JP3875548B2 - Electrolyte purification method - Google Patents

Electrolyte purification method Download PDF

Info

Publication number
JP3875548B2
JP3875548B2 JP2001379472A JP2001379472A JP3875548B2 JP 3875548 B2 JP3875548 B2 JP 3875548B2 JP 2001379472 A JP2001379472 A JP 2001379472A JP 2001379472 A JP2001379472 A JP 2001379472A JP 3875548 B2 JP3875548 B2 JP 3875548B2
Authority
JP
Japan
Prior art keywords
electrolytic
concentration
liquid
copper
clean
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001379472A
Other languages
Japanese (ja)
Other versions
JP2003183869A (en
Inventor
憲治 拝生
基美 古田
登 中村
康繁 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2001379472A priority Critical patent/JP3875548B2/en
Publication of JP2003183869A publication Critical patent/JP2003183869A/en
Application granted granted Critical
Publication of JP3875548B2 publication Critical patent/JP3875548B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明は、銅の電解精製に用いる電解液の浄液方法に関する。
【0002】
【従来の技術】
銅の電解精製工程では、転炉→精製炉等の溶錬炉で産出した粗銅をアノードとし、種板槽で産出した銅種板をカソードとして一般電解槽内の電解液中に装入・通電し、粗銅から銅を溶出させて銅種板に電着させることにより、Cu純度99.99 %の製品電気銅を生産する。このとき、粗銅から余剰分のCuとともに不純物(As,Sb,Bi)が溶出する。これらの不純物が電解液中で一定濃度以上になった場合には製品の外観の悪化(表面の荒れ、粒・瘤の発生)や製品品質の悪化を招く。
【0003】
そこで、電解液を一般電解槽から一部抜き取って脱銅電解槽へ送り、電解採取により液中の銅を減量後、清浄電解槽へ送り、電解採取により不純物除去(すなわち送られてきた電解液を浄化(浄液))した後、一般電解槽に戻すことが行われる。前記電解採取では、不溶性陽極(通常はPbアノード)が用いられる。清浄電解槽に送られる電解液を「清浄給液(あるいは脱銅尾液)」、一般電解槽に戻される電解液を「清浄尾液(あるいは尾液)」という。
【0004】
前記浄液工程においては、はじめに余剰溶出したCuが電着し、Cu濃度がある程度低下してからAs,Sb,Biが電着し、回収除去される。通常の浄液方法では、尾液のCu濃度を0.8g/L程度未満まで下げることにより全不純物を9割程度除去できる。この方法では、被処理液中濃度の高いものが良く採れることになる。この不純物を下げた液を一般電解槽へ戻すことにより電解液中の不純物濃度を一定値以下に保つことで、外観・品質とも問題のない製品電気銅を生産できる。
【0005】
【発明が解決しようとする課題】
ところで、近年、Sb,Biを比較的多く含む種類の銅鉱石が多く使用される傾向にある。この種類の銅鉱石を原料として製造された粗銅ではSb,Biの含有量が高めとなる。この粗銅を一般電解槽のアノードとして用いた場合、電解液中へのSb,Biの溶出量は増加する。そのため浄液工程での不純物除去量を増加させないと一般電解槽内の電解液の不純物濃度が上昇して製品電気銅の外観・品質が劣化する虞がある。
【0006】
浄液工程での不純物除去量を増大させるには、清浄電解槽の容量を大きくすればよいのであるが、そうするには大幅な設備改造が必要で、設備投資額が莫大なものとなるため現実的でない。
本発明は、前記従来技術の問題を解決し、大幅な設備改造を要さずに不純物とくにBi,Sbの除去量を増大させうる電解液の浄液方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、銅電解精製を行う一般電解槽から電解液を一部抜き取って脱銅電解槽に送り、電解採取により液中の銅を減量後、清浄給液として清浄電解槽に送り、電解採取により液中の不純物を除去して清浄尾液として前記一般電解槽に戻す電解液の浄液方法において、前記除去される不純物が As Sb Bi を含み、うち As を他よりも多く除去する場合は前記清浄尾液の Cu 濃度を 0.8g/L 未満とし、 Sb Bi を他よりも多く除去する場合は前記清浄尾液のCu濃度を0.8 〜3.0g/Lとすることを特徴とする電解液の浄液方法である。本発明では、前記清浄電解槽の少なくとも上流側の部分で電解採取されている電解液を攪拌することが好ましい
【0008】
【発明の実施の形態】
電解液の浄液工程では、理論電解電位が貴のものほど先に電解採取される。理論電解電位はCu>Bi>Sb>Asであるから、まずCuが析出し、次いでBi,Sb,Asの順に析出する。Biは単体、Sb,AsはCuとの金属間化合物(Cu3Sb ,Cu3As )の形態で析出する。しかしながら、それらの詳細な量的関係については知られていなかった。そこで、本発明者らは、種々の電解採取条件について尾液の成分組成を分析調査し、その結果、尾液のAs,Sb,Bi濃度とCu濃度との間に図1に示すような関係があることが判明した。なお、給液の不純物濃度は、As:8g/L,Sb:0.45g/L,Bi:0.15g/Lである。
【0009】
図1の関係によれば、尾液のCu濃度が0.5g/Lとなるような条件で電解採取を行った場合、尾液不純物濃度はAs:1.0g/L,Sb:0.01g/L,Bi:0.01g/Lとなる(なお、Bi分析下限値が 0.01g/Lである。)から、不純物除去率(=1−尾液不純物濃度/給液不純物濃度)は、As:87.5%,Sb:97.8%,Bi:93.3%である。ここで、給液流量は 140m3/day であり、不純物除去量(=給液流量×給液不純物濃度×不純物除去率)は、As:980kg/day 、Sb:61.6kg/day、Bi:19.6kg/dayである。不純物除去率は清浄電解槽の設備能力によってほぼ決まるので、不純物除去量(除去量=電解採取量)を増やすためには、給液不純物濃度を上げるか又は給液流量を増やす必要がある。しかし給液不純物濃度は、一般電解槽側の上限規制があって上げることはできない。また、給液流量を増やすと、例えば図2に示すような給液流量と尾液Cu濃度との関係から、尾液Cu濃度が0.8g/L以上になるため、尾液Cu濃度の管理値を0.8g/L未満とする限り、給液流量を増やすこともできない。
【0010】
これに対し、本発明では、除去される不純物が As Sb Bi を含み、うち As を他よりも多く除去する場合は尾液の Cu 濃度を 0.8g/L 未満とし、 Sb Bi を他よりも多く除去する場合は尾液のCu濃度を0.8 〜3.0g/Lの範囲に管理するものとした。図3は、図1及び図2から導出した尾液Cu濃度と不純物除去量との関係を示すグラフである。図3において縦軸の不純物除去量は、尾液Cu濃度=0.7g/Lでの従来値に対する比を 100倍した相対値で示した。図3に示すように、As Sb Bi よりも多く除去する場合は尾液 Cu 濃度を 0.8g/L 未満(図3のA域)に管理し、 Sb Bi As よりも多く除去する場合は尾液Cu濃度を0.8 〜3.0g/L(図3のB域)、好ましくは1.2 〜2.5g/L、に管理することにより、給液流量を増加させてSb,Biの除去量(電解採取量)を増加させることができる。よって、設備の大幅な改造を行わずとも、粗銅アノードのSb,Bi濃度上昇に適応することができる。例えば粗銅アノードのBi濃度が78ppm から87ppm へ上昇しても製品電気銅の外観の悪化(例:表面の荒れ、 粒・瘤の発生)や品質の悪化(例:LME規格(As≦5ppm ,Sb≦4ppm ,Bi≦2.0ppm)外れ)を生じないレベルまで電解液中の不純物を除去することができるようになる。なお、Asの除去量は従来の7割程度に減るが、液中As濃度が一定値以下であるので製品電気銅の外観・品質に問題を生じるほどの影響はない。
