partition wall 211. may
 なお図4~5には示していないが、第3の枠体210において、フランジ部212、222は、陽極室A2に陽極液を供給する陽極液供給流路(不図示)と、陽極液A2から陽極液および陽極で発生したガスを回収する陽極液回収流路(不図示)と、陰極室C1に陰極液を供給する陰極液供給流路(不図示)と、陰極室C1から陰極液および陰極で発生したガスを回収する陰極液回収流路(不図示)とを備えている。電解槽200において、第3の枠体210に設けられた陽極液供給流路および陽極液回収流路は、ガスケット30及び隔膜40にそれぞれ設けられた貫通孔(不図示)を通じて、第1の枠体10に設けられた陽極液供給流路および陽極液回収流路とそれぞれ流体連通している。また第3の枠体210に設けられた陰極液供給流路および陰極液回収流路は、ガスケット30及び隔膜40にそれぞれ設けられた貫通孔(不図示)を通じて、第2の枠体20に設けられた陰極液供給流路および陰極液回収流路とそれぞれ流体連通している。ただし、陽極液供給流路および陽極液回収流路と陰極室C1、C2とは流体連通しておらず、両者の間に電解液およびガスの流れはない。また陰極液供給流路および陰極液回収流路と陽極室A1、A2とは流体連通しておらず、両者の間に電解液およびガスの流れはない。フランジ部212、222が鋼製の芯材212a、222aを備える場合、フランジ部212、222に備えられる陽極液供給流路および陽極液回収流路の内表面にもニッケルめっき層214が設けられることが好ましく、フランジ部212、222に備えられる陰極液供給流路および陰極液回収流路の内表面にもニッケルめっき層224が設けられることが好ましい。該ニッケルめっき層214は、フランジ部212、222に備えられる陽極液供給流路および陽極液回収流路の内表面の少なくとも接液部に設けられることが好ましく、当該内表面の全体に設けられていてもよい。またニッケルめっき層224は、フランジ部212、222に備えられる陰極液供給流路および陰極液回収流路の内表面の少なくとも接液部に設けられることが好ましく、当該内表面の全体に設けられていてもよい。第3の枠体210において、第1のニッケルめっき層214と第2のニッケルめっき層224とは、連続した一体のニッケルめっき層であってもよい。例えば、第1のニッケルめっき層214と第2のニッケルめっき層224とは、第1のフランジ部212及び第2のフランジ部222に設けられた陽極液供給流路および陽極液回収流路ならびに陰極液供給流路および陰極液回収流路の内表面を通じて、一体の連続したニッケルめっき層を形成していてもよい。また例えば、第1のニッケルめっき層214と第2のニッケルめっき層224とは、フランジ部212、222の外周面を通じて、一体の連続したニッケルめっき層を形成していてもよい。 Although not shown in FIGS. 4 and 5, in the third frame 210, the flanges 212 and 222 form an anode liquid supply channel (not shown) that supplies the anode liquid to the anode chamber A2 and an anode liquid supply channel (not shown). an anolyte recovery channel (not shown) for recovering the anolyte and the gas generated at the anode from the cathode chamber C1; a catholyte supply channel (not shown) for supplying the catholyte to the cathode chamber C1; A catholyte recovery channel (not shown) for recovering gas generated at the cathode is provided. In the electrolytic cell 200, the anolyte supply channel and the anolyte recovery channel provided in the third frame 210 are connected to the first frame through through holes (not shown) provided in the gasket 30 and the diaphragm 40, respectively. It is in fluid communication with an anolyte supply channel and an anolyte recovery channel provided in the body 10, respectively. The catholyte supply channel and the catholyte recovery channel provided in the third frame 210 are provided in the second frame 20 through through holes (not shown) provided in the gasket 30 and the diaphragm 40, respectively. are in fluid communication with the catholyte supply and return channels, respectively. However, the anolyte supply channel and the anolyte recovery channel are not in fluid communication with the cathode chambers C1 and C2, and no electrolyte or gas flows between them. Also, the catholyte supply channel and the catholyte recovery channel are not in fluid communication with the anode chambers A1 and A2, and there is no electrolyte or gas flow between them. When the flanges 212 and 222 have steel cores 212a and 222a, the nickel plating layer 214 is also provided on the inner surfaces of the anolyte supply channel and the anolyte recovery channel provided in the flanges 212 and 222. Preferably, the nickel plating layer 224 is also provided on the inner surfaces of the catholyte supply channel and the catholyte recovery channel provided in the flange portions 212 and 222 . The nickel plating layer 214 is preferably provided on at least the liquid-contacting portions of the inner surfaces of the anolyte supply channel and the anolyte recovery channel provided in the flange portions 212 and 222, and is provided on the entire inner surfaces. may The nickel plating layer 224 is preferably provided at least on the liquid-contacting portions of the inner surfaces of the catholyte supply channel and the catholyte recovery channel provided in the flange portions 212 and 222, and is provided on the entire inner surfaces. may