JP3761074B2 - Method for electrolytic purification of copper - Google Patents
Method for electrolytic purification of copper Download PDFInfo
- Publication number
- JP3761074B2 JP3761074B2 JP2001105514A JP2001105514A JP3761074B2 JP 3761074 B2 JP3761074 B2 JP 3761074B2 JP 2001105514 A JP2001105514 A JP 2001105514A JP 2001105514 A JP2001105514 A JP 2001105514A JP 3761074 B2 JP3761074 B2 JP 3761074B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- anode
- electrolysis
- current
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Electrolytic Production Of Metals (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、銅の電解精製方法に関し、特に、経済性を損なわずにアノード不働態化を防止して電気銅製品の品質向上を達成しうる銅の電解精製方法に関する。
【0002】
【従来の技術】
銅電解においては、アノード不働態化が限界電流密度を決定している。このアノード不働態化なる現象は、銅電解中に発生するアノードスライムがアノード表面に積層した状態で残り、銅イオンの拡散や対流を阻害するために、アノード表面近傍の銅イオン濃度が上昇し飽和点に達してアノード表面に硫酸銅の不働態膜が形成される現象である。この現象により生産性(アノード単位表面積当たりの正電流密度DK で表される)が規制され、特にノルマル電解(電流の向きを一定にして行う電解)では、DK 300 A/m2程度が限界とされていた。
【0003】
このアノード不働態化の防止対策としては、従来、三つの方法が知られている。
一つはアノードの不純物含有量を低減する方法である。これによればアノードスライムの発生量が低減して、DK の限界点が1割程度(DK 330 A/m2程度に)上昇する効果がある。
【0004】
二つ目の方法は電解法をノルマル電解に代えてPR電解(電流の向きを周期的に反転させて行う電解)とする方法である。これによればアノード表面近傍の銅イオン濃度の上昇が抑制されて、DK の限界点が1〜2割程度(DK 330 〜360 A/m2程度に)上昇する効果がある。
三つ目の方法は電解槽への液循環の強化であり、電解槽中の液循環量を増大させる効果により、液の拡散を助けて不働体化を防止する方法である。この場合、スライムを液の対流により流し落とす程に強化すれば効果的である。
【0005】
【発明が解決しようとする課題】
しかしながら、アノードの不純物含有量を低減する方法は、必然的にアノードを製造する銅製錬工程のコストアップを伴う問題があり、また、PR電解による方法では、電流の増大とともに浴電圧が上昇して消費電力が増大し、また反転電流によるロスも生産に大きく影響して、経済的に不利なばかりでなく、製品もその表面に粒や瘤が多く品質が悪い状態であった。また、液循環量を増すためにはエネルギーコストがかかる上、拡散を助けるほどの強制液循環を行う場合には電解槽自体の設備を大きく変更しなければならない。
【0006】
本発明は、上記従来技術の問題点に鑑み、アノード不働態化を経済的に有利に防止でき、品質を向上できる銅の電解精製方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記目的を達成した本発明は、(1)銅の電解精製方法において、電解液に陰イオン活性剤を0.001g/ECUT 以上添加し、反転電流の連続通電時間を45〜300 秒としかつ正電流の連続通電時間の1/500 〜1/70としたPR電解を行い、あるいはさらに、電解液に添加される有機系添加剤(にかわ、チオ尿素の総称)の添加量を電流上昇とともに減少させること、具体的には、(2)DK 300A/m2 以上の電解では、にかわ添加量50g/ECUT以下、チオ尿素添加量60g/ECUT以下とすることを特徴とする(1)記載の銅の電解精製方法である。
【0008】
ここに、「g/ECUT」は、電気銅1t当たりのグラム質量を意味する。