【0011】
ところで、尾液Cu濃度管理値 0.8g/L未満か 0.8 〜3.0g/Lに上げると、通常用いられている直列カスケード結合型の清浄電解槽では、とくにその上流側で高さ(深さ)方向に電解液のCu濃度偏析が生じやすくなり、例えば10g/L以上濃度差が発生することがある。そうなると尾液Cu濃度のばらつきが発生するうえ、電解採取銅の電析状態が悪化(カソードに粒・瘤が生成・肥大化)してショートが発生し電解採取効率が低下する不具合を生じる。かかる不具合をなくすために、清浄電解槽においては少なくとも上流側の部分すなわちCu濃度が高い(例えば5g/L以上の)清浄電解槽部で電解採取されている電解液を攪拌することが好ましい。この攪拌を行う手段としては、ポンプによる液循環、エアバブリング等が好ましく用いうる。これにより、上流側の清浄電解槽で電解液の深さ方向のCu濃度分布を均一(濃度差1g/L以下)にすることができ、尾液Cu濃度の管理精度を十分高位に確保できるとともに、電解採取銅の電析状態を良好に維持することができる。
【0012】
【実施例】
カソード電着総面積38m2 の規模の電解槽を6槽直列にカスケード結合してなる清浄電解槽を用いて電解採取により給液の不純物を除去する浄液工程に本発明を適用した。この浄液工程では、従来、給液送給元(=尾液戻し先)の一般電解槽で用いられている粗銅アノードの不純物品位が、As≦1350ppm ,Sb≦220ppm,Bi≦78ppm の場合に適合して尾液Cu濃度が0.8g/L未満となるように操業していた。この条件では給液流量(=尾液流量)の上限は140 m3/day であり、不純物除去量は、As:980kg/day ,Sb:61.6kg/day,Bi:19.6kg/dayであった。
【0013】
しかし、ある時期から粗銅アノードの不純物品位が、As≦1250ppm ,Sb≦240ppm,Bi≦87ppm に変更されることになり、それに応じて浄液工程のBi,Sb除去能力を10%程度以上増強する必要が生じた。そうしないと一般電解槽で生産される製品電気銅の表面に粒や瘤が多発し、また、製品電気銅のBi品位がLME規格上限の2.0ppmを超えてしまうことが実験的に確かめられている。
【0014】
そこで、本発明に従い、尾液Cu濃度の管理値を2.0g/Lに変更した。その結果、清浄電解槽の増強改造を伴わずに給液流量を 180m3 程度に増やすことができ(図2参照)、Bi除去能力を20%以上増強することができた(図3参照)。これにより、一般電解槽での液中Bi,Sb濃度の上昇を抑えることができた。
なお、本発明実施当初は、清浄電解槽のうちの上流側の槽で深さ方向のCu濃度偏析(最大濃度差10g/L程度)が認められ、電流効率が従来に比べてやや低下気味であったので、本発明の好適形態に従い、上流側の第1〜5槽内部にエアレーション配管を設置してエアバブリングすることにより同槽内の電解液を攪拌するようにしたところ、前記偏析は濃度差1g/L未満へとほとんど解消し、電流効率は60〜70%の高位に安定的に推移している。
【0015】
【発明の効果】
本発明によれば、浄液設備の大幅改造を伴わずに給液中のSb, Biの電解採取量(除去量)を増大させることが可能になるという優れた効果を奏する。
【図面の簡単な説明】
【図1】尾液のAs,Sb,Bi濃度とCu濃度との関係を示すグラフである。
【図2】給液流量と尾液Cu濃度との関係を示すグラフである。
【図3】尾液Cu濃度と不純物除去量との関係を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for purifying an electrolytic solution used for electrolytic purification of copper.
[0002]
[Prior art]
In the copper electrolytic refining process, the raw copper produced in a smelting furnace such as a converter → refining furnace is used as the anode, and the copper seed plate produced in the seed plate tank is used as the cathode in the electrolytic solution in the general electrolytic tank. Then, by eluting the copper from the crude copper and electrodepositing it on the copper seed plate, the product electrolytic copper with a Cu purity of 99.99% is produced. At this time, impurities (As, Sb, Bi) are eluted from the crude copper together with excess Cu. When these impurities exceed a certain concentration in the electrolytic solution, the appearance of the product is deteriorated (surface roughness, generation of grains and bumps) and the product quality is deteriorated.
[0003]
Therefore, a part of the electrolytic solution is extracted from the general electrolytic cell and sent to the copper removal electrolytic cell. After the amount of copper in the solution is reduced by electrolytic collection, the copper is sent to the clean electrolytic cell, and impurities are removed by electrolytic collection (that is, the electrolytic solution sent) Is purified (purified liquid)) and then returned to the general electrolytic cell. In the electrowinning, an insoluble anode (usually a Pb anode) is used. The electrolytic solution sent to the clean electrolytic tank is called “clean supply liquid (or copper removal tail liquid)”, and the electrolytic solution returned to the general electrolytic tank is called “clean tail liquid (or tail liquid)”.
[0004]
In the liquid purification step, first, excessively eluted Cu is electrodeposited, and after Cu concentration is lowered to some extent, As, Sb, and Bi are electrodeposited and recovered and removed. In a normal liquid purification method, about 90% of all impurities can be removed by lowering the Cu concentration of the tail liquid to less than about 0.8 g / L. In this method, a high concentration in the liquid to be treated can be obtained. By returning the liquid in which the impurities are lowered to the general electrolytic cell, the electrolytic concentration in the electrolytic solution can be maintained at a certain value or less, so that product electrolytic copper having no problem in appearance and quality can be produced.