In the third frame 210, the first nickel plating layer 214 and the second nickel plating layer 224 may be a continuous nickel plating layer. For example, the first nickel-plated layer 214 and the second nickel-plated layer 224 form the anolyte supply channel and the anolyte recovery channel provided in the first flange portion 212 and the second flange portion 222 and the cathode. An integral continuous nickel plating layer may be formed through the inner surfaces of the liquid supply channel and the catholyte recovery channel. Further, for example, the first nickel plating layer 214 and the second nickel plating layer 224 may form an integral continuous nickel plating layer through the outer peripheral surfaces of the flange portions 212 and 222 .
 電解槽200によれば、陽極室A1を画定する第1の枠体10が、第1のフランジ部12のガスケット接触面12eに露出して設けられた厚さ27μm以上、より好ましくは30μm以上の第1のニッケルめっき層14を備え、該ガスケット接触面12eの表面粗さが算術平均粗さRaとして10μm以下であるとともに、陽極室A2を画定する第3の枠体10が、第1のフランジ部212のガスケット接触面212eに露出して設けられた厚さ27μm以上、より好ましくは30μm以上の第1のニッケルめっき層214を備え、該ガスケット接触面212eの表面粗さが算術平均粗さRaとして10μm以下であることにより、陽極液および陽極室ガスのシール性の低下を抑制することが可能である。 According to the electrolytic cell 200, the first frame 10 that defines the anode chamber A1 is exposed on the gasket contact surface 12e of the first flange portion 12 and has a thickness of 27 μm or more, more preferably 30 μm or more. The third frame 10, which includes the first nickel plating layer 14, the surface roughness of the gasket contact surface 12e is 10 μm or less as an arithmetic mean roughness Ra, and the third frame 10 defining the anode chamber A2 is provided with the first flange. A first nickel plating layer 214 having a thickness of 27 μm or more, more preferably 30 μm or more, is provided exposed on the gasket contact surface 212e of the portion 212, and the surface roughness of the gasket contact surface 212e is the arithmetic mean roughness Ra is 10 μm or less, it is possible to suppress the deterioration of the sealing performance of the anode liquid and the anode chamber gas.
 以下、実施例及び比較例に基づき、本発明についてさらに具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。 The present invention will be described more specifically below based on examples and comparative examples. However, the present invention is not limited to these examples.
 (測定方法)
 以下の実施例および比較例において、めっき層厚みの測定は、電磁膜厚計(株式会社ケツト科学研究所製、LE-373)を用いて行った。表面粗さの測定は、表面粗さ形状測定器(東京精密製、サーフコム480A)を用いて行った。
(Measuring method)
In the following examples and comparative examples, the thickness of the plating layer was measured using an electromagnetic film thickness meter (LE-373, manufactured by Kett Scientific Laboratory Co., Ltd.). The surface roughness was measured using a surface roughness profiler (Surfcom 480A, manufactured by Tokyo Seimitsu Co., Ltd.).
 (サンプルの作製)
 ニッケルめっき対象物として、溶接構造用圧延鋼材(SM400B)製の鋼板(縦30mm×横50mm×厚さ10mm)のエッジ部に面取りを施したものを用いた。ガスケットを挟み込むために必要なボルト穴として、直径5mmの穴を四隅に設けた。めっき後の表面粗さが変わるように鋼板の表面粗さを意図的に調整した鋼板サンプルを複数種類、各種類について複数枚、作製した。表面粗さの異なる鋼板サンプルは、研磨材として褐色アルミナ(2000~4000番)を用いたショットブラスト加工により作製した。ショットブラスト加工における表面粗さの調整は、研磨剤の番手およびショット時間を調整することにより行った。無電解ニッケルめっき又は電気ニッケルめっきにより、各鋼板サンプルにニッケルめっきを施して、めっき厚みおよび表面粗さの異なるニッケルめっき鋼板サンプルを作製した。
(Preparation of sample)
A steel plate (30 mm long×50 mm wide×10 mm thick) made of rolled steel for welded structures (SM400B) whose edges were chamfered was used as the nickel-plated object. Holes with a diameter of 5 mm were provided at the four corners as bolt holes necessary for sandwiching the gasket. A plurality of types of steel sheet samples were prepared by intentionally adjusting the surface roughness of the steel sheet so that the surface roughness after plating was changed, and a plurality of sheets for each type were prepared. Steel plate samples with different surface roughness were produced by shot blasting using brown alumina (No. 2000 to No. 4000) as an abrasive. The surface roughness in the shot blasting was adjusted by adjusting the grade of the abrasive and the shot time. Each steel plate sample was nickel-plated by electroless nickel plating or electric nickel plating to prepare nickel-plated steel plate samples having different plating thicknesses and surface roughnesses.
 無電解めっき処理は、一般的な無電解ニッケルめっきの処理手順に沿って行った。鋼板サンプルをアセトン溶液に浸漬し、10分間超音波脱脂した。その後、純水洗浄を行い、10%希塩酸中に5分間浸漬することにより酸洗浄を行った。鋼板を純水洗浄した後、無電解ニッケル-リンめっき液(中リンタイプ、奥野製薬工業社製「トップニコロン」(登録商標)))に浸漬した。めっき液の温度は90℃に維持した。鋼板をめっき液に浸漬している間、めっき液を緩やかに攪拌した。めっき浴組成の変化を抑えるため、めっき液は適宜入れ替えを実施した。めっき膜厚は、鋼板のめっき液への浸漬時間を変更することにより調整した。鋼板をめっき液から引き上げた後、純水洗浄、乾燥を行い、無電解ニッケルめっきされた試験片を得た。得られた試験片のめっき厚および表面粗さ(算術平均粗さRa及び最大高さRz)を測定した。  The electroless plating treatment was performed according to the general electroless nickel plating treatment procedure. A steel plate sample was immersed in an acetone solution and ultrasonically degreased for 10 minutes. After that, it was washed with pure water and then immersed in 10% dilute hydrochloric acid for 5 minutes for acid washing. After washing the steel sheet with pure water, it was immersed in an electroless nickel-phosphorus plating solution (medium phosphorus type, "Top Nicolon" (registered trademark) manufactured by Okuno Chemical Industry Co., Ltd.). The temperature of the plating solution was maintained at 90°C. The plating solution was gently stirred while the steel plate was immersed in the plating solution. In order to suppress changes in the composition of the plating bath, the plating solution was replaced as appropriate. The plating film thickness was adjusted by changing the immersion time of the steel sheet in the plating solution. After the steel sheet was pulled out of the plating solution, it was washed with pure water and dried to obtain an electroless nickel-plated test piece. The plating thickness and surface roughness (arithmetic mean roughness Ra and maximum height Rz) of the obtained test piece were measured.
 電気めっき処理は、一般的な電気ニッケルめっきの処理手順に沿って行った。鋼板サンプルをアセトン溶液に浸漬し、10分間超音波脱脂した。その後、純水洗浄を行い、10%希塩酸中に5分間浸漬することにより酸洗浄を行った。鋼板を純水洗浄した後、電気ニッケルめっき浴液(ワット浴、硫酸ニッケル280g/L、塩化ニッケル45g/L、ホウ酸35g/L)中に浸漬し、電析電流密度を10A/dmにてニッケルめっき層を電析させた。めっき処理中、めっき浴液の温度は45℃に維持し、めっき液を緩やかに攪拌した。めっき浴組成の変化を抑えるため、めっき液は適宜入れ替えを実施した。所定のめっき膜厚が得られるまでニッケルめっき層を電析させた後、鋼板をめっき浴から引き上げ、純水洗浄および乾燥を行い、電気ニッケルめっきされた試験片を得た。得られた試験片のめっき厚および表面粗さ(算術平均粗さRa及び最大高さRz)を測定した。 The electroplating treatment was performed in accordance with a general procedure for nickel electroplating. A steel plate sample was immersed in an acetone solution and ultrasonically degreased for 10 minutes. After that, it was washed with pure water and then immersed in 10% dilute hydrochloric acid for 5 minutes for acid washing. After washing the steel sheet with pure water, it was immersed in an electrolytic nickel plating bath solution (Watt bath, nickel sulfate 280 g/L, nickel chloride 45 g/L, boric acid 35 g/L) to an electrodeposition current density of 10 A/ dm2. A nickel plating layer was electrodeposited. During the plating process, the temperature of the plating bath solution was maintained at 45° C. and the plating solution was gently stirred. In order to suppress changes in the composition of the plating bath, the plating solution was replaced as appropriate. After a nickel plating layer was electrodeposited until a predetermined plating film thickness was obtained, the steel sheet was pulled out of the plating bath, washed with pure water and dried to obtain an electro-nickel-plated test piece. The plating thickness and surface roughness (arithmetic mean roughness Ra and maximum height Rz) of the obtained test piece were measured.
 無電解ニッケルめっき又は電気ニッケルめっきを施した、同一の表面粗さを有する試験片2枚で、平板状ガスケット(EPDM製、縦30mm×横50mm×厚さ3mm)を挟み込み、アルカリ水電解槽の実機相当のプレス面圧(1.5kgf/cm)で締め付け固定することにより、浸漬用サンプルを作製した。 A flat gasket (made of EPDM, 30 mm long x 50 mm wide x 3 mm thick) was sandwiched between two test pieces that had the same surface roughness and were electroless nickel plated or electronic nickel plated. A sample for immersion was produced by tightening and fixing with a press surface pressure (1.5 kgf/cm 2 ) equivalent to that of an actual machine.
 <実施例1~5及び比較例1~5>
 (アルカリ浸漬-塩水噴霧試験(1))
 各浸漬用サンプルのめっき前後の性状を表1~2に示す。各浸漬用サンプルを、アルカリ液(30質量%水酸化カリウム水溶液、100℃)中に240時間浸漬した。これはアルカリ水電解槽における通常の電解液よりも、金属腐食について厳しい条件である。浸漬用サンプルをアルカリ液から引き上げた後、解体し、水洗および乾燥した。試験片がガスケットと接していた面(試験対象面)について、JIS Z2371に準拠して、中性塩化ナトリウム水溶液を用いた塩水噴霧試験を行い、塩水噴霧から72時間経過後の試験対象面の表面状態を観察し、1~3の評点で評価した。評価の基準は次の通りである。
3:赤錆の発生が全く観察されず、変色も観察されなかった
2:赤錆の発生は観察されなかったが、変色が観察された
1:広い表面で赤錆および変色の両方が観察された
結果を表1~2に示す。
<Examples 1 to 5 and Comparative Examples 1 to 5>
(Alkaline immersion-salt spray test (1))
Tables 1 and 2 show the properties of each immersion sample before and after plating. Each immersion sample was immersed in an alkaline solution (30% by mass aqueous potassium hydroxide solution, 100° C.) for 240 hours. This is a more severe condition for metal corrosion than normal electrolytes in alkaline water electrolysers. After the sample for immersion was pulled out of the alkaline solution, it was disassembled, washed with water and dried. The surface where the test piece was in contact with the gasket (surface to be tested) was subjected to a salt spray test using a neutral sodium chloride aqueous solution in accordance with JIS Z2371. The condition was observed and evaluated on a scale of 1-3. The evaluation criteria are as follows.
3: No red rust was observed and no discoloration was observed. 2: No red rust was observed, but discoloration was observed. 1: Both red rust and discoloration were observed on a wide surface. Shown in Tables 1-2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記のアルカリ浸漬-塩水噴霧試験においては、試験対象面においてニッケルめっきが劣化している箇所が存在すると、評点が悪化する。そして、試験片がガスケットとともに締結されてアルカリ液に浸漬された際に、試験片とガスケットとの間のシール性が悪いほど、試験片とガスケットとの間で広い範囲に多量のアルカリ液が浸入するため、試験対象面のニッケルめっきが広範囲にわたって劣化しやすい。ニッケルめっきが劣化すると、その劣化した箇所にさらにアルカリ液が浸入するため、シール性がさらに悪化する悪循環となる。実施例1~5の試験片は、いずれも、アルカリ浸漬-塩水噴霧試験において良好な成績を示した。
 めっき後鋼板の表面粗さが算術平均粗さRaとして10μmを超えていた比較例1~5の試験片は、めっき厚が27μm以上であったにも関わらず、アルカリ浸漬-塩水噴霧試験において劣った結果を示した。
In the above alkali immersion-salt water spray test, if there is a portion where the nickel plating is deteriorated on the test surface, the score will be worse. Then, when the test piece is fastened together with the gasket and immersed in the alkaline solution, the worse the sealing performance between the test piece and the gasket, the larger the amount of alkaline solution that penetrates into the wide area between the test piece and the gasket. Therefore, the nickel plating on the surface to be tested tends to deteriorate over a wide area. If the nickel plating deteriorates, the alkaline solution will further enter the deteriorated portion, resulting in a vicious cycle of further deterioration of the sealing performance. All of the test pieces of Examples 1 to 5 showed good results in the alkali immersion-salt water spray test.
The test pieces of Comparative Examples 1 to 5, in which the surface roughness of the plated steel sheet exceeded 10 μm as an arithmetic mean roughness Ra, were inferior in the alkali immersion-salt water spray test even though the plating thickness was 27 μm or more. showed the results.
 <実施例6及び比較例6~7>
 (アルカリ浸漬-塩水噴霧試験(2))
 各浸漬用サンプルのめっき前後の性状を表3に示す。各浸漬用サンプルを、アルカリ液(48質量%水酸化カリウム水溶液、120℃)中に2000時間浸漬した。これは実施例1~5及び比較例1~5における条件よりも、金属腐食についてさらに厳しい条件である。浸漬用サンプルをアルカリ液から引き上げた後、解体し、水洗および乾燥した。試験片がガスケットと接していた面(試験対象面)について、上記同様に塩水噴霧試験を行い、72時間経過後の試験対象面の表面状態を評価した。結果を表3に示す。
<Example 6 and Comparative Examples 6-7>
(Alkaline immersion-salt spray test (2))
Table 3 shows the properties of each immersion sample before and after plating. Each immersion sample was immersed in an alkaline solution (48% by mass potassium hydroxide aqueous solution, 120° C.) for 2000 hours. This is a more severe condition for metal corrosion than the conditions in Examples 1-5 and Comparative Examples 1-5. After the sample for immersion was pulled out of the alkaline solution, it was disassembled, washed with water and dried. The surface of the test piece in contact with the gasket (surface to be tested) was subjected to the same salt spray test as described above, and the surface condition of the surface to be tested was evaluated after 72 hours. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例6及び比較例6~7に対して行われたアルカリ浸漬-塩水噴霧試験においても同様に、試験対象面においてニッケルめっきが劣化している箇所が存在すると、評点が悪化する。そして、試験片がガスケットとともに締結されてアルカリ液に浸漬された際に、試験片とガスケットとの間のシール性が悪いほど、試験片とガスケットとの間で広い範囲に多量のアルカリ液が浸入するため、試験対象面のニッケルめっきが広範囲にわたって劣化しやすい。ニッケルめっきが劣化すると、その劣化した箇所にさらにアルカリ液が浸入するため、シール性がさらに悪化する悪循環となる。本試験においては実施例1~5、比較例1~5の試験と比較してアルカリ液の腐食性が高く、さらにアルカリ浸漬の時間も長いため、この悪循環がより進行しやすい。しかしながら実施例6の試験片は、アルカリ浸漬-塩水噴霧試験において良好な成績を示した。
 めっき厚が27μm未満であった比較例6~7の試験片は、めっき後鋼板の表面粗さが算術平均粗さRaとして10μm以下であったにも関わらず、アルカリ浸漬-塩水噴霧試験において劣った結果を示した。
Similarly, in the alkali immersion-salt water spray test conducted for Example 6 and Comparative Examples 6 and 7, if there is a portion where the nickel plating is deteriorated on the test object surface, the score deteriorates. Then, when the test piece is fastened together with the gasket and immersed in the alkaline solution, the worse the sealing performance between the test piece and the gasket, the larger the amount of alkaline solution that penetrates into the wide area between the test piece and the gasket. Therefore, the nickel plating on the surface to be tested tends to deteriorate over a wide area. If the nickel plating deteriorates, the alkaline solution will further enter the deteriorated portion, resulting in a vicious cycle of further deterioration of the sealing performance. In this test, the corrosiveness of the alkaline solution is higher than in the tests of Examples 1 to 5 and Comparative Examples 1 to 5, and the alkaline immersion time is longer, so this vicious circle is more likely to progress. However, the specimen of Example 6 performed well in the alkaline immersion-salt spray test.
The test pieces of Comparative Examples 6 and 7, which had a plating thickness of less than 27 μm, were inferior in the alkali immersion-salt water spray test even though the surface roughness of the steel plate after plating was 10 μm or less as an arithmetic mean roughness Ra. showed the results.
 以上の結果から、本発明のアルカリ水電解槽によれば、金属腐食について条件の厳しい陽極室側においても、陽極液および陽極室ガスのシール性の低下を抑制することが可能であると考えられる。また、金属腐食について厳しい条件下においても、フランジ部のガスケット接触面におけるニッケルめっきの長寿命化が可能になると考えられる。 From the above results, it is considered that the alkaline water electrolytic cell of the present invention can suppress the deterioration of the sealing performance between the anolyte and the anode chamber gas even on the anode chamber side, where conditions for metal corrosion are severe. . In addition, it is thought that it is possible to extend the life of the nickel plating on the gasket contact surface of the flange even under severe conditions for metal corrosion.
10 第1の枠体
20 第2の枠体
210 第3の枠体
10a、20a、210a (鋼製の)芯材
14、214 第1のニッケルめっき層
24、224 第2のニッケルめっき層
11、21、211 (導電性の)隔壁
12、212 第1のフランジ部
22、222 第2のフランジ部
13、213、23、223 (導電性の)支持部材
30 ガスケット
31 第1のガスケット要素
32 第2のガスケット要素
40 (イオン透過性の)隔膜
50 陽極
60 陰極
100、200 電解槽
A、A1、A2 陽極室
C、C1、C2 陰極室
10 first frame 20 second frame 210 third frame 10a, 20a, 210a (made of steel) core material 14, 214 first nickel plating layer 24, 224 second nickel plating layer 11, 21, 211 (conductive) partition 12, 212 first flange portion 22, 222 second flange portion 13, 213, 23, 223 (conductive) support member 30 gasket 31 first gasket element 32 second gasket element 40 (ion-permeable) diaphragm 50 anode 60 cathode 100, 200 electrolytic cell A, A1, A2 anode chamber C, C1, C2 cathode chamber

Claims (14)

  1.  導電性の第1の隔壁と、該第1の隔壁の外周部に設けられた第1のフランジ部とを備え、陽極室を画定する、第1の枠体と、
     導電性の第2の隔壁と、該第2の隔壁の外周部に設けられた第2のフランジ部とを備え、陰極室を画定する、第2の枠体と、
     前記第1の枠体と前記第2の枠体との間に配置され、前記陽極室と前記陰極室とを区画する、イオン透過性の隔膜と、
     前記第1の枠体の第1のフランジ部と、前記第2の枠体の第2のフランジ部との間に挟持され、前記隔膜を保持する、ガスケットと、
     前記陽極室内に配置され、前記第1の隔壁と電気的に接続された、陽極と、
     前記陰極室内に配置され、前記第2の隔壁と電気的に接続された、陰極と、
    を備え、
     前記ガスケットは、
      前記第1のフランジ部および前記隔膜に接触する、第1のガスケット要素と、
      前記第2のフランジ部および前記隔膜に接触する、第2のガスケット要素と
    を備え、
     前記第1のフランジ部は、前記第1のガスケット要素と接触する、第1のガスケット接触面を備え、
     前記第1の枠体は、前記第1のフランジ部の前記第1のガスケット接触面に露出して設けられた、厚さ27μm以上の第1のニッケルめっき層を備え、
     前記第1のガスケット接触面の表面粗さが、算術平均粗さRaとして10μm以下である、アルカリ水電解槽。
    a first frame comprising a conductive first partition and a first flange portion provided on the outer peripheral portion of the first partition and defining an anode chamber;
    a second frame comprising a conductive second partition and a second flange portion provided on the outer peripheral portion of the second partition and defining a cathode chamber;
    an ion-permeable diaphragm disposed between the first frame and the second frame to separate the anode chamber and the cathode chamber;
    a gasket sandwiched between a first flange portion of the first frame and a second flange portion of the second frame to hold the diaphragm;
    an anode disposed in the anode chamber and electrically connected to the first partition;
    a cathode disposed in the cathode chamber and electrically connected to the second partition;
    with
    The gasket is
    a first gasket element contacting the first flange portion and the diaphragm;
    a second gasket element contacting the second flange and the diaphragm;
    the first flange portion comprises a first gasket contact surface in contact with the first gasket element;
    The first frame includes a first nickel-plated layer having a thickness of 27 μm or more, which is exposed on the first gasket contact surface of the first flange,
    The alkaline water electrolytic bath, wherein the surface roughness of the first gasket contact surface is 10 µm or less as an arithmetic mean roughness Ra.
  2.  前記第1のガスケット接触面の表面粗さが、最大高さRzとして40μm以下である、請求項1に記載のアルカリ水電解槽。 The alkaline water electrolytic cell according to claim 1, wherein the surface roughness of the first gasket contact surface is 40 µm or less as the maximum height Rz.
  3.  前記第1のニッケルめっき層が、無電解ニッケルめっき層である、請求項1又は2に記載のアルカリ水電解槽。 The alkaline water electrolytic bath according to claim 1 or 2, wherein the first nickel plating layer is an electroless nickel plating layer.
  4.  前記第1の枠体が、
      少なくとも1つの鋼製の第1の芯材と、
      前記第1の芯材の表面に設けられた前記第1のニッケルめっき層と
    を含む、請求項1又は2に記載のアルカリ水電解槽。
    The first frame is
    at least one steel first core;
    3. The alkaline water electrolytic cell according to claim 1, further comprising said first nickel plating layer provided on the surface of said first core material.
  5.  前記第1のニッケルめっき層が、前記第1のガスケット接触面、及び、前記第1の枠体の前記陽極室に面した表面に、連続して設けられている、請求項1又は2に記載のアルカリ水電解槽。 3. The first nickel plating layer according to claim 1, wherein the first nickel plating layer is continuously provided on the first gasket contact surface and the surface of the first frame facing the anode chamber. alkaline water electrolyzer.
  6.  前記第1のニッケルめっき層の厚みが、30~100μmである、請求項1又は2に記載のアルカリ水電解槽。 The alkaline water electrolytic cell according to claim 1 or 2, wherein the thickness of the first nickel plating layer is 30 to 100 µm.
  7.  前記第1の枠体は、
      前記第1の隔壁から前記陽極室に突出して設けられ、前記陽極を支持する、導電性の支持部材
    をさらに備える、請求項1又は2に記載のアルカリ水電解槽。
    The first frame is
    3. The alkaline water electrolytic cell according to claim 1, further comprising a conductive support member protruding from said first partition into said anode chamber and supporting said anode.
  8.  前記第2のフランジ部は、前記第2のガスケット要素と接触する、第2のガスケット接触面を備え、
     前記第2の枠体は、前記第2のフランジ部の前記第2のガスケット接触面に露出して設けられた、厚さ27μm以上の第2のニッケルめっき層を備え、
     前記第2のガスケット接触面の表面粗さが、算術平均粗さRaとして10μm以下である、請求項1又は2に記載のアルカリ水電解槽。
    the second flange portion comprises a second gasket contact surface in contact with the second gasket element;
    The second frame includes a second nickel-plated layer having a thickness of 27 μm or more, which is exposed on the second gasket contact surface of the second flange,
    3. The alkaline water electrolytic cell according to claim 1, wherein the surface roughness of said second gasket contact surface is 10 [mu]m or less as an arithmetic mean roughness Ra.
  9.  前記第2のガスケット接触面の表面粗さが、最大高さRzとして40μm以下である、請求項8に記載のアルカリ水電解槽。 The alkaline water electrolytic cell according to claim 8, wherein the second gasket contact surface has a surface roughness of 40 µm or less as a maximum height Rz.
  10.  前記第2のニッケルめっき層が、無電解ニッケルめっき層である、請求項8に記載のアルカリ水電解槽。 The alkaline water electrolytic bath according to claim 8, wherein the second nickel plating layer is an electroless nickel plating layer.
  11.  前記第2の枠体が、
      少なくとも1つの鋼製の第2の芯材と、
      前記第2の芯材の表面に設けられた前記第2のニッケルめっき層と
    を含む、請求項8に記載のアルカリ水電解槽。
    The second frame is
    at least one steel second core;
    9. The alkaline water electrolytic cell according to claim 8, further comprising said second nickel plating layer provided on the surface of said second core material.
  12.  前記第2のニッケルめっき層が、前記第2のガスケット接触面、及び、前記第2の枠体の前記陰極室に面した表面に、連続して設けられている、請求項8に記載のアルカリ水電解槽。 9. The alkali according to claim 8, wherein the second nickel plating layer is continuously provided on the second gasket contact surface and the surface of the second frame facing the cathode chamber. Water electrolyzer.
  13.  前記第2のニッケルめっき層の厚みが、50~100μmである、請求項8に記載のアルカリ水電解槽。 The alkaline water electrolytic cell according to claim 8, wherein the second nickel plating layer has a thickness of 50 to 100 µm.
  14.  前記第2の枠体は、
      前記第2の隔壁から前記陰極室に突出して設けられ、前記陰極を支持する、導電性の支持部材
    をさらに備える、請求項1又は2に記載のアルカリ水電解槽。
    The second frame is
    3. The alkaline water electrolytic cell according to claim 1, further comprising a conductive support member protruding from said second partition into said cathode chamber and supporting said cathode.
PCT/JP2022/036409 2021-10-01 2022-09-29 Electrolytic cell WO2023054576A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280065689.9A CN118043498A (en) 2021-10-01 2022-09-29 Electrolytic cell
KR1020247004525A KR20240063863A (en) 2021-10-01 2022-09-29 electrolyzer
JP2023551839A JP7496480B2 (en) 2021-10-01 2022-09-29 Electrolyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021162867 2021-10-01
JP2021-162867 2021-10-01

Publications (1)

Publication Number Publication Date
WO2023054576A1 true WO2023054576A1 (en) 2023-04-06

Family

ID=85782869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036409 WO2023054576A1 (en) 2021-10-01 2022-09-29 Electrolytic cell

Country Status (4)

Country Link
KR (1) KR20240063863A (en)
CN (1) CN118043498A (en)
TW (1) TW202321514A (en)
WO (1) WO2023054576A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959890A (en) * 1982-09-30 1984-04-05 Chlorine Eng Corp Ltd Method for preventing deterioration in activity of ferrous cathode of electrolytic cell
JPS6299488A (en) * 1985-10-25 1987-05-08 Osaka Soda Co Ltd Method for plating structural member of electrolytic cell
JP2005276820A (en) * 2004-02-23 2005-10-06 Toshiba Corp Fuel cell
WO2013191140A1 (en) * 2012-06-18 2013-12-27 旭化成株式会社 Bipolar alkaline water electrolysis unit and electrolytic cell
JP2019099845A (en) * 2017-11-29 2019-06-24 株式会社トクヤマ Electrolysis cell

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137486A (en) 1981-02-19 1982-08-25 Tokuyama Soda Co Ltd Electrolytic cell
JPS644685U (en) 1987-06-29 1989-01-12
JPH01119687A (en) 1987-11-04 1989-05-11 Tokuyama Soda Co Ltd Electrolytic cell
JP2613268B2 (en) 1988-07-11 1997-05-21 関西ペイント株式会社 Method for preventing hydrogen embrittlement of steel and steel obtained by this method
JP2015086420A (en) 2013-10-29 2015-05-07 国立大学法人横浜国立大学 Anode for alkali water electrolysis
JP6404685B2 (en) 2014-11-14 2018-10-10 旭化成株式会社 Bipolar alkaline water electrolysis cell and electrolytic cell
WO2019111832A1 (en) 2017-12-05 2019-06-13 株式会社トクヤマ Alkali water electrolysis membrane - electrode - gasket composite
WO2019188260A1 (en) 2018-03-27 2019-10-03 株式会社トクヤマ Electrolysis vessel for alkaline water electrolysis
EP3778993A4 (en) 2018-03-27 2021-05-19 Tokuyama Corporation Diaphragm-gasket-protective member complex, electrolysis element, and electrolysis vessel
JPWO2021085334A1 (en) 2019-10-31 2021-05-06

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959890A (en) * 1982-09-30 1984-04-05 Chlorine Eng Corp Ltd Method for preventing deterioration in activity of ferrous cathode of electrolytic cell
JPS6299488A (en) * 1985-10-25 1987-05-08 Osaka Soda Co Ltd Method for plating structural member of electrolytic cell
JP2005276820A (en) * 2004-02-23 2005-10-06 Toshiba Corp Fuel cell
WO2013191140A1 (en) * 2012-06-18 2013-12-27 旭化成株式会社 Bipolar alkaline water electrolysis unit and electrolytic cell
JP2019099845A (en) * 2017-11-29 2019-06-24 株式会社トクヤマ Electrolysis cell

Also Published As

Publication number Publication date
TW202321514A (en) 2023-06-01
JPWO2023054576A1 (en) 2023-04-06
KR20240063863A (en) 2024-05-10
CN118043498A (en) 2024-05-14

Similar Documents

Publication Publication Date Title
JP6559383B1 (en) Alkaline water electrolysis membrane-electrode-gasket composite
JP6621970B1 (en) Electrolyzer for alkaline water electrolysis
JP6963978B2 (en) Electrolytic cell
US20230082257A1 (en) Separator membrane-gasket-protecting member assembly, electrolysis element, and electrolysis vessel
CN114892182A (en) Three-electrode system-based electrolytic cell for two-step water electrolysis hydrogen production and application thereof
WO2023054576A1 (en) Electrolytic cell
US20230088736A1 (en) Electrolysis vessel
JP7496480B2 (en) Electrolyzer
CN217628644U (en) Three-electrode system-based electrolytic tank for two-step method water electrolysis hydrogen production
JP7330422B1 (en) Electrolyzer for alkaline water electrolysis
CN214271068U (en) Electrolytic polar plate
JP2020007607A (en) Electrode structure, electrolytic cell and electrolytic bath
CN115335551A (en) Alkaline water electrolytic bath
RU2780741C1 (en) Seal for electrolytic tank and electrolytic tank including seal
KR102402495B1 (en) Gasket for electrolytic cell and electrolytic cell using same
KR20240068756A (en) Alkali water electrolysis membrane - electrode - gasket composite
JPS6342714B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876440

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2023551839

Country of ref document: JP