また、本発明は、カソード材質をステンレス鋼とし、最初の通電を正電流で行うことを特徴とする(1)または(2)に記載の銅の電解精製方法である。
【0009】
【発明の実施の形態】
銅電解の電解液には通常、にかわ(ゼラチンも含む概念とする)およびチオ尿素が添加されるが、これらに加えて本発明では、陰イオン活性剤を添加する。陰イオン活性剤とは、界面活性剤のうち水溶液中で電離して活性剤の主体が陰イオンとなるものをいう。本発明に係る陰イオン活性剤としては、スルホン酸塩、硫酸塩、リン酸塩、カルボン酸塩などの単体または組合せが好ましく用いうる。
【0010】
電解液である硫酸銅水溶液に陰イオン活性剤を添加すると、液中で電離して活性剤の主体が陰イオンとなり、この陰イオンが陽極であるアノードに引き寄せられてアノード表面に吸着し、アノード溶解により未溶解分であるスライム(アノードスライムの意。以下同じ。)が表面から剥がれ落ちる際にスライム表面に吸着した状態を作り、アノードスライムを電気的陰性化する。電気的陰性化したアノードスライムは、正電流の通電中は陽極であるアノードから電気的引力を受けているが、反転電流を通電すると、陰極化したアノードから電気的斥力を受け、アノード表面からの解離傾向が発生する。
【0011】
電気的斥力により、反転電流の通電中にアノードスライムはアノード表面から剥ぎ取られ、液中に一時的に懸濁してから沈降していく。この懸濁・沈降途中のスライムがカソードへ付着した場合に表面の粒や瘤の原因となるのであるが、スライム表面が電気的陰性化していることにより、カソードが通常の陰極に戻った状態では電気的斥力が働いてスライムの付着が阻止される。この作用効果により、不働態化を防止でき、同時に製品の粒、瘤による品質劣化を防止できる。
【0012】
しかし、陰イオン活性剤の添加量が0.001g/ECUT 未満では、アノードスライムの電気的陰性化が不十分であり、前記解離傾向に乏しいため、陰イオン活性剤は0.001g/ECUT 以上添加する必要がある。好ましくは3g/ECUT以上、さらに好ましくは10g/ECUT以上である。ただし、むやみに多く添加しても前記解離傾向が飽和してコスト増を招くので、陰イオン活性剤の添加量は30g/ECUT程度以下に抑えることが好ましい。
【0013】
そして、アノード不働態化を防止するためには、さらに前記解離傾向にあるアノードスライムを、アノード表面から十分に剥がす必要があり、それには、アノードスライムの堆積量が多くなりすぎないうちに、電気的斥力とともに、アノード近傍の電解液の自然対流を停止あるいは逆転させ、液対流変化による物理的揺さぶりをかけることがより有効である。
【0014】
しかるに、反転電流の連続通電時間が45秒未満では、液対流変化が十分に起こらず、物理的揺さぶり力が不足しアノードスライムの剥ぎ取りが進まず効果的ではない。一方、300 秒超では、カソードからの銅の溶出量が増加して生産性を損なう。そのため、反転電流の連続通電時間は45〜300 秒とする必要がある。なお、より好ましくは50〜200 秒、さらに好ましくは60〜90秒である。
【0015】
加うるに、反転電流の連続通電時間が正電流のそれの1/500 に満たないと、相対的に正電流通電時間が長くなることによりアノードスライムの堆積量が多くなりすぎて、前記物理的揺さぶりによっても剥がれにくくなり、また、アノードスライム深層部の電気的陰性化が不十分となり、カソードへの付着阻止力が弱まって粒や瘤が増加していく。一方、1/25を超えると、相対的に正電流通電時間が短くなってカソードへの銅電着量が不足してしまう。そのため、反転電流の連続通電時間は、正電流のそれの1/500 〜1/25とする必要がある。なお、より好ましくは1/300 〜1/50、さらに好ましくは1/250 〜1/70である。本発明では、1 /500 〜1 /70 とした。
【0016】
また、反転電流密度は、DK の0.3 〜2.0 倍の範囲とすれば効果は期待できる。しかし、0.5 倍未満では反転電流通電時間の延長を伴うため設備生産性が下がるうえ、液対流変化の大きさがやや小さくなる。一方、1.0 倍超えの範囲とすれば反転電流通電時間を短縮しうるが、1.2 倍を超えると液対流変化の大きさが飽和する傾向が強くなるばかりか、電解用整流器が高価なものとなって多額の設備投資が必要となる。これらのことから、反転電流の電流密度は正電流のそれの0.5 〜1.2 倍とする方が好ましい。
【0017】
なお、正電流から反転電流へ(またはこの逆)の切り替え中には、20秒以下程度の短絡時間があってもよい。