[0005]
[Problems to be solved by the invention]
By the way, in recent years, there is a tendency that many kinds of copper ores containing a relatively large amount of Sb and Bi are used. Crude copper produced from this type of copper ore has a high Sb and Bi content. When this crude copper is used as the anode of a general electrolytic cell, the elution amount of Sb and Bi in the electrolytic solution increases. Therefore, unless the amount of impurities removed in the liquid purification process is increased, the impurity concentration of the electrolytic solution in the general electrolytic cell is increased, and the appearance and quality of the product electrolytic copper may be deteriorated.
[0006]
To increase the amount of impurities removed in the liquid purification process, it is necessary to increase the capacity of the clean electrolyzer. To do so, significant equipment modifications are required, and the amount of capital investment is enormous. Not realistic.
An object of the present invention is to solve the problems of the prior art and to provide a method for purifying an electrolytic solution that can increase the removal amount of impurities, particularly Bi and Sb, without requiring significant facility modification.
[0007]
[Means for Solving the Problems]
The present invention extracts a part of the electrolytic solution from a general electrolytic cell that performs copper electrolytic refining and sends it to a copper removal electrolytic cell. In the liquid purification method of the electrolytic solution that removes impurities in the solution and returns them to the general electrolytic cell as a clean tail solution, the removed impurities include As , Sb , and Bi , of which As is removed more than the others In this case, the Cu concentration of the clean tail liquid is less than 0.8 g / L, and when removing more Sb and Bi than the others , the Cu concentration of the clean tail liquid is set to 0.8 to 3.0 g / L. This is a method for cleaning an electrolytic solution. In the present invention, it is preferable to stir the electrolytic solution collected by electrolysis in at least the upstream portion of the clean electrolytic cell .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the electrolytic solution purification process, the noble electrolysis potential is collected first. Since the theoretical electrolytic potential is Cu>Bi>Sb> As, Cu is first deposited, and then Bi, Sb, and As are deposited in this order. Bi precipitates as a single substance, and Sb and As precipitate in the form of an intermetallic compound with Cu (Cu 3 Sb and Cu 3 As). However, their detailed quantitative relationship was not known. Therefore, the present inventors analyzed and investigated the composition of the tail fluid under various electrowinning conditions, and as a result, the relationship shown in FIG. 1 between the As, Sb, Bi and Cu concentrations in the tail fluid. Turned out to be. In addition, the impurity concentration of a supply liquid is As: 8g / L, Sb: 0.45g / L, Bi: 0.15g / L.
[0009]
According to the relationship of FIG. 1, when electrolytic collection is performed under the condition that the Cu concentration of the tail fluid is 0.5 g / L, the tail fluid impurity concentrations are As: 1.0 g / L, Sb: 0.01 g / L, Since Bi is 0.01 g / L (the Bi analysis lower limit is 0.01 g / L), the impurity removal rate (= 1-tail liquid impurity concentration / feed liquid impurity concentration) is As: 87.5%, Sb: 97.8%, Bi: 93.3%. Here, the liquid supply flow rate is 140 m 3 / day, and the impurity removal amount (= liquid supply flow rate × liquid supply impurity concentration × impurity removal rate) is As: 980 kg / day, Sb: 61.6 kg / day, Bi: 19.6 kg / day. Since the impurity removal rate is almost determined by the facility capacity of the clean electrolytic cell, it is necessary to increase the supply liquid impurity concentration or increase the supply liquid flow rate in order to increase the impurity removal amount (removal amount = electrolytic collection amount). However, the liquid supply impurity concentration cannot be increased due to the upper limit on the general electrolytic cell side. In addition, when the supply liquid flow rate is increased, for example, the tail liquid Cu concentration becomes 0.8 g / L or more from the relationship between the supply liquid flow rate and the tail liquid Cu concentration as shown in FIG. As long as the value is less than 0.8 g / L, the liquid supply flow rate cannot be increased.
[0010]
On the other hand, in the present invention, the impurities to be removed include As , Sb , and Bi , and when removing more As than the others, the Cu concentration of the tail liquid is set to less than 0.8 g / L , and Sb and Bi are When removing more than this, the Cu concentration in the tail fluid was controlled in the range of 0.8 to 3.0 g / L. FIG. 3 is a graph showing the relationship between the tail liquid Cu concentration derived from FIGS. 1 and 2 and the impurity removal amount. In FIG. 3, the amount of impurities removed on the vertical axis is shown as a relative value obtained by multiplying the ratio of the tail liquid Cu concentration = 0.7 g / L with the conventional value by 100. As shown in FIG. 3, the As Sb, the case of more removal than Bi manages tail liquid Cu concentrations below 0.8 g / L (A zone in FIG. 3), Sb, many removed than As the Bi In this case, by controlling the tail fluid Cu concentration to 0.8 to 3.0 g / L (B area in FIG. 3) , preferably 1.2 to 2.5 g / L, the amount of Sb and Bi removed ( Electrolytic collection amount) can be increased. Therefore, it is possible to adapt to the increase in the Sb and Bi concentration of the crude copper anode without significant modification of the equipment. For example, even if the Bi concentration of the crude copper anode is increased from 78 ppm to 87 ppm, the appearance of the product electrolytic copper deteriorates (eg, surface roughening, generation of grains and bumps) and quality deteriorates (eg: LME standard (As ≦ 5 ppm, Sb ≦ 4 ppm, Bi ≦ 2.0 ppm) Impurities in the electrolyte can be removed to a level that does not cause a deviation. The removal amount of As is reduced to about 70% of the conventional amount. However, since the concentration of As in the liquid is below a certain value, there is no influence that causes a problem on the appearance and quality of the product copper.
[0011]
However, increasing the tail liquid Cu concentration control value to 0 .8g / L less than or al 0 .8 to 3.0 g / L, the cleaning electrolytic cell of the series cascaded type normally used, particularly high at the upstream side Cu concentration segregation in the electrolyte solution tends to occur in the thickness (depth) direction, and a concentration difference of, for example, 10 g / L or more may occur. If this happens, the concentration of Cu in the tail liquor will vary, and the electrodeposited state of the electrolytically collected copper will deteriorate (particles and lumps will be generated and enlarged on the cathode), resulting in a short circuit and a decrease in electrolytic collection efficiency. In order to eliminate such inconveniences, it is preferable to stir the electrolytic solution collected by electrolysis at least in the clean electrolytic cell, that is, in the clean electrolytic cell having a high Cu concentration (for example, 5 g / L or more). As a means for performing this stirring, liquid circulation by a pump, air bubbling and the like can be preferably used. As a result, the Cu concentration distribution in the depth direction of the electrolyte can be made uniform (concentration difference of 1 g / L or less) in the upstream clean electrolytic cell, and the control accuracy of the tail solution Cu concentration can be secured sufficiently high. In addition, the electrodeposition state of the electrolytically collected copper can be maintained well.
[0012]
【Example】
The present invention was applied to a liquid purification process in which impurities in a feed solution were removed by electrolytic collection using a clean electrolytic cell in which six electrolytic cells with a total area of cathode electrodeposition of 38 m 2 were cascade-connected in series. In this liquid purification process, when the impurity grade of the crude copper anode used in the conventional electrolytic cell of the liquid supply source (= tail liquid return destination) is As ≦ 1350ppm, Sb ≦ 220ppm, Bi ≦ 78ppm The tail fluid Cu concentration was adapted to be less than 0.8 g / L. Under this condition, the upper limit of the supply flow rate (= tail flow rate) was 140 m 3 / day, and the impurity removal amount was As: 980 kg / day, Sb: 61.6 kg / day, Bi: 19.6 kg / day .
[0013]
However, the impurity grade of the crude copper anode has been changed to As ≦ 1250ppm, Sb ≦ 240ppm, Bi ≦ 87ppm from some time, and accordingly, the Bi and Sb removal ability of the liquid purification process is enhanced by about 10% or more. Need arises. Otherwise, it has been experimentally confirmed that grains and bumps occur frequently on the surface of the product electrolytic copper produced in a general electrolytic cell, and that the Bi quality of the product electrolytic copper exceeds the LME standard upper limit of 2.0 ppm. Yes.
[0014]
Therefore, according to the present invention, the control value of the tail fluid Cu concentration was changed to 2.0 g / L. As a result, it was possible to increase the feed flow rate to about 180 m 3 without remodeling the clean electrolytic cell (see Fig. 2), and to enhance the Bi removal capacity by 20% or more (see Fig. 3). As a result, the increase in Bi and Sb concentrations in the liquid in the general electrolytic cell could be suppressed.
At the beginning of the present invention, segregation of Cu concentration in the depth direction (maximum concentration difference of about 10 g / L) was observed in the upstream side of the clean electrolytic cell, and the current efficiency was slightly lower than before. Therefore, according to a preferred embodiment of the present invention, the aeration pipe was installed in the first to fifth tanks on the upstream side and air bubbling was performed to stir the electrolyte in the tank. The difference is almost eliminated to less than 1 g / L, and the current efficiency is stable at a high level of 60 to 70%.
[0015]
【The invention's effect】
According to the present invention, there is an excellent effect that it is possible to increase the electrolytic collection amount (removal amount) of Sb and Bi in the liquid supply without greatly remodeling the liquid purification equipment.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between As, Sb, Bi concentration and Cu concentration of tail fluid.
FIG. 2 is a graph showing a relationship between a supply liquid flow rate and a tail liquid Cu concentration.
FIG. 3 is a graph showing the relationship between tail liquid Cu concentration and impurity removal amount.

Claims (2)

銅電解精製を行う一般電解槽から電解液を一部抜き取って脱銅電解槽に送り、電解採取により液中の銅を減量後、清浄給液として清浄電解槽に送り、電解採取により液中の不純物を除去して清浄尾液として前記一般電解槽に戻す電解液の浄液方法において、前記除去される不純物が As Sb Bi を含み、うち As を他よりも多く除去する場合は前記清浄尾液の Cu 濃度を 0.8g/L 未満とし、 Sb Bi を他よりも多く除去する場合は前記清浄尾液のCu濃度を0.8 〜3.0g/Lとすることを特徴とする電解液の浄液方法。Extract a part of the electrolyte from a general electrolytic cell that performs copper electrolytic purification and send it to a copper removal electrolytic cell.After reducing the amount of copper in the solution by electrolytic collection, send it to a clean electrolytic cell as a clean feed solution. in solution purification method of electrolyte impurities is removed back to the general electrolyzer as cleaning tail liquid, if the impurity to be the removal as, Sb, include Bi, more removed than others among as, the cleaning When the Cu concentration of the tail liquid is less than 0.8 g / L, and when removing more Sb and Bi than the others , the Cu concentration of the clean tail liquid is 0.8 to 3.0 g / L. Liquid method. 前記清浄電解槽の少なくとも上流側の部分で電解採取されている電解液を攪拌することを特徴とする請求項1記載の電解液の浄液方法。 The method for purifying an electrolytic solution according to claim 1, wherein the electrolytic solution collected by electrolysis is stirred at least at a portion upstream of the clean electrolytic bath.
JP2001379472A 2001-12-13 2001-12-13 Electrolyte purification method Expired - Fee Related JP3875548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001379472A JP3875548B2 (en) 2001-12-13 2001-12-13 Electrolyte purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001379472A JP3875548B2 (en) 2001-12-13 2001-12-13 Electrolyte purification method

Publications (2)

Publication Number Publication Date
JP2003183869A JP2003183869A (en) 2003-07-03
JP3875548B2 true JP3875548B2 (en) 2007-01-31

Family

ID=27591047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001379472A Expired - Fee Related JP3875548B2 (en) 2001-12-13 2001-12-13 Electrolyte purification method

Country Status (1)

Country Link
JP (1) JP3875548B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5801223B2 (en) * 2012-02-28 2015-10-28 パンパシフィック・カッパー株式会社 Liquid receiving device for electrode plate and liquid and solid discharging method for liquid receiving device
JP5924278B2 (en) * 2013-01-29 2016-05-25 住友金属鉱山株式会社 15-group removal method of electrolytic solution in electrolytic refining of copper
CN107841769B (en) * 2017-11-17 2019-11-08 金川集团股份有限公司 A method of antimony, bismuth are selectively removed from induction decopper(ing) liquid

Also Published As

Publication number Publication date
JP2003183869A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
EP2650403A2 (en) Electrorecovery of gold and silver from thiosulphate solutions
JP4298712B2 (en) Method for electrolytic purification of copper
CN109485023B (en) Method for recovering tellurium from copper-tellurium-containing waste liquid
CN106757179A (en) A kind of cupric electrolysis tail washings purifies the process of decopper(ing) removal of impurities
CN112119182A (en) Improvements in electrical refining of copper
JP4470689B2 (en) Indium recovery method using tin smelting
US5372684A (en) Process for the direct electrochemical refining of copper scrap
JP3875548B2 (en) Electrolyte purification method
JPH10140257A (en) Wet refining method of nickel by chlorine leaching electrolytic extracting method
JP3882608B2 (en) Method and apparatus for electrolytic purification of high purity tin
US5441609A (en) Process for continuous electrochemical lead refining
JP2008106348A (en) Method of separating and recovering zinc
JP2006241568A (en) Electrowinning method for iron from acid chloride aqueous solution
EP0028158A1 (en) Methods and systems of removal of metals from solution and of purification of metals and purified solutions and metals so obtained
US3054736A (en) Method and apparatus for recovery of copper and zinc from scrap
JP3412144B2 (en) Method for improving Ag recovery rate in copper electrorefining
JP3552512B2 (en) Method for controlling dissolved oxygen in copper electrolyte and method for electrolytic purification of copper
JP2570076B2 (en) Manufacturing method of high purity nickel
JP2013199671A (en) Method for electrolyzing high bismuth quality lead anode
JP3163612B2 (en) Copper removal electrolysis from chloride bath
JP3083079B2 (en) Copper electrorefining method
CN110079827B (en) Electrolysis purification method of lead based on sulfamic acid bath
JP2005281827A (en) Electrolytic refining method for silver
JP4952203B2 (en) Method for preventing formation of floating slime in electrolytic copper refining
JPH0713313B2 (en) Tellurium recovery method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees