JPH0356315B2 - - Google Patents

Info

Publication number
JPH0356315B2
JPH0356315B2 JP61000188A JP18886A JPH0356315B2 JP H0356315 B2 JPH0356315 B2 JP H0356315B2 JP 61000188 A JP61000188 A JP 61000188A JP 18886 A JP18886 A JP 18886A JP H0356315 B2 JPH0356315 B2 JP H0356315B2
Authority
JP
Japan
Prior art keywords
cathode
anode
electrolytic
iron
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61000188A
Other languages
Japanese (ja)
Other versions
JPS62158889A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61000188A priority Critical patent/JPS62158889A/en
Publication of JPS62158889A publication Critical patent/JPS62158889A/en
Publication of JPH0356315B2 publication Critical patent/JPH0356315B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は電解鉄の製造方法、特に、電解液中に
おいて鉄を陽極とし、回転軸の周りに回転する陰
極上に高電流密度下に高純度鉄を電着せしめる電
解鉄の製造方法に関するものである。 電解鉄は通常の軟鋼とか純鉄に比べ各種不純物
が格段と少ないため、磁性材料、電子材料、合金
材料、試験研究用ベースメタル材料等高品位を要
求される分野に賞用されている。 〔従来の技術〕 電解槽中に電解液を収容し、電解中に水平回転
軸を有する回転ドラム型陰極と、平板状の軟鋼ま
たは純鉄製陽極とを対置させ、陰極を回転させな
がら電解して高純度鉄を陰極曲面上に電着させる
電解鉄の製造方法は公知である。これは陰極表面
付近で発生するガスが電解鉄中にまきこまれない
ようにするための脱ガスのために陰極を回転させ
るものである。陰極としてプレートを用いる電解
法も公知であるが、その場合、上記目的の脱ガス
のために電解液を強製循環するなどの手段が採用
されている。 〔発明が解決しようとする問題点〕 上記回転ドラム方式の場合、陽極は平板状体か
らなり例えば電解液面上から懸垂されているた
め、平面状の陽極表面と曲面状の陰極表面の間で
極間距離あるいはそれらがお互いになす角度が電
極表面の位置によつて一定ではないという問題が
ある。そのため、陰極表面の位置によつて、特に
陰極ドラムの側部と上、底部とで、電着の条件が
異なり(陰極は回転しているので最終的には平均
化されるが)、陰極表面が有効利用されず、電流
密度分布が不均一である。さらに、このような両
極の配置関係ではみかけの限界電流密度も小さい
という欠点がある。 また、最近の技術革新に伴い、特殊分野におい
て超高純度化、特定元素の超低含有化が望まれて
きており、従来、陽極の選択の仕方により左右さ
れていた金属元素以外の非金属元素、例えば、炭
素(C)、イオウ(S)、塩素(Cl)、酸素(O)、窒
素(N)、水素(H)等の元素の含有についても問題
とされるようになつた。これらの元素の混合源は
電解液成分あるいはスライムであり、特に陰極付
近で発生した水素ガスが脱離の際に生じた凹部に
電解液あるいはスライムが吸着、捲き込まれるも
のと考えられている。 〔問題点を解決するための手段〕 本発明者らは、従来技術の問題点を解決すべく
鋭意研究した結果、陰極を鉛直回転軸を有する回
転ドラム型とし、陽極を陰極ドラムを包囲して陰
極表面とほぼ平行になるよう円筒状に配置し、そ
して陰極を回転しながら電解を行なうことによつ
て、上記問題を解決することを成功した。 従来の水平回転軸を有する回転ドラム型陰極を
用いる方式において、陰極曲面に対して極間距離
を一定にした円筒状の陽極を取り付ける構成は装
置が複雑になり、また、その場合には電着した電
解鉄を取り出すための陽極の引上げ操作も煩雑に
なる。さらに、円筒を縦に半分割した陽極を陰極
ドラムの下方に配置する構成では、陽極で包囲さ
れない陰極表面が残るので、結局、極間距離が一
定でない等の問題には解決されないし装置が複雑
である等の問題がある。 これに対し、垂直回転軸を有する回転ドラム型
陰極を採用すれば、陰極の周囲に陰極曲面とほぼ
平行に円筒状の陽極を配置することは容易であ
る。陽極は円筒形あるいはそれに近い多角形でも
よいし、また複数の短冊状の陽極を円筒状に配置
してもよい。 こうして、陰極表面と陽極表面をほぼ平行に対
置する構造にすることによつて、陰極の全表面に
おける電着条件が一様化され、陰極の全表面が有
効利用され、また陽極と消耗が全面に一様化され
る。また電流密度分布も均一化され限界電流密度
が増大する(時間当りの生産性が向上する)。さ
らに、このような構造の電極配置で電解した場
合、電解鉄中の不純物、特にガス成分のCl、O、
N、Hなど元素の含有量が低下する効果が見られ
た。また、この不純物の低減効果は電流密度分布
が均一化された事により水素ガス発生が抑制され
る。また陰極ドラム回転軸が鉛直型のため電解液
の撹拌が減少され空気による酸化が防止され電解
液が清浄に保たれる事に起因する。 〔実施例〕 第1図に本発明の実施例の電解装置を示す。電
解槽1に収容された電解液(電解浴)2中に陽極
3と陰極4が対置されている。陰極4は、典型的
にはステンレス製であり、鉛直な回転軸を有する
回転ドラム型である。陰極ドラム4は上方から懸
垂され、支持部5と共に液面上へ引き上げられる
ことができる。この支持部5において、第2図の
平面図を参照すると、ドラム4の回転はドラム4
と回転軸を介して結合された車6を駆動ローラ7
で駆動して行なわれ、この駆動ローラ7が油圧や
空気圧シリンダ8で車6に関して接近したり遠ざ
かることができる構成であると、陰極ドラムの引
上げ作業が容易である。 陰極3は軟鉄、純鉄などの比較的純度の高い原
料鉄からなる。陽極3の形状は円筒形や多角形で
もよいが、複数の短冊を陰極ドラム4の周囲に円
筒状に配置すると、経済的であり取扱いも容易に
なり、便利である。陽極3も上方から懸垂され、
液面上に引き上げられることができる。 陽極3へ給電および陰極4からの集電は、電解
浴2中で部材9,10を介して行なわれる。給電
部材9および集電部材10は例えばチタン製であ
る。 このような電解装置において下記の条件で実際
に電解を行ない陰極曲面上に電解鉄を電着させ
た。 陰極:直径1.3m、長さ1.2m、 陽極:軟鋼製8cm×1m、厚さ8cmの短冊54枚を
陰極の周囲に円筒状に配置 極間距離:15cm 電解浴: FeCl2 1.0モル/ NH4Cl 2.0モル/ 浴 HCl PH 4.8〜5.1 浴 温 9.5℃ 電圧:1.3V 陰極回転速度:4rpm(周速0.27m/s) 電流密度:3.4A/dm2 以上の条件で120時間電解を行なつたが、陽極
の消耗は陽極全体で非常に均一であつた。こうし
て得られた電解鉄中のCl、O、N、Hの各元素の
含有量を測定した。その結果を後出の第1表に示
す。また、上記の電解槽における限界電流密度は
20A/dm2であつた。 比較のために、電解浴中に水平回転軸を有する
回転ドラム型陰極と板状陽極とを対置させ、陰極
を回転しながら電解を行ない、電解鉄を陰極曲面
上に電着させた。その電解条件は次のとうりであ
つた。 陰極:ステンレス鋼製、直径1m、長さ1.8m 陽極:軟鋼製、15cm×1m、厚さ15cmの板状体2
枚を陰極の回転軸と平行に鉛直に懸垂 極間距離:最短部で15cm 電解浴: FeCl2 1.0モル/ NH4Cl 2.2モル/ 浴 HCl PH 5.2 浴温 90℃ 電圧:3.8V 陰極の回転速度:4rpm(周速0.21m/s) 電流密度:3.4A/dm2 以上の条件で120時間電解を行なつた。陽極は
陰極ドラムの側面に近い陽極の中央部でより多く
消耗し、それから遠ざかるほど消耗が少なかつ
た。また、こうして得られた電解鉄中のCl、O、
N、Hの各元素の含有量を測定した。その結果を
下記第1表に示す。この電解槽における限界電流
密度は10A/dm2であつた。
[Industrial Application Field] The present invention relates to a method for producing electrolytic iron, in particular an electrolytic method in which iron is used as an anode in an electrolytic solution, and high-purity iron is electrodeposited under high current density on a cathode rotating around a rotating shaft. It relates to a method of manufacturing iron. Electrolytic iron contains far fewer impurities than ordinary mild steel or pure iron, so it is used in fields that require high quality, such as magnetic materials, electronic materials, alloy materials, and base metal materials for testing and research. [Prior art] An electrolytic solution is stored in an electrolytic cell, and during electrolysis, a rotating drum-type cathode with a horizontal rotating shaft and a flat plate-shaped mild steel or pure iron anode are placed opposite each other, and electrolysis is carried out while rotating the cathode. A method for producing electrolytic iron in which high-purity iron is electrodeposited on a curved cathode surface is known. This rotates the cathode for degassing to prevent gas generated near the cathode surface from being mixed into the electrolytic iron. An electrolytic method using a plate as a cathode is also known, but in that case, means such as intensive circulation of the electrolytic solution are adopted for the purpose of degassing mentioned above. [Problems to be Solved by the Invention] In the case of the above-mentioned rotating drum system, the anode is made of a flat plate and is suspended above the surface of the electrolyte. There is a problem in that the distance between the electrodes or the angle they form with each other is not constant depending on the position of the electrode surface. Therefore, the conditions for electrodeposition differ depending on the position of the cathode surface, especially on the sides, top, and bottom of the cathode drum (although the cathode is rotating, so it is eventually averaged out), and the cathode surface is not used effectively, and the current density distribution is non-uniform. Furthermore, this arrangement of the two poles has the disadvantage that the apparent critical current density is also small. In addition, with recent technological innovations, ultra-high purity and ultra-low content of specific elements are desired in special fields, and non-metallic elements other than metallic elements, which traditionally depended on the selection of anodes, have become desirable. For example, the content of elements such as carbon (C), sulfur (S), chlorine (Cl), oxygen (O), nitrogen (N), and hydrogen (H) has also become a problem. The source of the mixture of these elements is the electrolyte component or slime, and it is thought that the electrolyte or slime is adsorbed and drawn into the recesses created when the hydrogen gas generated near the cathode is desorbed. [Means for Solving the Problems] As a result of intensive research to solve the problems of the prior art, the present inventors have developed a method in which the cathode is made into a rotating drum type having a vertical rotation axis, and the anode is surrounded by the cathode drum. We succeeded in solving the above problem by arranging the cathode in a cylindrical shape so that it is almost parallel to the surface and performing electrolysis while rotating the cathode. In the conventional system using a rotating drum cathode with a horizontal rotation axis, the configuration in which a cylindrical anode with a constant distance between the electrodes is attached to the curved surface of the cathode complicates the equipment, and in that case, electrodeposition is difficult. The operation of pulling up the anode to take out the electrolyzed iron also becomes complicated. Furthermore, in a configuration in which a cylinder is vertically divided in half and an anode is placed below the cathode drum, the cathode surface that is not surrounded by the anode remains, which does not solve problems such as uneven distance between the electrodes and complicates the device. There are problems such as: On the other hand, if a rotating drum type cathode having a vertical rotation axis is used, it is easy to arrange a cylindrical anode around the cathode substantially parallel to the curved surface of the cathode. The anode may have a cylindrical shape or a polygonal shape close to the cylindrical shape, or a plurality of strip-shaped anodes may be arranged in a cylindrical shape. In this way, by creating a structure in which the cathode surface and the anode surface are opposed to each other in parallel, the electrodeposition conditions on the entire surface of the cathode are uniform, the entire surface of the cathode is effectively utilized, and the anode and wear are completely eliminated. is uniformed. Furthermore, the current density distribution is made uniform and the critical current density is increased (productivity per hour is improved). Furthermore, when electrolyzing with such an electrode arrangement, impurities in the electrolytic iron, especially gas components such as Cl, O,
The effect of reducing the content of elements such as N and H was observed. Moreover, this effect of reducing impurities is due to the uniform current density distribution, which suppresses hydrogen gas generation. In addition, since the cathode drum rotating shaft is vertical, stirring of the electrolyte is reduced, oxidation by air is prevented, and the electrolyte is kept clean. [Example] FIG. 1 shows an electrolytic apparatus according to an example of the present invention. An anode 3 and a cathode 4 are placed opposite each other in an electrolytic solution (electrolytic bath) 2 contained in an electrolytic bath 1 . The cathode 4 is typically made of stainless steel and has a rotating drum shape with a vertical rotation axis. The cathode drum 4 is suspended from above and can be pulled up together with the support 5 above the liquid surface. In this support part 5, referring to the plan view of FIG. 2, the rotation of the drum 4 is
A drive roller 7 connects a wheel 6 to a drive roller 7 connected via a rotating shaft.
If the driving roller 7 is configured to be able to approach or move away from the car 6 using a hydraulic or pneumatic cylinder 8, the work of pulling up the cathode drum is facilitated. The cathode 3 is made of relatively pure iron material such as soft iron or pure iron. Although the shape of the anode 3 may be cylindrical or polygonal, it is economical and convenient to arrange a plurality of strips around the cathode drum 4 in a cylindrical shape. Anode 3 is also suspended from above,
It can be lifted above the liquid level. Power is supplied to the anode 3 and current is collected from the cathode 4 in the electrolytic bath 2 through members 9 and 10. The power supply member 9 and the current collection member 10 are made of titanium, for example. In such an electrolytic apparatus, electrolysis was actually carried out under the following conditions to electrodeposit electrolytic iron on the curved surface of the cathode. Cathode: diameter 1.3 m, length 1.2 m, anode: 54 strips made of mild steel, 8 cm x 1 m, 8 cm thick, arranged in a cylindrical shape around the cathode. Distance between electrodes: 15 cm. Electrolytic bath: FeCl 2 1.0 mol/NH 4 Cl 2.0 mol/bath HCl PH 4.8-5.1 Bath temperature 9.5℃ Voltage: 1.3V Cathode rotation speed: 4 rpm (peripheral speed 0.27 m/s) Current density: 3.4 A/dm Electrolysis was performed for 120 hours under the conditions of 2 or more. However, the anode wear was very uniform across the anode. The content of each element of Cl, O, N, and H in the electrolytic iron thus obtained was measured. The results are shown in Table 1 below. Also, the limiting current density in the above electrolytic cell is
It was 20A/ dm2 . For comparison, a rotating drum-type cathode having a horizontal rotating shaft and a plate-shaped anode were placed opposite each other in an electrolytic bath, and electrolysis was carried out while rotating the cathode to electrodeposit electrolytic iron on the curved surface of the cathode. The electrolysis conditions were as follows. Cathode: Stainless steel, diameter 1m, length 1.8m Anode: Mild steel, 15cm x 1m, 15cm thick plate 2
The plate is suspended vertically parallel to the axis of rotation of the cathode. Distance between electrodes: 15 cm at the shortest point. Electrolytic bath: 1.0 mol of FeCl 2 / 2.2 mol of NH 4 Cl / bath HCl PH 5.2 Bath temperature 90°C Voltage: 3.8 V Cathode rotation speed : 4 rpm (peripheral speed 0.21 m/s) Current density: 3.4 A/dm 2 Electrolysis was performed for 120 hours under the following conditions. The anode was depleted more in the center of the anode near the side of the cathode drum, and less depleted further away from it. In addition, Cl, O,
The content of each element, N and H, was measured. The results are shown in Table 1 below. The limiting current density in this electrolytic cell was 10 A/dm 2 .

〔発明の効果〕〔Effect of the invention〕

本発明により、回転ドラム型陰極を用いる電解
鉄の製法において、陰極表面と陽極表面とがそれ
ぞれの全表面にわたりほぼ平行に対置されること
によつて、陰極表面が有効有効用され、かつ陰極
表面における電着条件および陽極表面における電
極の消耗が一様になり、また限界電流密度が増大
する。さらに、本発明の方法によれば、陰極表面
に電着する電解鉄中のCl、O、N、H等の元素の
含有量が減少する。これらの元素はガス成分であ
り、陰極回転ドラムの回転軸が水平から鉛直にな
つたことにより、陰極表面付近で発生するガス成
分の除去が促進されたものと考えられる。
According to the present invention, in the method for manufacturing electrolytic iron using a rotating drum type cathode, the cathode surface and the anode surface are arranged substantially parallel to each other over their entire surfaces, so that the cathode surface can be used effectively, and the cathode surface The electrodeposition conditions and electrode wear on the anode surface become uniform, and the limiting current density increases. Furthermore, according to the method of the present invention, the content of elements such as Cl, O, N, and H in the electrolytic iron electrodeposited on the cathode surface is reduced. These elements are gas components, and it is thought that the change in the rotation axis of the cathode rotating drum from horizontal to vertical facilitated the removal of gas components generated near the cathode surface.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の電解装置の模式図、
第2図は第1図の電解装置の陰極ドラム支持駆動
部の平面図である。 1……電解槽、2……電解浴、3……陽極、4
……陰極(回転ドラム)、5……支持部、6……
車、7……駆動ローラ、8……シリンダ、9……
給電部材、10……集電部材。
FIG. 1 is a schematic diagram of an electrolytic device according to an embodiment of the present invention;
FIG. 2 is a plan view of the cathode drum support drive section of the electrolyzer shown in FIG. 1. 1... Electrolytic cell, 2... Electrolytic bath, 3... Anode, 4
...Cathode (rotating drum), 5...Support part, 6...
Car, 7... Drive roller, 8... Cylinder, 9...
Power feeding member, 10... Current collecting member.

Claims (1)

【特許請求の範囲】 1 電解槽に収容した電解液中に回転ドラム型陰
極と軟鋼、純鉄などからなる陽極とを対置させて
電解して陰極曲面上に高純度鉄を得る電解鉄の製
造方法において、回転ドラム型陰極が鉛直回転軸
を有し、陽極が陰極を包囲して陰極曲面とほぼ平
行に配置され、そして陰極を回転しながら電解を
行なうことを特徴とする電解鉄の製造方法。 2 陽極が円筒形である特許請求の範囲第1項記
載の方法。 3 陽極が多角形である特許請求の範囲第1項記
載の方法。 4 陽極が複数の短冊からなり、陰極の周囲に円
筒状に配置される特許請求の範囲第1項記載の方
法。
[Scope of Claims] 1. Production of electrolytic iron in which high-purity iron is obtained on the curved surface of the cathode by electrolyzing a rotating drum-shaped cathode and an anode made of mild steel, pure iron, etc. in an electrolytic solution housed in an electrolytic cell in opposition to each other. A method for producing electrolytic iron, characterized in that a rotating drum-type cathode has a vertical rotation axis, an anode surrounds the cathode and is arranged approximately parallel to the curved surface of the cathode, and electrolysis is carried out while rotating the cathode. . 2. The method according to claim 1, wherein the anode is cylindrical. 3. The method according to claim 1, wherein the anode is polygonal. 4. The method according to claim 1, wherein the anode consists of a plurality of strips and is arranged in a cylindrical shape around the cathode.
JP61000188A 1986-01-07 1986-01-07 Manufacture of electrolytic iron Granted JPS62158889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61000188A JPS62158889A (en) 1986-01-07 1986-01-07 Manufacture of electrolytic iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61000188A JPS62158889A (en) 1986-01-07 1986-01-07 Manufacture of electrolytic iron

Publications (2)

Publication Number Publication Date
JPS62158889A JPS62158889A (en) 1987-07-14
JPH0356315B2 true JPH0356315B2 (en) 1991-08-27

Family

ID=11467017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61000188A Granted JPS62158889A (en) 1986-01-07 1986-01-07 Manufacture of electrolytic iron

Country Status (1)

Country Link
JP (1) JPS62158889A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101030330B1 (en) 2010-04-26 2011-04-19 사토시게루 Electrolysis apparatus

Also Published As

Publication number Publication date
JPS62158889A (en) 1987-07-14

Similar Documents

Publication Publication Date Title
TWI479051B (en) Primary production of elements
KR20070004819A (en) Cell for electrochemical processes
US20150197867A1 (en) Method for industrial copper electrorefining
JP2017179488A (en) Molten salt electrolysis apparatus and molten salt electrolysis method
JPH0356315B2 (en)
CN217077820U (en) Novel fused salt electrolysis current adjustment system
EP3315634B1 (en) A method of electrochemical production of rare earth alloys and metals comprising a composite anode
US1449462A (en) Method and apparatus for the electrolytic recovery of copper
JP2015509558A (en) Operation method of anode and electrolytic cell
US2801964A (en) Cathode assembly for electrolytic cells
JP2596976B2 (en) Method for producing neodymium or neodymium alloy
US3696008A (en) Electrolytic production of aluminum
JP2012172194A (en) Electrolytic apparatus and electrowinning method using the same
JPH0726221B2 (en) Method for producing electrolytic iron
US2920027A (en) Electrical circuits for metal refining cells
US3297554A (en) Electrolytic production of tungsten and molybdenum
CA1174199A (en) Bipolar refining of lead
US4124460A (en) Electrowinning of copper in presence of high concentration of iron
JP7100781B1 (en) Titanium foil manufacturing method
JPS6077981A (en) Manufacture of potassium gold cyanide
CN114752968B (en) Novel fused salt electrolysis current adjustment system
CA1170614A (en) Energy efficient self-regulating process for winning copper from aqueous solutions
JP2006274293A (en) Method for producing sheet-form electrolytic copper
JPS62158894A (en) Manufacture of electrolytic iron
JPH0726220B2 (en) Manufacturing method of electrolytic iron