JP3097824B2 - Long-period pulse electrolysis operation method in copper electrorefining - Google Patents
Long-period pulse electrolysis operation method in copper electrorefiningInfo
- Publication number
- JP3097824B2 JP3097824B2 JP07258233A JP25823395A JP3097824B2 JP 3097824 B2 JP3097824 B2 JP 3097824B2 JP 07258233 A JP07258233 A JP 07258233A JP 25823395 A JP25823395 A JP 25823395A JP 3097824 B2 JP3097824 B2 JP 3097824B2
- Authority
- JP
- Japan
- Prior art keywords
- cycle
- time
- copper
- pulse
- long
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Electrolytic Production Of Metals (AREA)
Description
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【発明の属する技術分野】本発明は、銅電解に関し、特
に銅電解精製の操業方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to copper electrolysis, and more particularly to a method for operating copper electrorefining.
【0002】[0002]
【従来の技術】銅電解精製においては、通常、40〜4
7g/lの銅を含む電解液を用い、粗銅を陽極とし、純
銅板を陰極とするが、同一の電解槽規模では、電流密度
が高いほど生産性は上昇する。しかしながら、生産性向
上のために採用される高電流密度(300A/m2 以
上)操業では、陰極側での粒、瘤や針状電着の発生に伴
う製品陰極板の不良率の増大、ショートの増加、陽極側
での不働態化の発生という技術的問題がある。一方、不
働態化現象は、陽極中の不純物、電解液中の銅濃度、表
面平滑剤濃度等にも影響を受けるが、電流密度による影
響が大きく、通常の一方向の通電方法では電流密度が3
00A/m2 以上になると多く見られるようになる。こ
れらの問題を解決する方法としては、通電方式を、周期
的に短時間だけ電流を停止するパルス方式、あるいは周
期的に短時間だけ電流の向きを反転させる周期的反転電
流電解(PRC)方式とすることが有効とされている。
しかし、粒、瘤、針状電着の発生は、通電密度の上昇に
伴い顕著となり、300A/m2 以上の電流密度では、
通常のパルス電解を応用しても表面の電析状態の悪化は
避けられない。2. Description of the Related Art In copper electrorefining, usually 40 to 4 times is used.
An electrolytic solution containing 7 g / l of copper is used, blister copper is used as an anode, and a pure copper plate is used as a cathode. However, with the same electrolytic cell scale, the higher the current density, the higher the productivity. However, in the operation of high current density (300 A / m 2 or more) employed for improving productivity, the defect rate of the product cathode plate increases due to the generation of particles, bumps and needle-like electrodeposition on the cathode side, and short-circuiting occurs. There is a technical problem in that the increase in the number of particles and the occurrence of passivation on the anode side occur. On the other hand, the passivation phenomenon is also affected by impurities in the anode, copper concentration in the electrolytic solution, surface smoothing agent concentration, etc., but is greatly affected by the current density. 3
When it is more than 00 A / m 2 , it is often seen. As a method for solving these problems, the energization method includes a pulse method in which the current is periodically stopped for a short time, and a periodic inversion current electrolysis (PRC) method in which the direction of the current is periodically inverted for a short time. It is effective to be.
However, the occurrence of particles, bumps, and needle-like electrodeposition becomes remarkable as the current density increases, and at a current density of 300 A / m 2 or more,
Even when ordinary pulse electrolysis is applied, deterioration of the electrodeposition state on the surface cannot be avoided.
【0003】また、不働態化防止に対しては、パルス電
解の停電時間、サイクルに関して、従来のパルス電解で
もサイクル効率を悪化させることなくその目的を達成で
きる。しかしながら、陰極の表面状態を良好に維持する
ためには従来のパルス電解では不充分である。ここに、
サイクル効率(%)とは、パルス電解での正方向の通電
時間をT、停電時間をT’、T+T’を1サイクルと定
義し、EC =100×(T/(T+T’))をいう。さ
らに、従来のパルス電解は、T’=0.1〜9秒で、1
サイクルが短い短周期法で、短周期法の(数10秒〜3
00秒程度)パルス電解では、長時間停電を行うことに
なるので、サイクル効率が低下して経済的に問題がある
等の問題が生じる。また、ショートの防止に関しては、
膠やチオ尿素などの表面平滑剤を電解液に添加し、陰極
の特定部分への電流の集中を防止している。しかし、こ
れらの表面平滑剤を使用すると、その成分が銅と共に陰
極に電着し、電気銅の純度を低下させるという欠点があ
る。また、過剰の表面平滑剤の使用は、しばしばショー
トを増加させることも知られている。表面平滑剤の量を
適切に管理すれば、陰極の表面状態は良好になり、ショ
ートは防止できる。しかし、表面平滑剤の分析は一般に
困難であり、結果として有効量を正確に判断しにくい。
このため、陰極の表面を観察しつつ表面平滑剤の添加量
を調節せざるをえず、使用上の限界があり、必ずしも十
分にその効果を発揮させるに至っていない。[0003] Further, with respect to the passivation time and the cycle of the pulse electrolysis, the purpose of the passivation prevention can be achieved without deteriorating the cycle efficiency even by the conventional pulse electrolysis. However, conventional pulse electrolysis is insufficient to maintain the surface condition of the cathode in a good condition. here,
The cycle efficiency (%) is defined as E C = 100 × (T / (T + T ′)) where T is the energizing time in the positive direction in pulse electrolysis, T ′ is the power outage time, and T + T ′ is one cycle. . Further, in the conventional pulse electrolysis, T ′ = 0.1 to 9 seconds and 1
It is a short cycle method with a short cycle.
In the case of pulse electrolysis, a long-time blackout occurs, which causes problems such as a decrease in cycle efficiency and an economical problem. Regarding prevention of short circuit,
A surface smoothing agent such as glue or thiourea is added to the electrolyte to prevent current from concentrating on a specific portion of the cathode. However, when these surface smoothing agents are used, there is a disadvantage that the components are electrodeposited on the cathode together with copper, and the purity of electrolytic copper is reduced. It is also known that the use of excess surface smoothing agent often increases shorts. By properly controlling the amount of the surface smoothing agent, the surface condition of the cathode is improved and short-circuit can be prevented. However, analysis of surface smoothers is generally difficult, and as a result, it is difficult to accurately determine the effective amount.
Therefore, the addition amount of the surface smoothing agent must be adjusted while observing the surface of the cathode, and there is a limit in use, and the effect has not always been sufficiently exerted.
【0004】[0004]
【発明が解決しようとする課題】従って、本発明は、銅
のパルス電解精製において、通電方式の改良により、製
品不良率を低減することを目的とする。SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to reduce the defective product rate by improving the energization method in pulse electrolytic refining of copper.
【0005】[0005]
【課題を解決するための手段】本発明は、300A/m
2 以上の高電流密度での銅の電解精製において、周期的
に一定時間だけ電流を停止するパルス通電方法を採用
し、パルス停電を1時間に1〜4回実施し、1回のパル
ス停電時間を30秒以上行う。具体的には、正方向の通
電時間をT、停電時間をT’、T+T’を1サイクルと
し、パルス電解でのサイクル効率EC(%)をEC=10
0×(T/(T+T’))と定義した場合、電流の停止
時間を30秒以上保持し、1時間あたりのサイクルを4
回以下とすることにより、サイクル効率が95%以上と
し、製品陰極板の品質を悪化させずに生産性を増大させ
る。According to the present invention, 300 A / m
In the electrolytic refining of copper at a high current density of 2 or more, a pulse energization method of periodically stopping the current for a certain period of time is employed. For at least 30 seconds. Specifically, the energizing time in the positive direction is T, the power outage time is T ', and T + T' is one cycle, and the cycle efficiency E C (%) in pulse electrolysis is E C = 10.
When defined as 0 × (T / (T + T ′)), the current stop time is maintained for 30 seconds or more, and the cycle per hour is 4
By making the number of times equal to or less than the number of times, the cycle efficiency is increased to 95% or more, and the productivity is increased without deteriorating the quality of the product cathode plate.
【0006】[0006]
【発明の実施の形態】本発明では、高電流密度での銅の
電解精製において、周期的に一定時間だけ電流を停止す
る通電方法、いわゆるパルス電解法において、その操業
方法により、陰極の表面状態を良好に維持する。図1に
高電流密度たとえば300A/m2 以上の電解精製にお
いて、停電時間を変化させた場合、正電流通電開始から
電位が定常状態に達するまでの間の電位の変化、すなわ
ち、電位差と停電時間の関係を示す。図1より、停電時
間30〜40秒程度で電位差が一定値に収束しているこ
とがわかる。すなわち30秒以上の停電があれば、陰極
の表面状態が通電開始時と同様の状態になるものと考え
られる。言い換えると、この30秒以上の停電で、銅の
電解精製で通常使用されるチオ尿素、にかわ、塩化物イ
オン等の表面平滑剤が、通電開始時と同様に陰極表面に
吸着された状態に再現されるものと考えられる。一方、
停電時間が100秒を越えると、定常状態になるから、
生産効率を下げるだけである。一般に、表面平滑剤は、
通常、表面の粒状部分に吸着し、その部分の電着速度を
低下させることにより粒の成長を抑制すると解釈され
る。これに対して電流密度が上昇すると、粒部への電流
の集中、粒部に吸着した表面平滑剤の分解の促進によ
り、電極上での銅の電着速度に対する表面平滑剤の電極
表面への供給速度が相対的に低下することにより、電極
表面の吸着物濃度が低下し、結果として陰極表面電析の
粒状化を招くと考えられる。DETAILED DESCRIPTION OF THE INVENTION In the present invention, in the electrolytic refining of copper at a high current density, the current is periodically stopped for a certain period of time, that is, in the so-called pulse electrolysis, the operation method is used to determine the surface condition of the cathode. Is maintained well. FIG. 1 shows that when the power outage time is changed in electrolytic refining at a high current density of, for example, 300 A / m 2 or more, the potential change from the start of the positive current supply until the potential reaches a steady state, that is, the potential difference and the power outage time Shows the relationship. From FIG. 1, it can be seen that the potential difference converges to a constant value during a power outage time of about 30 to 40 seconds. That is, if there is a power outage of 30 seconds or more, it is considered that the surface state of the cathode is in the same state as at the start of energization. In other words, with the power outage of 30 seconds or more, the surface smoothing agents such as thiourea, glue, and chloride ion, which are usually used in the electrolytic refining of copper, are reproduced in a state in which they are adsorbed on the cathode surface in the same way as when power was turned on. It is thought that it is done. on the other hand,
If the power outage time exceeds 100 seconds, it will be in a steady state,
It only reduces production efficiency. Generally, the surface smoothing agent is
Usually, it is interpreted that the particles are adsorbed on the granular portion of the surface and the grain growth is suppressed by reducing the electrodeposition rate of the portion. On the other hand, when the current density increases, the concentration of the current on the granules and the promotion of the decomposition of the surface smoothing agent adsorbed on the granules promote the deposition of the surface smoothing agent on the electrode surface with respect to the electrodeposition rate of copper on the electrode. It is considered that the relative decrease in the supply rate causes the concentration of the adsorbed material on the electrode surface to decrease, and as a result, the cathode surface electrodeposition becomes granular.
【0007】本発明によれば、300A/m2 以上の高
電流密度の操業においても、比較的長い時間の停電によ
り表面平滑剤の再吸着を行わせ、電極表面に不足してい
る表面平滑剤を再度補給することにより良好な電析が得
られる。一方、通常のパルス電解においてサイクルが短
いのは、電極表面の拡散層の成長が、通電時間の長期化
に伴い増大することが指摘されてきたためである。しか
しながら、銅電解精製のような工業的電解では電極表面
に大きな循環流が存在し、通常考えられる拡散層の成長
が、陰極表面の循環流による上昇流、陽極表面の自然対
流による下降流により大幅に抑制されている。従って1
時間あたり1〜2回のパルス停電でも陽極の拡散層の増
大による不働態化は防止できると考えられる。上記のよ
うな理論に基づき、本発明では、パルス停電のサイクル
を構成することにより、具体的には、パルス停電を1時
間に1〜4回程度実施し、好ましくはその際の停電時間
を30秒以上確保することにより、高電流密度の操業に
おいても陽極の不働態化を防止でき、また電析状態の良
好な平滑な製品陰極板が得られる。さらに、本発明では
1〜4回/hrの停電であればサイクル効率も95%以
上が確保され、経済的にも有利な生産性の向上が達成で
きる。According to the present invention, even in an operation at a high current density of 300 A / m 2 or more, the surface smoothing agent is re-adsorbed due to a power outage for a relatively long time, and the surface smoothing agent lacking on the electrode surface. , Good electrodeposition can be obtained. On the other hand, the reason why the cycle is short in ordinary pulse electrolysis is that it has been pointed out that the growth of the diffusion layer on the electrode surface increases as the energization time increases. However, in industrial electrolysis such as copper electrorefining, a large circulating flow exists on the electrode surface, and the growth of the diffusion layer, which is usually considered, is greatly increased by the upward flow due to the circulating flow on the cathode surface and the downward flow due to natural convection on the anode surface. Has been suppressed. Therefore 1
It is considered that passivation due to an increase in the diffusion layer of the anode can be prevented even with one or two pulse outages per time. Based on the above theory, in the present invention, by configuring a cycle of pulse power failure, specifically, the pulse power failure is performed about 1 to 4 times per hour, and the power failure time at that time is preferably 30 times. By securing for more than a second, passivation of the anode can be prevented even during operation at a high current density, and a smooth product cathode plate having a good electrodeposition state can be obtained. Furthermore, according to the present invention, if the power is cut off 1 to 4 times / hr, the cycle efficiency is also maintained at 95% or more, and an economically advantageous improvement in productivity can be achieved.
【0008】[0008]
[実施例1]1時間あたりのサイクル回数を変化させた
場合の製品陰極板の外観評価点を調べた。その結果を表
1に示す。なお、通電条件は下記の通りである。また、
外観評価点とは、製品陰極板の両面を各9分割し、それ
ぞれ目視により最も悪いものを1点、最も良いものを5
点として、5段階評価を行った場合の合計点である(9
0点満点)。 (通電条件) 電流密度: 328(A/m2 ) 銅濃度: 52(g/l) 硫酸濃度: 188(g/l) にかわ濃度: 1.4(mg/l) 塩化物イオン濃度:33(mg/l) チオ尿素濃度: 1.1(mg/l) 液温: 62(℃) 陽極: 1015×1015×36(mm) 陰極: 1050×1070×0.7(mm) 陰極枚数: 23(枚) 電解槽: 3000×1250×1360(mm)[Example 1] The appearance evaluation point of the product cathode plate when the number of cycles per hour was changed was examined. Table 1 shows the results. The energization conditions are as follows. Also,
Appearance evaluation points are obtained by dividing both surfaces of the product cathode plate into nine parts, and visually giving the worst one point and the best one five points.
The points are the total points when a five-point evaluation is performed (9
0 points). (Electrification conditions) Current density: 328 (A / m 2 ) Copper concentration: 52 (g / l) Sulfuric acid concentration: 188 (g / l) Glue concentration: 1.4 (mg / l) Chloride ion concentration: 33 ( mg / l) Thiourea concentration: 1.1 (mg / l) Liquid temperature: 62 (° C) Anode: 1015 x 1015 x 36 (mm) Cathode: 1050 x 1070 x 0.7 (mm) Number of cathodes: 23 ( Electrolyzer: 3000 × 1250 × 1360 (mm)
【0009】[0009]
【表1】 サイクル構成 通電 停電 サイクル効率 サイクル回数 外観評価点 59(min) 1(min) 98(%) 1(回/hr) 69.5 59.5(min) 0.5(min) 99(%) 1(回/hr) 69.5 201(s) 15(s) 93(%) 17(回/hr) 59.5[Table 1] Cycle configuration Energization Power failure Cycle efficiency Cycles Appearance evaluation point 59 (min) 1 (min) 98 (%) 1 (times / hr) 69.5 59.5 (min) 0.5 (min) 99 (%) 1 (times) (hr) 69.5 201 (s) 15 (s) 93 (%) 17 (times / hr) 59.5
【0010】表1より、サイクル回数1回/hrで30
秒以上の停電時間をとった、いわゆる長周期パルス法を
採用したものの方が、サイクル回数17回/hrで停電
時間が短い、いわゆる短周期パルス法を採用したものよ
り、外観評価点が高いことがわかる。これは、先にも述
べたように、長時間の停電により表面平滑剤の再吸着が
行われ、表面平滑剤が電極表面に十分補給されたことに
起因するものと考えられる。外観評価点の管理合格基準
は通常63点であるから、長周期パルス法を採用するこ
とにより、管理合格基準を達成することが可能である。
また、長周期パルス法の場合、サイクル効率は95%以
上が確保されており、経済的にも問題ないものと考えら
れる。一方、いずれの場合も陽極の不働態化は完全に防
止された。From Table 1, it can be seen that the number of cycles is 30 times / hr.
Those that adopt the so-called long-period pulse method with a power outage time of seconds or more have higher appearance evaluation points than those that adopt the so-called short-period pulse method with a cycle time of 17 times / hr and a shorter power outage time. I understand. This is considered to be because, as described above, the surface smoothing agent was re-adsorbed due to a long-time power failure, and the surface smoothing agent was sufficiently supplied to the electrode surface. Since the management pass criterion for the appearance evaluation point is usually 63 points, it is possible to achieve the management pass criterion by adopting the long-period pulse method.
In the case of the long-period pulse method, a cycle efficiency of 95% or more is ensured, and it is considered that there is no problem economically. On the other hand, in all cases, passivation of the anode was completely prevented.
【0011】[実施例2]通電条件を実施例1に対し変
更して、1時間あたりのサイクル回数を1、2および4
回と変化させた場合の製品陰極板の外観評価点を調べ
た。その結果を表2に示す。通電条件は下記の通りであ
る。 (通電条件) 電流密度: 319〜324(A/m2 ) 銅濃度: 47〜53(g/l) 硫酸濃度: 187〜191(g/l) にかわ濃度: 1.4(mg/l) 塩化物イオン濃度:50(mg/l) チオ尿素濃度: 2.2(mg/l) 液温: 63.1〜63.6(℃) 陽極: 1015×1015×36(mm) 陰極: 1050×1070×0.7(mm) 陰極枚数: 25〜27(枚) 電解槽: 3000×1250×1360(mm)[Embodiment 2] The energization conditions are changed from those in Embodiment 1 so that the number of cycles per hour is 1, 2 and 4.
The appearance evaluation point of the product cathode plate when the number of times was changed was examined. Table 2 shows the results. The energization conditions are as follows. (Electrification conditions) Current density: 319 to 324 (A / m 2 ) Copper concentration: 47 to 53 (g / l) Sulfuric acid concentration: 187 to 191 (g / l) Mold concentration: 1.4 (mg / l) Chloride Substance ion concentration: 50 (mg / l) Thiourea concentration: 2.2 (mg / l) Liquid temperature: 63.1-63.6 (° C.) Anode: 1015 × 1015 × 36 (mm) Cathode: 1050 × 1070 × 0.7 (mm) Number of cathodes: 25 to 27 (sheets) Electrolyzer: 3000 × 1250 × 1360 (mm)
【0012】[0012]
【表2】 サイクル構成 通電 停電 サイクル効率 サイクル回数 外観評価点 59(min) 1(min) 98(%) 1(回/hr) 71.5 29.4(min) 34(s) 98(%) 2(回/hr) 71.5 14.7(min) 16(s) 98(%) 4(回/hr) 69.5[Table 2] Cycle configuration Energization Power failure Cycle efficiency Cycles Appearance evaluation point 59 (min) 1 (min) 98 (%) 1 (times / hr) 71.5 29.4 ( min ) 34 (s) 98 (%) 2 (times) (hr) 71.5 14.7 (min) 16 (s) 98 (%) 4 (times / hr) 69.5
【0013】表2より、サイクル回数を1〜4回/hr
まで変化させた長周期パルス法では、いずれの場合も、
外観評価点の管理合格基準を満足していることがわか
る。しかしながら、停電時間が30秒以下であるサイク
ル回数4回/hrのものでは、若干の外観評価点の低下
が見られることがわかる。これは、停電時間が短いた
め、停電の間に電極表面に表面平滑剤が十分に供給され
なかったことに起因するものと考えられる。サイクル回
数4回/hrのものについては、例えばサイクル効率を
95%とした場合、停電時間は45秒程度確保されるこ
とになり、外観評価点の向上が更に期待できるものと考
えられる。実施例2についても、いずれも陽極の不働態
化は完全に防止された。According to Table 2, the number of cycles is 1 to 4 times / hr.
In the long-period pulse method with
It can be seen that the evaluation criteria for the appearance evaluation point are satisfied. However, in the case of the cycle number of 4 times / hr in which the power outage time is 30 seconds or less, it can be seen that the appearance evaluation score is slightly reduced. This is considered to be because the surface smoothing agent was not sufficiently supplied to the electrode surface during the power failure because the power failure time was short. In the case of the cycle number of 4 times / hr, for example, when the cycle efficiency is set to 95%, the power outage time is secured about 45 seconds, and it is considered that the appearance evaluation point can be further improved. Also in Example 2, passivation of the anode was completely prevented.
【0014】[0014]
【発明の効果】本発明によれば、高電流密度での銅の電
解精製において、周期的に一定時間だけ電流を停止する
通電方法を採用し、正方向の通電時間をT、停電時間を
T’、T+T’を1サイクルと定義し、パルス電解での
サイクル効率EC(%)をEC=100×(T/(T+
T’))とした場合、電流の停止時間を好ましくは30
秒以上保持し、1時間あたりのサイクルを4回以下とし
て、サイクル効率を95%以上に維持することにより、
製品陰極板の品質を悪化させずに生産性を増大させるこ
とが可能となる。According to the present invention, in the electrolytic refining of copper at a high current density, an energizing method of periodically stopping the current for a fixed time is adopted, the energizing time in the positive direction is set to T, and the power outage time is set to T. ', T + T' is defined as one cycle, and the cycle efficiency E C (%) in pulse electrolysis is E C = 100 × (T / (T +
T ')), the current stop time is preferably 30
By keeping the cycle for at least 4 seconds and the cycle per hour at 4 times or less, and maintaining the cycle efficiency at 95% or more,
It is possible to increase the productivity without deteriorating the quality of the product cathode plate.
【図1】陰極の正電流通電開始後から電位が定常状態に
達するまでの電位差と停電時間との関係を示すグラフで
ある。FIG. 1 is a graph showing a relationship between a potential difference and a power outage time from the start of positive current supply to a cathode until the potential reaches a steady state.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C25C 1/00 - 7/08 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) C25C 1/00-7/08
Claims (2)
精製において、パルス停電を1時間に1〜4回実施し、
1回のパルス停電時間を30秒以上行うことを特徴とす
る長周期パルス電解操業方法。1. In a copper electrolytic refining having a current density of 300 A / m 2 or more, a pulse blackout is performed 1 to 4 times per hour.
A long-period pulse electrolysis operation method, wherein one pulse power outage is performed for 30 seconds or more.
精製において、周期的に一定時間だけ電流を停止する通
電サイクル方法を採用し、正方向の通電時間をT、停電
時間をT’、T+T’を1サイクルと定義し、パルス電
解でのサイクル効率EC(%)をEC=100×(T/
(T+T’))とした場合、サイクル効率を95%以上
に維持しつつ1時間あたりのサイクルを4回以下とし
て、30秒以上の電流の停止時間を保持することを特徴
とする長周期パルス電解操業方法。 2. In a copper electrorefining method having a current density of 300 A / m 2 or more, an energization cycle method in which current is periodically stopped for a certain period of time is adopted, the energization time in the positive direction is T, and the outage time is T ′, T + T ′ is defined as one cycle, and the cycle efficiency E C (%) in pulse electrolysis is E C = 100 × (T /
(T + T ')), wherein the cycle efficiency is maintained at 95% or more, the cycle per hour is set to four or less, and the current stop time of 30 seconds or more is maintained. Operation method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07258233A JP3097824B2 (en) | 1995-09-12 | 1995-09-12 | Long-period pulse electrolysis operation method in copper electrorefining |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP07258233A JP3097824B2 (en) | 1995-09-12 | 1995-09-12 | Long-period pulse electrolysis operation method in copper electrorefining |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0978282A JPH0978282A (en) | 1997-03-25 |
JP3097824B2 true JP3097824B2 (en) | 2000-10-10 |
Family
ID=17317376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP07258233A Expired - Lifetime JP3097824B2 (en) | 1995-09-12 | 1995-09-12 | Long-period pulse electrolysis operation method in copper electrorefining |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3097824B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020245619A1 (en) * | 2019-06-06 | 2020-12-10 | Przemyslaw Los | Method for copper and zinc separation from industrial electrolytes including waste industrial electrolytes |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2002952181A0 (en) * | 2002-10-21 | 2002-11-07 | Intec Ltd | Electrolysis process and cell for use in same |
JP5085474B2 (en) * | 2008-09-09 | 2012-11-28 | パンパシフィック・カッパー株式会社 | Method for electrolytic purification of copper |
JP5213828B2 (en) * | 2009-09-30 | 2013-06-19 | パンパシフィック・カッパー株式会社 | Method for electrolytic purification of copper |
PL397081A1 (en) * | 2011-11-22 | 2013-05-27 | Nano-Tech Spólka Z Ograniczona Odpowiedzialnoscia | Method for electrorefining of copper |
JP6045481B2 (en) * | 2013-01-23 | 2016-12-14 | パンパシフィック・カッパー株式会社 | Method for producing electrolytic copper |
JP7259389B2 (en) * | 2018-05-16 | 2023-04-18 | 住友金属鉱山株式会社 | Method for producing sulfuric acid solution |
-
1995
- 1995-09-12 JP JP07258233A patent/JP3097824B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020245619A1 (en) * | 2019-06-06 | 2020-12-10 | Przemyslaw Los | Method for copper and zinc separation from industrial electrolytes including waste industrial electrolytes |
Also Published As
Publication number | Publication date |
---|---|
JPH0978282A (en) | 1997-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4555317A (en) | Cathode for the electrolytic production of hydrogen and its use | |
JP3097824B2 (en) | Long-period pulse electrolysis operation method in copper electrorefining | |
US20040007474A1 (en) | Electrolytic copper plating method, phosphorous copper anode for electrolytic plating method, and semiconductor wafer having low particle adhesion plated with said method and anode | |
US4140596A (en) | Process for the electrolytic refining of copper | |
US20040149588A1 (en) | Electrolytic cooper plating method, phosphorus-containing anode for electrolytic cooper plating, and semiconductor wafer plated using them and having few particles adhering to it | |
US2923671A (en) | Copper electrodeposition process and anode for use in same | |
JPS62146289A (en) | Method for electrolytically refining lead having small count number of radioactive alpha-particles | |
JPS6141799A (en) | Method for supplying tin ion to electrolytic tinning bath | |
JP3063636B2 (en) | Copper electrolytic refining method | |
EP0058506B1 (en) | Bipolar refining of lead | |
JP3761074B2 (en) | Method for electrolytic purification of copper | |
JPS6332873B2 (en) | ||
JP2000054181A (en) | Method for electrolytically refining copper | |
JPH1112777A (en) | Method for electrolytically refining copper | |
JPS63307291A (en) | Manufacture of high-purity copper | |
JPS6332872B2 (en) | ||
CA1062195A (en) | Method and apparatus for electrolytic production of persulfates | |
JP4031879B2 (en) | Method for electrolytic purification of copper | |
JPH08337893A (en) | Copper electrolysis operation method | |
JPH06192866A (en) | Production of potassium dicyanoaurate | |
JPS63247389A (en) | Method for electrolytically refining copper | |
JPH10183389A (en) | Electrolytic cell and copper electrolysis operation method using the same | |
CA1174198A (en) | Electrolyte for bipolar lead refining | |
CN117230490A (en) | Electrolyte for electrolyzing and recycling copper from acidic etching waste liquid and application method of electrolyte | |
JPS5839919B2 (en) | How to adjust the pH of electrolytic nickel plating solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070811 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080811 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090811 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100811 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100811 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110811 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110811 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120811 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120811 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130811 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term |