ところで、DK 300 A/m2以上、特に350 A/m2以上の高電流密度電解では、カソード過電圧が上昇し、表面の電着状態が悪くなる傾向がある。この傾向を緩和するには、電解液への有機系添加剤の添加量を減らすことが有効であり、具体的には、にかわ:50g/ECUT以下、チオ尿素:60g/ECUT以下とするのが好ましい。ここで、にかわ、チオ尿素の添加量の下限は特に制限されない。
【0018】
なお、従来の電解では、有機系添加剤を上記範囲にまで減量すると、スライムの沈降性が劣化し、懸濁性・浮遊性を増したスライムがカソード表面へ付着しやすくなって、粒や瘤が目立つようになるが、本発明では、添加した陰イオン活性剤がスライムを電気的陰性化してカソード表面と反発させ、また、適切な反転電流通電条件によりスライムが堆積せずにアノード表面から電気的に陰性化して剥がれ落ちるので、粒や瘤の発生はほとんどなくなる。
【0019】
以上述べたように、本発明によれば、電解液に陰イオン活性剤を適量添加してアノードスライムを電気的陰性化するとともに、反転電流の通電条件を最適化して液対流変化を起こさせ物理的揺さぶりをかけるようにしたので、アノードスライムの剥離効率が大幅に向上し、スライムによる銅イオンの拡散や対流の妨害がなくなるので抵抗値が下がり、それに伴ってアノード過電圧が低下する。それゆえ、通常の銅品位のアノードを用いて、しかも浴電圧の上昇を伴わずに、アノード不働態化を防止することができるようになり、DK 360 A/m2以上のPR電解を経済的に有利に実施することが可能となる。また、DK の比較的低い(例えば280 A/m2程度)PR電解においても同様である。
【0020】
また、 本発明では、 カソードを通常の銅カソードに代えてステンレス鋼製のカソード (ステンレスカソードという。)とすることもできる。ステンレスカソードは、 水平性が良いことから短絡の発生が少なく電流効率が高いのでノルマル電解ではその適用が世界的に広まってきている。しかし、PR電解への適用はこれまでなされていなかった。というのは、従来のPR電解では、 ステンレスカソードが一時的にでも陽極化した際にステンレス鋼の溶解が発生して表面にピッチング(腐食の一種)が起こり、電気銅の剥ぎ取り不良が発生する虞があったからである。しかるに、前記(1)または(2)に記載の本発明によれば、 最初に正電流を通電し、一定量の銅を長期に連続的に電着させることができるので、電流反転時にはステンレスカソード表面に銅の電着膜が既に形成されており、ステンレス鋼の溶解は発生しない。
【0021】
そのため、前記(1)または(2)記載の本発明とステンレスカソードを組み合わせることにより、ISA法やKIDD法といったステンレスカソードを用いた従来の電解法の限界であるDK 330A/m2 を大きく上回るDK 400A/m2 以上の電解操業が可能となる。
【0022】
【実施例】
(実施例1)
長さ1200mm×幅4850mm×深さ1300mmの電解槽に、縦990mm ×横970mm ×厚さ45mm(重量370kg )のアノード(銅品位99.4%)47枚、縦1022mm×横1022mm×厚さ0.7mm (重量7kg )の銅カソード46枚を装入し、電解液を銅50g/l +フリー硫酸190g/lの硫酸銅水溶液に添加剤を混合したものとし、循環流量を30l/分、液温を65℃として、表1に示す各条件でPR電解を行った。陰イオン活性剤としては、n-アルキル硫酸ナトリウムを用いた。添加剤は電解槽に通じる循環槽内に連続的に投入した。単位時間当たりの投入量は、表1の添加量が達成されるように設定した。反転電流密度はDK の0.7 倍とした。最初は正電流から通電した。
【0023】
各条件での平均浴電圧(浴電圧瞬時値データの平均値)、製品(電気銅)の表面状態、および電気銅中の不純物である硫黄(S)品位を表1に示す。表1より、本発明例では比較例よりも平均浴電圧が低下し、粒や瘤の減少に伴ってS品位も低下し、本発明の効果が検証された。
【0024】
【表1】
【0025】
(実施例2)
長さ1200mm×幅4850mm×深さ1300mmの電解槽に、縦990mm ×横970mm ×厚さ45mm(重量370kg )のアノード(銅品位99.4%)47枚、および、縁部を樹脂製のプロテクターによりマスキングされた縦1152mm×横1047mm×厚さ3.2 mm(重量50kg)のSUS304ステンレスカソード46枚を装入し、電解液を銅50g/l +フリー硫酸190g/lの硫酸銅水溶液に添加剤を混合したものとし、循環流量を30l/分、液温を65℃として、表2に示す各条件で電解を行った。陰イオン活性剤としては、n-アルキル硫酸ナトリウムを用いた。添加剤は電解槽に通じる循環槽内に連続的に投入した。単位時間当たりの投入量は、表2の添加量が達成されるように設定した。反転電流密度はDK の0.7 倍とした。最初は正電流から通電した。
【0026】
各条件での平均浴電圧(浴電圧瞬時値データの平均値)、製品(電気銅)の表面状態、電気銅中の不純物である硫黄(S)品位、剥ぎ取り状況を表2に示す。表2より、本発明例では比較例よりも平均浴電圧が低下し、粒や瘤の減少に伴ってS品位も低下し、剥ぎ取り状況も良好であり、本発明の効果が検証された。
【0027】
【表2】
【0028】
【発明の効果】
本発明によれば、浴電圧の上昇を伴わずにアノード不働態化を防止でき、高品質の電気銅を高電流密度電解にて生産できるようになるという優れた効果を奏する。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a copper electrolytic purification method, and more particularly to a copper electrolytic purification method capable of preventing the anode passivation and improving the quality of an electrolytic copper product without impairing the economy.
[0002]
[Prior art]
In copper electrolysis, anode passivation determines the limiting current density. This phenomenon of anodic passivation occurs when the anode slime generated during copper electrolysis remains laminated on the anode surface, and the copper ion concentration near the anode surface increases and becomes saturated in order to inhibit copper ion diffusion and convection. This is a phenomenon that reaches a point and a passive film of copper sulfate is formed on the anode surface. This phenomenon restricts the productivity (expressed by the positive current density D K per unit surface area of the anode). In particular, in normal electrolysis (electrolysis performed with a constant current direction), D K 300 A / m 2 is about It was the limit.
[0003]
Conventionally, three methods are known as measures for preventing the anode passivation.
One is a method for reducing the impurity content of the anode. To be generated amount of the anode slime is reduced According this, about 10% is a limit point of D K (about D K 330 A / m 2) is effective to increase.
[0004]
The second method is a method of performing PR electrolysis (electrolysis performed by periodically reversing the direction of current) instead of normal electrolysis. To have elevated copper ion concentration in the anode near the surface can be suppressed According thereto, the limit point is 10-20% of about D K (the D K 330 about ~360 A / m 2) is effective to increase.
The third method is strengthening of the liquid circulation to the electrolytic cell, and is a method of preventing the passivating by assisting the diffusion of the liquid by the effect of increasing the liquid circulation amount in the electrolytic cell. In this case, it is effective if the slime is strengthened to such an extent that it is washed away by convection of the liquid.
[0005]
[Problems to be solved by the invention]
However, the method of reducing the impurity content of the anode inevitably has a problem accompanied by an increase in the cost of the copper smelting process for producing the anode. In the method using PR electrolysis, the bath voltage increases as the current increases. The power consumption increased and the loss due to the reversal current greatly affected the production, which was not only economically disadvantageous, but the product was in a state of poor quality with many grains and bumps on its surface. In addition, in order to increase the amount of liquid circulation, energy costs are required, and when performing forced liquid circulation enough to assist diffusion, facilities of the electrolytic cell itself must be greatly changed.
[0006]
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to provide a copper electrolytic purification method capable of economically advantageously preventing anode passivation and improving quality.
[0007]
[Means for Solving the Problems]
The present invention that has achieved the above object is as follows: (1) In the copper electrolytic purification method, 0.001 g / ECUT or more of an anionic activator is added to the electrolyte, the continuous energization time of the reversal current is 45 to 300 seconds, and the positive current performs the PR electrolysis was 1/500 to 1/70 of the continuous energization time, or in addition, organic additives added to the electrolyte to reduce with current rise the amount of (glue, thiourea collectively urea) Specifically, (2) In the electrolysis of D K 300 A / m 2 or more, the amount of glue added is 50 g / ECUT or less, and the amount of thiourea added is 60 g / ECUT or less. Electrolytic purification method.
[0008]
Here, “g / ECUT” means the gram mass per ton of electrolytic copper.
Further, the present invention is the copper electrolytic purification method according to (1) or (2), wherein the cathode material is stainless steel, and the initial energization is performed with a positive current.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In general, glue (concept including gelatin) and thiourea are added to the electrolytic solution of copper electrolysis. In addition, an anionic activator is added in the present invention. An anionic active agent refers to a surfactant that is ionized in an aqueous solution and the main component of the active agent becomes an anion. As the anionic activator according to the present invention, a simple substance or a combination of sulfonate, sulfate, phosphate, carboxylate and the like can be preferably used.
[0010]
When an anionic activator is added to an aqueous solution of copper sulfate, which is an electrolytic solution, the main component of the activator becomes an anion by ionization in the liquid, and this anion is attracted to the anode, which is the anode, and is adsorbed on the anode surface. When dissolved, the slime that is undissolved (meaning anode slime; the same shall apply hereinafter) is adsorbed on the surface of the slime when it peels off from the surface, and the anode slime becomes electronegative. The electronegative anode slime receives an electric attractive force from the anode which is the anode during the positive current application. However, when the reverse current is supplied, the anode slime receives an electric repulsive force from the anode that has become a negative electrode. A dissociation tendency occurs.
[0011]
Due to the electric repulsion, the anode slime is peeled off from the anode surface during energization of the reversal current, and is temporarily suspended in the liquid and then settled. When the slime in the middle of suspension / sediment adheres to the cathode, it may cause surface grains and bumps. However, when the slime surface is electronegative, the cathode returns to the normal cathode. Electrical repulsion works to prevent slime from adhering. Due to this action and effect, passivation can be prevented, and at the same time, quality deterioration due to product grains and bumps can be prevented.
[0012]
However, if the amount of the anionic activator added is less than 0.001 g / ECUT, the electrolysis of the anode slime is insufficient and the dissociation tendency is poor. Therefore, the anionic activator should be added in an amount of 0.001 g / ECUT or more. There is. Preferably it is 3 g / ECUT or more, more preferably 10 g / ECUT or more. However, even if it is added excessively, the dissociation tendency is saturated and the cost is increased. Therefore, the amount of the anionic activator added is preferably suppressed to about 30 g / ECUT or less.
[0013]
In order to prevent anode passivation, it is necessary to further remove the anode slime that tends to dissociate from the anode surface. To this end, the amount of anode slime deposited cannot be increased too much. It is more effective to stop or reverse the natural convection of the electrolyte solution in the vicinity of the anode together with the repulsive force, and to apply physical shaking due to the change in the liquid convection.
[0014]
However, if the continuous energization time of the reversal current is less than 45 seconds, the liquid convection change does not occur sufficiently, the physical shaking force is insufficient, and the anode slime does not progress and is not effective. On the other hand, if it exceeds 300 seconds, the elution amount of copper from the cathode increases and the productivity is impaired. Therefore, the continuous energization time of the reversing current needs to be 45 to 300 seconds. In addition, More preferably, it is 50 to 200 seconds, More preferably, it is 60 to 90 seconds.
[0015]
In addition, if the continuous energization time of the reversal current is less than 1/500 of that of the positive current, the positive current energization time becomes relatively long, so that the amount of anode slime deposited becomes too large, and the physical Even if it shakes, it becomes difficult to peel off, and the anode slime deep layer becomes insufficiently electronegative, and the adhesion preventing ability to the cathode is weakened, resulting in an increase in grains and lumps. On the other hand, if it exceeds 1/25, the positive current application time becomes relatively short and the amount of copper electrodeposition on the cathode becomes insufficient. Therefore, the continuous energization time of the reversing current needs to be 1/500 to 1/25 of that of the positive current. The ratio is more preferably 1/300 to 1/50, still more preferably 1/250 to 1/70. In the present invention, and a 1 / 500-1 / 70.
[0016]
The effect can be expected if the reversal current density is in the range of 0.3 to 2.0 times D K. However, if it is less than 0.5 times, the reversal current energization time is extended, resulting in a decrease in equipment productivity and a slight decrease in the liquid convection change. On the other hand, if the range exceeds 1.0 times, the reverse current conduction time can be shortened, but if it exceeds 1.2 times, not only does the magnitude of the liquid convection change saturate, but the rectifier for electrolysis becomes expensive. Therefore, a large amount of capital investment is required. For these reasons, the current density of the reversal current is preferably 0.5 to 1.2 times that of the positive current.
[0017]
During switching from the positive current to the reverse current (or vice versa), there may be a short circuit time of about 20 seconds or less.
By the way, in the high current density electrolysis of D K 300 A / m 2 or more, particularly 350 A / m 2 or more, the cathode overvoltage increases and the surface electrodeposition tends to be poor. To alleviate this tendency, it is effective to reduce the amount of organic additives added to the electrolyte. Specifically, glue: 50 g / ECUT or less, thiourea: 60 g / ECUT or less. preferable. Here, the lower limit of the addition amount of glue and thiourea is not particularly limited.
[0018]
In conventional electrolysis, when the organic additive is reduced to the above range, the slime settleability deteriorates, and the slime with increased suspendability and floatability tends to adhere to the cathode surface. However, in the present invention, the added anionic activator makes the slime electronegative and repels it from the cathode surface. Since it becomes negative and peels off, there is almost no generation of particles or lumps.
[0019]
As described above, according to the present invention, an appropriate amount of an anionic activator is added to the electrolytic solution to make the anode slime electronegative, and the convection change is caused to occur by optimizing the energization condition of the reversal current. As a result, the anode slime stripping efficiency is greatly improved, and diffusion of copper ions by the slime and obstruction of convection are eliminated, resulting in a decrease in resistance value and a corresponding decrease in anode overvoltage. Therefore, using a normal copper grade anode, it is possible to prevent the passivation of the anode without increasing the bath voltage, and it is possible to economically perform PR electrolysis of D K 360 A / m 2 or more. In particular, it can be carried out advantageously. The same applies to PR electrolysis with a relatively low D K (for example, about 280 A / m 2 ).
[0020]
In the present invention, the cathode can be replaced with a normal copper cathode and a stainless steel cathode (referred to as a stainless cathode). Stainless steel cathodes are widely used in normal electrolysis because they have good horizontality and are less likely to cause short circuits and have high current efficiency. However, application to PR electrolysis has not been made so far. This is because in conventional PR electrolysis, when the stainless steel cathode is temporarily anodized, the stainless steel is melted, causing pitting (a type of corrosion) on the surface, resulting in poor stripping of the electrolytic copper. Because there was a fear. However, according to the present invention described in the above (1) or (2), a positive current can be first applied and a certain amount of copper can be continuously electrodeposited for a long period of time. A copper electrodeposited film is already formed on the surface, and the stainless steel does not melt.
[0021]
Therefore, by combining the present invention described in the above (1) or (2) with a stainless steel cathode, it greatly exceeds D K 330A / m 2 , which is the limit of conventional electrolysis methods using a stainless steel cathode such as ISA method and KIDD method. Electrolysis operation of D K 400A / m 2 or more becomes possible.
[0022]
【Example】
Example 1
Electrolytic cell of length 1200mm x width 4850mm x depth 1300mm, length 990mm x width 970mm x thickness 45mm (weight 370kg) 47 anodes (copper grade 99.4%), length 1022mm x width 1022mm x thickness 0.7mm ( Weighing 46 kg of copper cathode), the electrolyte was mixed with copper sulfate aqueous solution of copper 50g / l + free sulfuric acid 190g / l, circulation flow rate 30l / min, liquid temperature 65 PR electrolysis was performed under the conditions shown in Table 1 at ° C. As the anionic activator, sodium n-alkyl sulfate was used. The additive was continuously charged into a circulation tank leading to the electrolytic cell. The input amount per unit time was set so that the addition amount shown in Table 1 was achieved. The reversal current density was 0.7 times D K. Initially, current was applied from a positive current.
[0023]
Table 1 shows the average bath voltage (average value of bath voltage instantaneous value data), the surface state of the product (electric copper), and the sulfur (S) quality as an impurity in the electrolytic copper under each condition. From Table 1, the average bath voltage in the present invention example was lower than that in the comparative example, and the S quality was also reduced as the number of grains and aneurysms decreased, and the effect of the present invention was verified.
[0024]
[Table 1]
[0025]
(Example 2)
Mask the length of the anode (copper grade 99.4%) 47 pieces and the edges with a resin protector in a 1200mm long x 4850mm wide x 1300mm deep electrolytic cell 990mm long x 970mm wide x 45mm thick (weight 370kg) 46 stainless steel cathodes of 1152 mm long × 1047 mm wide × 3.2 mm thick (weight 50 kg) were charged, and the electrolyte was mixed with copper sulfate aqueous solution of copper 50 g / l + free sulfuric acid 190 g / l. Electrolysis was carried out under the conditions shown in Table 2 with a circulating flow rate of 30 l / min and a liquid temperature of 65 ° C. As the anionic activator, sodium n-alkyl sulfate was used. The additive was continuously charged into a circulation tank leading to the electrolytic cell. The input amount per unit time was set so that the addition amount shown in Table 2 was achieved. The reversal current density was 0.7 times D K. Initially, current was applied from a positive current.
[0026]
Table 2 shows the average bath voltage (average value of bath voltage instantaneous value data), the surface state of the product (electrical copper), the quality of sulfur (S) as an impurity in the electrolytic copper, and the stripping state under each condition. From Table 2, the average bath voltage in the present invention example was lower than that in the comparative example, the S quality was lowered with the decrease in the number of grains and lumps, the stripping condition was good, and the effect of the present invention was verified.
[0027]
[Table 2]
[0028]
【The invention's effect】
According to the present invention, anode passivation can be prevented without increasing the bath voltage, and an excellent effect is achieved in that high-quality electrolytic copper can be produced by high current density electrolysis.
Claims (3)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001105514A JP3761074B2 (en) | 2000-10-27 | 2001-04-04 | Method for electrolytic purification of copper |
EP01113003A EP1160358A1 (en) | 2000-05-29 | 2001-05-28 | Electrolytic refining method of copper and electrolytic copper |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000-328922 | 2000-10-27 | ||
JP2000328922 | 2000-10-27 | ||
JP2001105514A JP3761074B2 (en) | 2000-10-27 | 2001-04-04 | Method for electrolytic purification of copper |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002206187A JP2002206187A (en) | 2002-07-26 |
JP3761074B2 true JP3761074B2 (en) | 2006-03-29 |
Family
ID=26602939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001105514A Expired - Fee Related JP3761074B2 (en) | 2000-05-29 | 2001-04-04 | Method for electrolytic purification of copper |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3761074B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5213828B2 (en) * | 2009-09-30 | 2013-06-19 | パンパシフィック・カッパー株式会社 | Method for electrolytic purification of copper |
JP5575020B2 (en) * | 2011-03-17 | 2014-08-20 | パンパシフィック・カッパー株式会社 | Electrolytic extraction of metals |
PL397081A1 (en) * | 2011-11-22 | 2013-05-27 | Nano-Tech Spólka Z Ograniczona Odpowiedzialnoscia | Method for electrorefining of copper |
JP2017214612A (en) * | 2016-05-31 | 2017-12-07 | 国立大学法人九州大学 | Electrolytic refining method for copper |
JP6877007B2 (en) * | 2017-08-31 | 2021-05-26 | 国立大学法人九州大学 | Operation method of copper electrorefining |
-
2001
- 2001-04-04 JP JP2001105514A patent/JP3761074B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002206187A (en) | 2002-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109023399B (en) | Regeneration treatment liquid of titanium anode for electrolytic copper foil, preparation method thereof and regeneration method of titanium anode | |
CN110578153B (en) | Electrolyte for electrolytic refining of crude bismuth and electrolysis method | |
JP3761074B2 (en) | Method for electrolytic purification of copper | |
US4906340A (en) | Process for electroplating metals | |
JPS61290669A (en) | Operation of zinc-halogen secondary battery | |
WO2014192581A1 (en) | METHOD AND DEVICE FOR TREATING IODINE-CONTAINING ETCHING SOLUTION WHICH CONTAINS Au | |
KR20170106941A (en) | Device for Regeneration of Etchant and Copper Recovery | |
US4264419A (en) | Electrochemical detinning of copper base alloys | |
CN1153855C (en) | Method and device for regulating concentration of substaces in electrolytes | |
USRE34191E (en) | Process for electroplating metals | |
JP3030534B2 (en) | Regeneration method of tin-based alloy plating bath | |
US3575829A (en) | System for cleaning contact rolls in a plating tank | |
CN113881967B (en) | Impurity removal method for lead electrolyte | |
CN113046812A (en) | Anodic oxidation liquid for titanium alloy dental abutment system and preparation method and application thereof | |
CN109338408A (en) | A kind of electrolyte and a kind of electrorefining method of useless electronic solder | |
JP3875548B2 (en) | Electrolyte purification method | |
JP3063636B2 (en) | Copper electrolytic refining method | |
JP3316606B2 (en) | Tin plating apparatus and tin plating method | |
JP3061544B2 (en) | Insoluble electrode | |
JP2011074463A (en) | Method for electrolytically refining copper | |
KR0152976B1 (en) | Electro chemical indirect etching method and its device for al plate | |
Maizelis et al. | Electrochemical treatment of waste in the form of copper coating on non-conductive substrate to obtain marketable products | |
JPH026840B2 (en) | ||
JPH09217190A (en) | Energization method in electrolytic refining | |
JP4280593B2 (en) | Copper electrolytic purification method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051018 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060105 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090120 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100120 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100120 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110120 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110120 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120120 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130120 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130120 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140120 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |